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Transcription initiates the cascade of gene expression and is often assumed to
play a predominant role in determining how much gene products are ultimately
expressed. The relationship between mRNA levels and protein levels has been studied
extensively to reveal the degrees of transcriptional and post-transcriptional regulation of
protein expression. The extent to which transcription globally controls the differential
expression of non-coding RNAs, however, is poorly defined. MicroRNAs (miRNAs)
are a class of small, non-coding RNAs whose biogenesis involves transcription
followed by extensive processing. Here, using hundreds of datasets produced from
the ENCODE (Encyclopedia of DNA Elements) project we calculated the correlations
between transcriptional activity and mature miRNA expression in diverse human cells,
human tissues, and mouse tissues. While correlations vary among samples, most
correlation coefficients are small. Interestingly, excluding miRNAs that were discovered
later or weighting miRNA expression improves the correlations. Our results suggest
that transcription contributes only modestly to differential miRNA expression at the
genome-wide scale in mammals.

Keywords: miRNA, transcription, pri-miRNA, miRNA processing, correlation analysis, ENCODE datasets

INTRODUCTION

How gene expression is regulated at the global scale is among the most intensely studied
subjects in genomics (Vogel and Marcotte, 2012; Liu et al., 2016). Transcription, splicing,
cleavage, modification, and degradation all modulate RNA expression, and protein expression is
likewise determined by mRNA translation, protein modification, and degradation. The correlations
between mRNA levels and protein levels in various model organisms and systems have been
investigated (Gygi et al., 1999; Ghaemmaghami et al., 2003; Beyer et al., 2004; Brockmann et al.,
2007; Schmidt et al., 2007; Wu et al., 2008; de Sousa Abreu et al., 2009; Maier et al., 2009; Lundberg
et al., 2010; Vogel et al., 2010; Ghazalpour et al., 2011; Schwanhausser et al., 2011; Ponnala et al.,
2014; Shaik et al., 2014; Jovanovic et al., 2015; Edfors et al., 2016), with recent estimates that mRNA
levels can explain over 80% of the variance in protein levels (Li et al., 2014; Csardi et al., 2015).
Because the contribution by mRNA degradation has always been shown to be minor, transcription
(including processing) is considered a dominant step in controlling protein expression (Li et al.,
2014).
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Besides proteins, cells also produce a large number of non-
coding RNAs, e.g., ribosomal RNAs, transfer RNAs, small
nuclear RNAs, small nucleolar RNAs, MicroRNAs (miRNAs),
small interfering RNAs, piwi-interacting RNAs, and long non-
coding RNAs (lncRNAs). In contrast to protein expression,
how transcription regulates non-coding RNA levels at the
genome-wide scale has not been examined in detail. This
is paradoxical, as some of the RNA species have been well
characterized, and it is easier to quantify RNAs than proteins.
Nonetheless, analyzing non-coding RNAs at a large scale
does face a few technological challenges. One is that certain
RNA classes are encoded by multiple genes, sometimes with
complex genomic structures. Another is that prevailing RNA-
seq techniques typically yield short sequence reads that often
do not adequately distinguish between RNAs such as small
nucleolar RNAs and lncRNAs and their initial transcripts
or processed intermediates. Moreover, lncRNAs are mostly
ill-defined but closely mimic mRNAs or their precursors. The
biogenesis of ribosomal RNAs, transfer RNAs, and small nuclear
RNAs is coupled to the physiological status of a cell and
constrained by the requirement for stoichiometric complex
formation (Jinks-Robertson et al., 1983; Mangin et al., 1985; Paule
and White, 2000). Still, the global regulatory mechanisms of other
RNAs such as miRNAs remain to be elucidated.

miRNAs consist of a large family of approximately 22-
nucleotide-long RNAs that inhibit target gene expression in
metazoans (Tran and Hutvagner, 2013; Hammond, 2015).
miRNA genes are typically transcribed by RNA polymerase II
(Pol2) to generate the long, primary miRNA transcripts or pri-
miRNAs, which are indistinguishable from and/or overlap with
(known) mRNAs, heterogeneous nuclear RNAs (pre-mRNAs),
or lncRNAs. The RNAs subsequently undergo a series of
processing steps, including cleavage by DROSHA and DICER,
to produce mature miRNAs, although some miRNAs can forego
the requirement for DROSHA or DICER during their biogenesis
(Tran and Hutvagner, 2013).

