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mTOR signaling in skeletal development and disease
Jianquan Chen1,2 and Fanxin Long3

The mammalian/mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that integrates inputs from nutrients
and growth factors to control many fundamental cellular processes through two distinct protein complexes mTORC1 and mTORC2.
Recent mouse genetic studies have established that mTOR pathways play important roles in regulating multiple aspects of skeletal
development and homeostasis. In addition, mTORC1 has emerged as a common effector mediating the bone anabolic effect of Igf1,
Wnt and Bmp. Dysregulation of mTORC1 could contribute to various skeletal diseases including osteoarthritis and osteoporosis.
Here we review the current understanding of mTOR signaling in skeletal development and bone homeostasis, as well as in the
maintenance of articular cartilage. We speculate that targeting mTOR signaling may be a valuable approach for treating skeletal
diseases.
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INTRODUCTION
The mechanistic (formerly “mammalian”) target of rapamycin, as
indicated by its name, is highly sensitive to rapamycin, a drug
clinically used for antifungal, immunosuppressive, and antitumor
purposes. Rapamycin was initially isolated from bacteria in soil
samples of Easter Island that can inhibit yeast proliferation1.
Mechanistically, rapamycin was shown to exert its function by
forming a complex with FKBP122. Subsequent studies identified
the targets of FKBP12-rapamycin complex in yeasts and mammals,
which were named as target of rapamycin (TOR) and mammalian
target of rapamycin (mTOR), respectively3–7. Since its discovery,
extensive research over the last twenty years has indicated that
mTOR pathways play important roles in regulating development
and homeostasis of mammalian tissues, and that their dysregula-
tion is implicated in pathogenesis of many human diseases.
Biochemically, mTOR is an evolutionarily conserved serine/

threonine protein kinase belonging to the phosphoinositide 3-
kinase (PI3K)-related kinase family, and functions as a catalytic
subunit in two distinct protein complexes: mTOR complex 1
(mTORC1) and complex 2 (mTORC2; Fig. 1). Initially, mTORC1 and
mTORC2 were distinguished by virtue of their different sensitiv-
ities to rapamycin. Whereas mTORC1 is inhibited by acute
rapamycin treatment, mTORC2 is resistant to such treatment.
However, recent studies showed that prolonged rapamycin
treatment also impaired mTORC2 signaling both in vitro and
in vivo8,9. mTORC1 and mTORC2 differ in their components. While
mTORC1 and mTORC2 do share two core components (mTOR,
mLST8/GßL)10,11, they contain Raptor or Rictor as their respective
unique core subunit. In addition, mTORC1 has two inhibitory
subunits (PRAS40, DEPTOR)12–15, whereas mTORC2 contains an
inhibitory subunit DEPTOR15 and two regulatory subunits (Protor1/
2 and mSin1)16,17. Genetic studies revealed that ablation of mTOR
blocked both mTORC1 and mTORC2 signaling whereas ablation of
Raptor or Rictor only impaired mTORC1 or mTORC2 signaling,
respectively10,11.

mTORC1 integrates a wide variety of intracellular and extra-
cellular signals, including growth factors such as WNT and Insulin/
IGF-1, the levels of oxygen, energy, stress, or amino acids, to
regulate cell growth and metabolism through a number of
downstream effectors18 (Fig. 1). One key upstream regulator of
mTORC1 signaling is the Tsc1/Tsc2 complex, a GTPase-activating
protein (GAP) for the small GTPase Rheb18. Rheb directly binds to
mTORC1 and potently stimulates its activity, but Tsc1/Tsc2
negatively regulates mTORC1 by converting Rheb into its inactive
GDP-bound form19,20. Whereas many upstream signals activate or
inhibit mTORC1 activity by acting on Tsc1/Tsc218, regulation of
mTORC1 activity by amino acid levels is independent of TSC1/2,
and instead through Rag GTPases (RagA, RagB, RagC, and RagD)
and their regulators21. Moreover, the presence of amino acids, in
particular leucine and arginine, is required for other upstream
signals to activate mTORC118. The lysosome has emerged as a key
organelle mediating mTORC1 activation by both amino acids and
growth factors. In a current model, functionally active hetero-
dimers containing GTP-loaded RagA/B and GDP-loaded RagC/D
accumulate on the cytoplasmic surface of the lysosome in
response to amino acids that promote the formation of a
supercomplex including the pentameric Regulator complex and
the multi-subunit vacuolar ATPase complex. The active Rag
heterodimer recruits mTORC1 to the lysosomal membrane where
Rheb is also anchored, thus initiating mTORC1 activation. In
support of the model, recent work has provided evidence that the
solute carrier SLC38A9 likely functions as a sensor (“transceptor”)
to arginine or glutamine concentration in the lysosome to initiate
mTORC1 signaling through the Rag–Regulator complex22,23.
Similarly, leucine stimulation of mTORC1 is dependent on the
Rag GTPases but its potential transceptor in the lysosome is yet to
be discovered24. Interestingly however, mTORC1 stimulation by
glutamine appears to be independent of the Rag–Regulator
complex, but requiring the small GTPase Arf124. Furthermore,
mTORC1 may also be activated by amino acids on the Golgi
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membrane where another small GTPase Rab1A recruits mTORC1
to be activated by Rheb localized in the organell25. Thus, the
mechanisms underlying amino acid regulation of mTORC1 are
undoubtedly complex and likely function in an amino acid-specific
manner.
One of the major functions of mTORC1 signaling is promoting

anabolic processes, including protein and lipid synthesis. The
stimulation of protein synthesis is mainly through phosphorylation
of p70 S6 kinase (S6K1) and eukaryotic translation initiation factor
4E-binding protein 1 (4EBP1), whereas mTORC1 activates lipid
synthesis through SREBP1/218. Besides its anabolic role,
mTORC1 signaling inhibits catabolic processes, particularly autop-
hagy by phosphorylating autophagy-initiating kinase Ulk1 and
blocking its activation by AMPK26. In addition, mTORC1 has been
shown to inhibit autophagy in part by inhibiting the nuclear
translocation and activity of TFEB, a transcription factor important
for the expression of autophagy and lysosomal genes27.
Similar to mTORC1 signaling, mTORC2 can be activated by

various growth factors, including Wnt and Insulin/IGF128,29 (Fig. 1).
In addition, mTORC2 is activated by mechanical stress and
ribosomes in vitro, although the molecular mechanism is still
unclear30,31. mTORC2 controls proliferation and survival through a
distinct group of downstream targets, including members of the
AGC family of kinases Akt, serum and glucocorticoid-induced
protein kinase 1 (SGK1), and protein kinase C-α (PKC-α)10,11,32,33.

MTOR SIGNALING IN ENDOCHONDRAL SKELETAL
DEVELOPMENT
Mammalian bones are formed through two different mechanisms,
endochondral versus intramembranous bone formation34. In
contrast to intramembranous ossification where mesenchymal
progenitors directly differentiate into osteoblasts, endochondral
bone development begins with the condensation of

mesenchymal progenitors due to increased cell–cell contact.
Subsequently, the centrally-located cells within the mesenchymal
condensations differentiate into chondrocytes, while cells at the
periphery develop into the perichondrium. Following chondro-
genesis, chondrocytes within the cartilage primordia initially
proliferate rapidly, and then undergo a maturation process
involving successive prehyertrophic, hypertrophic and terminal
hypertrophic stages. Subsequently, blood vessels invade the
hypertrophic cartilage and bring in progenitors for osteoclasts or
osteblasts that are respectively responsible for resorbing the
hypertrophic cartilage or depositing bone matrix.
Recent studies have implicated mTORC1 in regulating multiple

aspects of cartilage development. Disruption of mTORC1 via
deletion of Raptor in the early limb mesenchyme significantly
reduced the size of limb bud cells and impaired chondrogenesis
from the mesenchymal progenitors35. Similarly, rapamycin dra-
matically suppressed the formation of cartilage nodules from limb
bud cells without affecting precartilaginous mesenchymal con-
densation35–37. In addition, rapamycin markedly reduced proteo-
glycan accumulation and the expression of chondrocyte markers
in the chondrogenic ATDC5 cell line, perhaps through suppression
of Sox9 expression35,36.
Studies of the growth plate cartilage in vivo have also revealed

important roles for mTORC1 in chondrocytes. Immunofluores-
cence staining for phospho-S6, a common readout for
mTORC1 signaling, revealed intense and nearly homogenous
activity in prehypertrophic and early hypertrophic chondrocytes,
but only sporadic signals in round chondrocytes36,38. In addition,
mTORC1 was largely absent in much of the hypertrophic region
except for the terminal hypertrophic chondrocytes36,38. Function-
ally, deletion of Raptor severely impaired skeletal growth through
the reduction of chondrocyte size and matrix production, as well
as the delay in chondrocyte hypertrophy and the eventual
removal of the hypertrophic cartilage38. The decrease in
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Fig. 1 A schematic of mTORC1 and mTORC2 signaling.Dashed line denotes partial inhibition of mTORC2 by Rapamycin upon prolonged
treatment
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chondrocyte size and matrix production is likely associated with
the compromised protein synthesis rate in the Raptor-deficient
chondrocytes. Surprisingly, ablation of Raptor did not have a
major effect on chondrocyte proliferation or survival38. On the
other hand, hyperactivation of mTORC1 signaling via Tsc1 deletion
increased chondrocyte proliferation while impeding chondrocyte
maturation39. This study further suggested that mTORC1 coordi-
nated chondrocyte growth, proliferation, and differentiation
through its downstream effector S6K1, which acts on Gli2 to
stimulate transcription of parathyroid hormone-related peptide
(PTHrP)39. However, the model is difficult to reconcile with the
observation that mTORC1 activity is highest in the prehyper-
trophic and early hypertrophic chondrocytes but PTHrP is mainly
expressed by the peri-articular chondrocytes. Moreover, global
deletion of S6K1 in mice caused a milder skeletal phenotype than
Raptor deletion did40,41. Thus, the mechanism underlying the
importance of mTORC1 signaling in cartilage development
remains to be fully elucidated.
In contrast to mTORC1 signaling, mTORC2 appears to play a