Like mRNAs and proteins, miRNAs vary widely in expression
levels in cells. Transcription is commonly presumed by default
to be the major driving force in differential RNA expression,
as in the case of protein production, but direct evidence that
it regulates miRNA expression at the global scale is lacking.
A study in 3T9 mouse fibroblasts reported that transcription
highly correlated with miRNA expression (Marzi et al., 2016).
On the other hand, while miRNA expression has been shown
to be regulated by DROSHA processing (Feng et al., 2011;
Conrad et al., 2014), investigation of a handful of human cell
lines found transcription activity correlated only weakly, if at
all, with mature miRNA levels (Graves and Zeng, 2012; Conrad
et al., 2014). The above studies employed only a small sample
size, so the results might be affected by unequal genomics data
quality or idiosyncrasy of the cell lines that were analyzed.
As transcription has been traditionally considered a major
determinant of gene expression, in this study, we decided to
investigate its contribution comprehensively, by examining how
transcriptional activity correlated with miRNA expression in
a broad range of human and mouse cell and tissue samples,
taking advantage of a large collection of RNA-seq and ChIP-seq

datasets from the ENCODE (Encyclopedia of DNA Elements)
consortium (ENCODE Project Consortium, 2012). ENCODE
datasets were chosen because the ENCODE project has used
well documented, characterized, and standardized materials,
techniques, and procedures to generate the most complete,
easy to access, thousands of processed datasets, including many
replicates, with reportedly good data quality. miRNAs were
chosen as the subject because miRNAs are typically of a single
gene copy, and mature miRNAs can be differentiated from longer
transcripts by standard RNA-seq, thereby offering a facile system
to study how transcription regulates the expression of non-
coding RNAs at the genome level. By inference one might also
be able to gain insights into the relative contribution to miRNA
abundance by DNA transcription and RNA processing. As for
our hypothesis, we expected that transcription contributes to
differential miRNA expression, producing positive correlation
coefficients, and the higher the coefficients, the greater the
contribution.

MATERIALS AND METHODS

All datasets were downloaded from the ENCODE portal1. To
maintain consistencies in data processing and analyses, for Pol2
(POLR2AphosphoS2 for A549 and HeLa-S3 cells, POLR2A for
all other samples) ChIP-seq results we used only those samples
with available processed data in the bed format; for RNA-seq,
including miRNA-seq, small RNA-seq, total RNA-seq, and polyA
RNA-seq, we downloaded only processed data with the gene
quantifications tsv output. In other words, we extracted only the
simplest, most annotated and processed data. We used GM12878,
one of the best tested cell lines by ENCODE, to represent the GM
series of cells. We downloaded all ENCODE datasets that met
these criteria as on March 31, 2017.

In ENCODE datasets, miRNA expression includes both the 5p
and 3p miRNA species and, hence, represents complete miRNA
production from any particular gene locus. Because miRNA
genes are poorly characterized, we acquired human and mouse
precursor miRNAs (pre-miRNA) genome information from
the miRBase (Kozomara and Griffiths-Jones, 2014), arbitrarily
extended a set distance at both the 5′ and 3′ directions, e.g.,
1, 2, 5, 10, or 20 kb, and then used the resulting segments to
search for overlapping Pol2 ChIP-seq and RNA-seq signals in
the ENCODE datasets. The miRNA genome information from
miRBase does not uniformly correspond to pre-miRNAs, but
such minor variations unlikely affect our analyses and outcomes.
In a separate analysis, when human and mouse pri-miRNAs had
been experimentally determined (Chang et al., 2015), we would
directly search their overlaps with RNA-seq data, or extend a
certain distance as mentioned above from both the 5′ and 3′ ends
of the pri-miRNAs, and then search for overlaps with Pol2 ChIP-
seq data. Notably, the median length of human pri-miRNAs is
approximately 41 kb, mouse 36 kb (Chang et al., 2015). The
Galaxy website2 was used to find overlaps and join different

1https://www.encodeproject.org
2https://usegalaxy.org
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datasets into single files for correlation studies (Afgan et al.,
2016). For ChIP-seq, we considered Pol2 peaks on both DNA
strands. For RNA-seq, we considered transcripts from only the
miRNA-coding strands. Because mRNAs (including non-coding
RNAs, unless specified otherwise) are long molecules yet will
score “positive,” in theory, with only a one-nucleotide overlap,
it is possible that for certain RNA species most sequencing
signals might lie outside of the extended miRNA segments, but
due to our incomplete knowledge of miRNA gene structures,
the consideration of such mRNAs is reasonable. The resulting
Galaxy files were downloaded, and Excel (Microsoft Corp.) used
to further process the data.

For weighting factors, three parameters from miRBase
(Kozomara and Griffiths-Jones, 2014) were used. The first is
total deep sequencing reads of the whole miRNA stem-loop, the
second is its normalized reads per million, and the third is the
sequencing reads of the mature miRNA (both the 5p and 3p).

SPSS 17 (IBM Corp.) was used to compare gene expression
and calculate the Spearman rank correlation coefficients and
Pearson correlation coefficients and their two-sided p-values
when possible. A p < 0.05 was considered statistically significant.
For ChIP-seq studies, all the ChIP-seq signals corresponding to
the same miRNA segment were added and compared to the
miRNA expression. Because a miRNA might be linked to multiple
genes/mRNAs, to compute correlations to mRNA expression, we
had used the sums of all the mRNA Fragments Per Kilobase
Million signals, or the maximal signal. Both treatments gave
very similar results, so results with the summation method
are presented here. To estimate experimental noise, overlapped
data were used to compute Spearman correlation coefficients
between miRNA expression and ChIP-seq signals, between
miRNA expression and mRNA expression, and between the
duplicate datasets (Csardi et al., 2015).

Hierarchical clustering was performed using the Cluster 3.0
program (Eisen et al., 1998; de Hoon et al., 2004), and results
visualized by TreeView (Saldanha, 2004).

RESULTS

Correlations Between Transcriptional
Activity and miRNA Expression in Human
Cells
Most miRNAs are transcribed by Pol2, so Pol2 binding
as determined by ChIP-seq experiments approximates
transcriptional activity in miRNA genes. But because Pol2
datasets are relatively limited, we also used the expression of
mRNAs as a proxy for transcription around miRNA genes.
For simplicity, unless specified otherwise, mRNAs referred
hereafter also include non-coding RNAs, e.g., lncRNAs, many of
which have already been annotated as pri-miRNAs in ENCODE
datasets. We downloaded all the human and mouse ENCODE
datasets that met our requirements (see section “Materials
and Methods”) for correlation analyses. In total, we compared
ChIP-seq and miRNA expression data in 11 human cells and 10
human tissues or organs, mRNA and miRNA expression in 41

human cell samples (including immortal cell lines, primary cells,
stem cells, and differentiated cells), 62 human tissues, and 40
mouse tissue samples. When there were replicates, we randomly
selected one of them for correlation studies, and all such datasets
are listed in Supplementary Tables 1–3.

First, we examined how transcription correlated with miRNA
expression in human cells (dataset information in Supplementary
Table 1). With miRNA gene structures including the promoters
and transcribed sequences often unknown, we used arbitrarily
expanded regions centered upon pre-miRNAs to search for their
overlaps with Pol2 binding or mRNAs, and then correlated
miRNA expression to the retrieved Pol2 ChIP-seq or RNA-seq
signals (see section “Materials and Methods”). Figure 1 shows
the Spearman rank correlation coefficients (square symbols) with
ChIP-seq analyses in the 11 human cell samples, with numeric
data including the additional, sample sizes N and p-values
provided in Supplementary Table 4. Consistent with previous
results (Graves and Zeng, 2012), some cell lines including HepG2,
GM12878, HeLa, and HCT116 exhibited no significant, positive
correlations, while others had positive, weak but significant
correlations. In general, the longer the miRNA genomic segments
used for overlaps, the more positive the correlations, supporting
the prediction that miRNA genes are expansive.

We next compared mRNA and miRNA expression in 41
human cell samples. Surprisingly, most of the correlations were
negative, albeit very weak and variable among different cells
(Figure 2, squares and Supplementary Table 5). Similarly as
shown in Figure 1, setting larger the miRNA genomic segments
used to search for overlaps increased the correlations with mRNA
expression.

Correlations Between Transcriptional
Activity and the Expression of Subsets of
miRNAs in Human Cells
The data in Figure 2 would suggest that transcription plays
no or even a negative role in orchestrating differential miRNA
expression. This conclusion is counter-intuitive: even though
DROSHA processing degrades pri-miRNAs, it is not expected to
completely override the effects of transcription. Nonetheless, it
has been pointed out that the database likely contains wrongly
annotated miRNAs, whose inclusion could obscure the regulation
of genuine miRNAs, and/or different miRNAs might be regulated
differently (Chiang et al., 2010; Feng et al., 2011; Mitiushkina
et al., 2014; Chang et al., 2015). Prime candidates are those
RNAs that were expressed at a low level, discovered and added
late to the miRBase, hence named with a high number. To test
this possibility, we excluded miRNAs named above a certain
threshold, e.g., 1000, 800, and 600, and then re-examined
the data. This treatment almost invariably increased Spearman
correlations, and the lower the threshold, the more positive
the correlation coefficients (Figures 1, 2 and Supplementary
Tables 4, 5). For example, using a cut-off at 600, essentially
all the correlation coefficients with mRNAs are positive, and
most are in the range from 0.1 to 0.3, with p < 0.05 (Figure 2
and Supplementary Table 5). As expected, the excluded miRNAs
correlated negatively with their associated mRNA expression
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FIGURE 1 | Spearman correlations between miRNA expression and Pol2 ChIP-seq signals in human cells. Corresponding to the data of Supplementary Table 4, the
y-axis shows the correlation coefficients, and the x-axis represents the 11 cell samples, each with 1, 2, 5, 10, and 20 kb genomic extensions from both 5′ and 3′

ends of the pre-miRNAs or pri-miRNAs used for overlap searches. Different symbols and colors represent various miRNA sample sets: all the miRNAs in miRBase
(“all”), miRNAs with numbers below 1000 (“cut-off at 1000”), miRNAs with numbers below 600 (“cut-off at 600”), and miRNAs with numbers below 1000 and known
pri-miRNA information (“pri-miRNA”).

FIGURE 2 | Spearman correlations between miRNA expression and mRNA expression in human cells. Corresponding to the data of Supplementary Table 5, the
y-axis shows the correlation coefficients, and the x-axis represents the 41 cell samples, with 1, 2, 5, 10, and 20 kb genomic extensions from both 5′ and 3′ ends of
the pre-miRNAs used for overlap searches. Different miRNA sample sets are indicated by symbols and colors as described in Figure 1.

(data not shown). ChIP-seq analysis revealed the same, upward
trend (Figure 1), although the correlation coefficients fluctuated
more widely, probably due, in part, to a low number of miRNAs
remaining after cut-offs in certain cell lines (Supplementary
Table 4). The increases in Spearman correlations could be a
statistical quirk or have a biological explanation. To shed more
lights on the mechanism, therefore, we divided miRNAs and their
linked mRNAs into two groups, “early” and “late,” according to
the cut-offs, and compared their respective expression levels. The
“early” group had higher miRNA expression but lower mRNA
expression (Figure 3A). Thus, the later-discovered “miRNAs”
are themselves poorly expressed even though transcription
around them is stronger, the major contribution to the negative
correlations when all miRNAs were considered (Figure 2).

In several human and mouse cell lines, hundreds of pri-
miRNAs have been experimentally determined (Chang et al.,
2015). Thus, we could also examine only those miRNAs using
their available pri-miRNA information. When we limited the
analyses to this subset of miRNAs, with an additional numbering
cut-off at 1000, because such RNAs are also more likely
genuine miRNAs, we found that their correlations with mRNA
expression, and to a lesser extent, Pol2 binding, increased as well

(Figures 1, 2, diamond symbols and Supplementary Tables 4, 5).
For example, while analyzing all the miRNAs yielded almost
consistently negative correlations with mRNA expression in the
41 human cell samples, with the pri-miRNA filter, all 41 samples
yielded positive correlations, 28 of which had p < 0.05 (Figure 2
and Supplementary Table 5).

Analyses above used artificial cut-offs and experimental
pri-miRNA information to stratify human miRNAs. A third,
complementary approach is to use publicly available expression
data to weight all the miRNAs: if a miRNA is found at a high level
overall, it would be given more weight in correlation studies since
it is more likely to be a “true” miRNA than a miRNA present at
a lower level. We used the existing expression data in miRBase
to establish three weighting parameters (see section “Materials
and Methods”) and then re-performed correlation studies. With
these larger, weighted datasets SPSS could calculated only the
Pearson correlations (Figure 4 and Supplementary Tables 6, 7).
Figure 4 shows the correlations between mRNA and miRNA
expression. Without weighting, Pearson correlations are mostly
positive but small, with p > 0.05 (Figure 4, square symbols and
Supplementary Table 6). The only exception is for H1-hESC,
whose results were skewed by the extremely high expression of
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FIGURE 3 | Mann–Whitney U test to compare miRNA and mRNA expression in representative samples. (A) miRNAs and mRNAs in the GM12878 10 kb data were
separated into two groups (“early” and “late”) based on a miRNA cut-off at 600. Spots represent individual RNAs, means and standard errors of means shown as
bars, and sample sizes in parentheses. The p-values of Mann–Whitney U test are shown on top. (B) miRNAs and mRNAs in the mouse bladder 2 kb dataset were
separated into two groups (“early” and “late”) based on a miRNA cut-off at 400. Labelings are the same as in (A).

FIGURE 4 | Pearson correlation coefficients between miRNA expression and mRNA expression in human cells. Corresponding to the data of Supplementary
Table 6, the y-axis shows the correlation coefficients, and the x-axis represents the 41 cell samples, each with five different genomic extensions from pre-miRNAs
used for overlap searches. Symbols and colors represent various analyses: all the miRNAs in miRBase, not weighted (“all”), and weighted with the three different
weighting factors (“W1,” “W2,” “W3”). W1 uses total deep sequencing reads of the whole miRNA stem-loops as the weighting factors, W2 uses the normalized reads
per million, and W3 uses the sequencing reads of mature miRNAs (both the 5p and 3p).

the miR-302 family members and their pri-miRNA. The three
weighting factors gave slightly different correlation coefficients,
but all three almost universally and greatly increased Pearson
correlations (Figure 4). Weighting also generally increased
the Pearson correlations between miRNA expression and Pol2
binding (Supplementary Table 7).

Taken together, our results suggested that transcription
indeed regulated global, differential miRNA expression in human
cells, although the effects were modest and variable among
different samples. Because 1 kb extensions gave similar results
as 2 kb extensions, and longer extensions enhanced correlations
(Figures 1, 2), we would use 2, 5, 10, and 20 kb extensions (from
both the 5′ and 3′ sides) to search for overlapping Pol2 and
mRNA signals hereafter.

Correlations Between Transcription and
miRNA Expression in Human Tissues
Next we examined human tissues or organs, apparently from two
male and two female, adult individuals (Supplementary Table 2).
Comparing Pol2 occupancy and all miRNA expression in 10
tissue samples yielded mostly positive and weak correlations,
which were elevated by the cut-off filters as well as by
weighting; applying the pri-miRNA filter gave more variable

results (Figure 5A and Supplementary Table 8). These data are
broadly consistent with those obtained in human cells (Figure 1
and Supplementary Tables 4, 7).

Analyzing mRNA expression and the expression of all
the miRNAs in 62 human tissues yielded negative Spearman
correlations usually between −0.1 and −0.3, with p < 0.05, and,
again, the longer the miRNA genomic segments, the less negative
the correlations (Figure 5B, square symbols and Supplementary
Table 9). When we applied the arbitrary number thresholds
to examine miRNA subsets, correlations gradually turned less
negative and over 50% eventually became positive (Figure 5B
and Supplementary Table 9). If we considered only those miRNAs
whose pri-miRNAs had been experimentally tested (along with
a number cut-off at 1000), among the 62 human samples, 14
had negative correlations, 48 positive, 4 of which had p < 0.05
(Figure 5B, diamond symbols and Supplementary Table 9).
Thus, applying the pri-miRNA filter increased correlations
compared to the all miRNA group and even the cut-off at
1000 group (Figure 5B). Like in human cells, weighting also
resulted in typically higher Pearson correlations in human tissues
(Supplementary Table 10). Overall, the human tissues exhibited
the same patterns and trends upon various analyses as human
cells, albeit starting from a more negative base and ending at less
positive correlation coefficients.

Frontiers in Genetics | www.frontiersin.org 5 May 2018 | Volume 9 | Article 154

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00154 April 27, 2018 Time: 16:14 # 6

Zhang et al. Transcription’s Role in MicroRNA Expression

FIGURE 5 | Spearman correlations between transcription and mRNA expression in human tissues. (A) Correlation coefficients of miRNA expression and the
overlapping Pol2 ChIP-seq signals, corresponding to the data in Supplementary Table 8. The y-axis shows the correlation coefficients, and the x-axis represents the
10 human tissues, each with 2, 5, 10, and 20 kb genomic extensions from both 5′ and 3′ ends of the pre-miRNAs or pri-miRNAs used for overlap searches. miRNA
sample sets are represented by symbols and colors as described in Figure 1. (B) Correlation coefficients of mRNA and miRNA expression, corresponding to the
data in Supplementary Table 9. The y-axis shows the correlation coefficients, and the x-axis represents the 62 human tissues. Symbols and colors depict miRNA
gene sets as in (A).

FIGURE 6 | Spearman correlations between miRNA and mRNA expression in mouse tissues. Corresponding to the data of Supplementary Table 11, the y-axis
shows the correlation coefficients, and the x-axis represents the 40 mouse tissues, each with 2, 5, 10, and 20 kb genomic extensions from both 5′ and 3′ ends of
the pre-miRNAs used for overlap searches. miRNA gene sets are represented by symbols and colors similarly as described in Figure 1.

Correlations Between mRNA and miRNA
Expression in Mouse Tissues
Lastly, we compared mRNA and miRNA expression in 40 mouse
embryonic and postnatal day 0 tissues (Supplementary Table 3).
These tissues had Spearman correlations ranging from−0.049 to
−0.39, and generally the larger the miRNA genomic segments,
the less negative the correlations (Figure 6, square symbols
and Supplementary Table 11). If we applied the miRNA name
cut-offs, e.g., 1000, 800, 600, 500, and 400, to consider the likely
bona fide miRNAs, Spearman correlations turned positive very
quickly; e.g., at the threshold of 400, all correlation coefficients
were positive and mostly between 0.1 and 0.3 (Figure 6, hollow
triangle symbols and Supplementary Table 11). Using known

mouse pri-miRNAs and a cut-off at 1000 as a filter, all 40
mouse tissues had positive Spearman correlations, 39 of them
with p < 0.05 (Figure 6, diamond symbols and Supplementary
Table 11). When we directly compared the expression of miRNAs
included with the cut-offs with that of the excluded miRNAs, as
well as the expression of their associated mRNAs, the included
miRNAs were again better expressed than the excluded, while
the corresponding mRNAs showed the opposite relationship
(Figure 3B). All these data closely mimicked those obtained in
human cells, and, to a lesser extent, those in human tissues.
We had further considered only those miRNAs conserved in
both humans and mice. Their correlations were also higher
than if all miRNAs were included, although the improvements
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were not significantly greater than the miRNA number cut-
off treatments (data not shown). Lastly, applying weighting to
mouse miRNAs yielded divergent results: the trend persisted that
weighting typically elevated the Pearson correlations, but there
were more exceptions than in human samples, chiefly because
the three weighting factors gave dissimilar correlation coefficients
(Supplementary Table 12).

Correlations Between Replicate
ENCODE Datasets
Our analyses of the data in human cells, human tissues, and moue
tissues all pointed to a weak correlation between transcriptional
activity and miRNA maturation. But correlation might be
underestimated due to experimental errors in the quantification
of DNA binding and RNAs, which can be accounted for
by calculating the correlations between replicate data (Csardi
et al., 2015). Human cells and mouse tissues, but not human
tissues, have replicate ENCODE datasets. We thus performed
additional analyses in human cells and mouse tissues (Csardi
et al., 2015), and six examples are shown in Figure 7 and

Supplementary Table 13. Correlations between duplicate ChIP-
seq datasets and duplicate miRNA datasets of human K562
cells are similar (Figure 7A), so are those of the human MCF7
cells (Figure 7B) and the correlations for mRNA and miRNA
expression in representative human cells and mouse tissues
(Figures 7C–F). The Spearman correlations between duplicate
datasets are between 0.84 and 0.98, indicating a high degree of
reproducibility, as noted before (ENCODE Project Consortium,
2012; Landt et al., 2012; Ballouz and Gillis, 2016). Consequently,
experimental noise correction did not significantly improve
correlations. For example, the correlations between 20 kb Pol2
occupancy and miRNA expression in K562 cells are 0.177–0.206
(Supplementary Table 13), and only 0.22 after correction (Csardi
et al., 2015). Analyzing more replicates did not offer dramatic
improvements (data not shown), and it is practically impossible
for the negative correlations between total miRNA and mRNA
expression in human cells and mouse tissues to become positive
after noise correction (Figures 7C–F).

The degradation of mammalian miRNAs has received
relatively little attention, but there are variations in their stability
in the literature (Sethi and Lukiw, 2009; Bail et al., 2010;

FIGURE 7 | Spearman correlations between duplicate ENCODE datasets. Correspond to the data in Supplementary Table 13. (A) Correlations between duplicate
Pol2 ChIP-seq and duplicate miRNA datasets in K562 cells. The y-axis shows Spearman correlation coefficients. The x-axis lists groups of miRNAs and the genomic
regions used to search for the overlaps: 2, 5, 10, and 20 kb: extensions from the 5′ and 3′ ends of pre-miRNAs; “all”: all miRBase entries, “<1000”: miRNA number
cut-off at 1000, “<600”: cut-off at 600. A, B, C, D: correlations between the four combinations of duplicate datasets (Supplementary Table 13). A is the same one
shown in Figure 1. (B) Correlations between duplicate Pol2 ChIP-seq and duplicate miRNA datasets in MCF7 cells. Labelings are the same as in (A). (C–F)
Correlations between duplicate mRNA and duplicate miRNA datasets in K562, MCF7, mouse adrenal gland, mouse midbrain embryonic day 13.5 tissues,
respectively. Labelings are similar to those in (A).
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FIGURE 8 | Hierarchical cluster analysis based on Spearman correlations between miRNA and mRNA expression. (A) Clustering of the human tissues, according to
the data of Supplementary Table 9 and as exactly shown in Figure 5B. (B) Clustering of mouse tissues, according to the data of Supplementary Table 11 and as
shown in Figure 6.

Gantier et al., 2011; Ruegger and Grosshans, 2012; Pogue et al.,
2014; Marzi et al., 2016). For example, while most miRNAs might
have half-lives of over 48 h, a few miRNAs have relatively fast
turnover rates, e.g., with a half-life of less than 5 h in 3T9 mouse
fibroblasts (Marzi et al., 2016). When we considered miRNA
stability in our studies of mouse tissues, we found that the less
stable miRNAs tended to have lower correlations with mRNA
expression, compared to the stable miRNAs or all the miRNAs,
even though the effects were minor (data not shown). Because
the identified unstable miRNAs number only 20–30 (Marzi et al.,
2016), the contribution of miRNA stability to miRNA expression
requires more data and studies.

Hierarchical Cluster Analysis of the
Correlations in the Human and Mouse
Tissues
The correlations between miRNA expression and transcriptional
activity such as mRNA expression are not only weak but also
variable among samples, which might be due to the intrinsic
differences among the individuals, cell types, tissues, or due to
their unequal data qualities. To understand the reasons behind
the variability, we performed hierarchical cluster analysis to
group the human and mouse tissues or organs based on their
Spearman correlation coefficients. As shown in Figure 8A for
the human samples, the same tissues from males tend to cluster
together, so do those from females, but all the same tissues
from both males and females are never the closest neighbors.
This could be due to experimental noise or reflect real gender

differences. Mouse samples exhibited the same pattern: all
except one of the brain tissues are grouped together, while liver
samples are all separated (Figure 8B). Correlation coefficients of
mouse samples appear more homogeneous than those of human
samples, so the separated mouse samples would still be quite
similar (Figure 8). Overall, our results suggest that both innate
biological differences and sample handling differences contribute
to the variations in correlation coefficients.

DISCUSSION

While a great deal of efforts have been made to understand
how transcription regulates protein expression at a large level,
in particular the relationship between steady-state mRNA
abundance and protein abundance, little is known about how
much transcription determines the levels of ultimate gene
products when they are RNAs instead of proteins. The default
assumption is that transcription exerts a predominant role,
although evidence suggested that it might not always be true
(Graves and Zeng, 2012; Conrad et al., 2014; Marzi et al.,
2016). Here we used the miRNA system as an example to study
how transcription regulates RNA expression globally. Our main
conclusion is that transcription contributes only modestly to
differential miRNA expression in humans and mice.

Nascent nuclear transcripts including pre-mRNAs and
pri-miRNAs are generally short-lived, present at low levels,
and difficult to quantify precisely, due to co-transcriptional
processing such as splicing and cleavage by DROSHA.
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Consequently, we have used Pol2 occupancy and mRNA
expression to approximate transcription around miRNA
genomic loci. Pol2 occupancy correlates positively with
miRNA expression in a majority of human cells and tissues
(Figures 1, 5A). mRNA expression, on the other hand, correlates
negatively with the expression of all the miRNAs deposited
in miRBase in human cells, human tissues, and mouse tissues
(Figures 1, 5B, 6). Nevertheless, when we applied number and
pri-miRNA filters to examine subsets of miRNAs, Spearman
correlations turn positive almost uniformly (Figures 1, 2, 5–7).
The increase in correlation has a biological basis, and filtering
is justified because many of the later-annotated “miRNAs” in
miRBase tend to be poorly conserved and expressed, whose
pri-miRNAs are poorly processed by DROSHA (Feng et al.,
2011). Transcription around these genes is generally high,
despite low miRNA maturation (Figure 3). Consistent with these
analyses, adding weights to the more abundant, likely miRNAs
also increases correlation to transcription (Figure 4). Our current
study, therefore, reinforces the notion that either many of these
“miRNAs” are mischaracterized, or they are regulated differently
compared to the canonical miRNAs (Chiang et al., 2010; Feng
et al., 2011; Mitiushkina et al., 2014; Chang et al., 2015). One
possibility is that some miRNAs may be transcribed by RNA
polymerase III. We have examined the relevant ENCODE
ChIP-seq datasets but found few overlaps with miRNA genes,
almost all of which are also already bound by Pol2 (data not
shown). Thus, current data do not support an alternative
hypothesis that RNA polymerase III regulates a large number
of miRNA genes. Other possibilities include, for example, that
transcription plays a more prominent role in the maturation of
canonical miRNAs, while processing in that of the non-canonical
miRNAs.

Even though our results establish that transcription positively
regulates global miRNA expression, they also suggest that the
contribution is relatively small, with Spearman rank correlation
coefficients rarely above 0.4 (ChIP-seq correlations) or 0.3
(mRNA correlations) even after threshold application. In theory,
the contributions (ρ2) by transcription, processing, and stability
should add up to 1. Unfortunately, due to the incompleteness
of data and the presence of experimental noise and systematic
noise, one does not know where the current ceiling is.
But even if a coefficient of 0.4 here signals a rate-limiting
contribution, an improbable proposition, many other human and
mouse samples still have lower coefficients. A more plausible
conclusion is that, in contrast to most assumptions, transcription
does not play a predominant role in setting relative miRNA
expression levels globally. This infers that post-transcriptional
events including miRNA processing and degradation must exert
critical, regulatory roles. For example, a previous study showed
a correlation coefficient of 0.51 between selective pri-miRNA
processing by DROSHA and human miRNA expression (Feng
et al., 2011), although the value is not directly comparable to
the correlations here. As a special case, miRNAs in clusters,
presumably transcribed identically, have dissimilar expression,
likewise suggesting the importance of miRNA processing (Chaulk
et al., 2011; Feng et al., 2011; Marzi et al., 2016). It is also essential
to study how degradation contributes to the regulation of miRNA

expression and function. Different miRNAs may have different
half-lives, and the same miRNAs may have different stabilities
in different cell types (Sethi and Lukiw, 2009; Bail et al., 2010;
Gantier et al., 2011; Ruegger and Grosshans, 2012; Pogue et al.,
2014; Marzi et al., 2016). We would like to note, however, that this
study has examined a wide range of human and mouse cell types
and tissues and found overall similar correlation coefficients. It
will also be interesting to examine other non-coding RNAs in an
analogous manner (Engreitz et al., 2016).

While our work represents the most comprehensive analyses
of the global relationship between transcription and non-coding
RNA expression thus far, future studies with better modeling
and data can improve on a number of fronts. One is that we
applied the same miRNA genomic or pri-miRNA information
to all the human cells, human tissues, and mouse tissues.
The actual situation is obviously more complex. The second
is that correlations vary among samples, likely influenced by
their intrinsic biological differences and unequal data qualities
as well (Figure 8). For example, Pol2 peaks overlap with a
much lower number of miRNAs in some human cells than in
others (Supplementary Table 4), and human tissues lack replicate
ENCODE datasets. The third is that correlation will benefit from
a better “filter” or weighting factor to separate true miRNAs from
irrelevant RNAs. Number thresholds are crude and arbitrary.
The three weighting parameters from miRBase are less subjective
and cover a wide range of biological samples, but they produce
variable results, especially in mouse tissues (Supplementary
Table 12). This is likely because the parameters are built on a large
number of studies from many different laboratories with minimal
control over quality, standardization, and consistency. Lastly,
miRNA processing and degradation need to be incorporated to
better understand how miRNAs are regulated at the genome level.
One should also note that even if transcription does not have
an oversized contribution in determining differential miRNA
levels globally, its role in regulating the expression of individual
miRNAs in a temporally and spatially specific manner or in
response to other stimuli is well known and of paramount
biological significance.
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