minor role in endochondral skeletal development. Inactivation of
mTORC2 signaling via ablation of Rictor only mildly affected limb
growth42. This study further showed that deletion of Rictor did not
affect chondrocyte proliferation, apoptosis, cell size, or matrix
production, but instead caused a mild delay in chondrocyte
hypertrophy in both embryos and postnatal mice42.

MTORC1 SIGNALING IN BONE FORMATION AND RESORPTION
Bone homeostasis is maintained through the balance of bone
formation and bone resorption. Osteoblasts differentiated from
mesenchymal stem/progenitor cells are the chief bone-forming
cells, while HSC-derived osteoclasts are responsible for bone
resorption. Inhibition of mTORC1 signaling by rapamycin was
shown to impair both proliferation and osteogenic differentiation
of mouse bone marrow stromal cells (BMSC) in vitro, and to cause
trabecular bone loss in vivo43,44. Conversely, activation of mTORC1
by IGF-1, an abundant growth factor present in the bone matrix
and released during bone resorption, activated mTORC1 signaling
to stimulate osteoblast differentiation of BMSC44 (Fig. 2). Similarly,
bone anabolic Wnt ligands such as Wnt3a and Wnt7b have been
shown to activate mTORC1 through PI3K-AKT signaling45.
Pharmacological inhibition of mTORC1 signaling prevented
Wnt7b-induced osteoblast differentiation in ST2 cells45. More
importantly, genetic deletion of Raptor in the osteoblastic lineage
cells alleviated the Wnt7b-induced high bone mass phenotype in
mice45, indicating that Wnt7b promotes bone formation in part
through mTORC1 activation. Mechanistically, mTORC1 mediates
the osteogenic effect of Wnt partly by promoting glutamine

catabolism and integrated stress response (ISR), which in turn
induces the expression of protein anabolism genes essential for
osteoblast differentiation46,47. In addition, Bmp2 was recently
reported to induce the osteogenic program partly through a
mTORC1-dependent mechanism47. Furthermore, Bmp signaling
through Bmpr1a stimulated osteoblast activity through
mTORC1 signaling in mice48. Thus, mTORC1 appears to be a
common effector downstream of multiple bone anabolic signals.
Recent studies have further demonstrated that mTORC1 is

required for the transition of preosteoblasts to mature osteo-
blasts49,50 (Fig. 2). Genetic inactivation of mTORC1 in preosteo-
blasts by specifically deleting Raptor in preosteoblasts with Osx-
Cre caused osteopenia in mice, mainly due to a defect in bone
formation. Further analyses indicated that the raptor-deficient
preosteoblasts were deficient in matrix synthesis and mineraliza-
tion, exhibiting a transcriptional profile of immature osteoblasts,
indicative of a failure to progress beyond the early stages of
osteogenesis. Interestingly, these studies showed that deletion of
Raptor impaired protein synthesis without overtly affecting
autophagy. Together, these findings support that mTORC1
promotes the transition from preosteoblasts to mature osteoblasts
through enhancing mRNA translation. However, others reported
that inhibition of mTORC1 signaling with a low dose of rapamycin
enhanced preosteoblast differentiation, but prevented their
proliferation in cell cultures and in mice51. The conflicting results
from these studies could be due to the different experimental
approaches. Whereas genetic ablation of Raptor with Osx-Cre
inactivates mTORC1 signaling mainly in the osteoblast lineage
from the preosteoblast stage onward, systemic administration of
rapamycin exerts broad inhibition both within the osteoblast
lineage and beyond. In addition, preosteoblasts may respond
differently to the different extent of mTORC1 inhibition caused by
raptor deletion versus low-dose rapamycin.
The importance of proper mTORC1 signaling in normal bone

formation is further supported by the studies of the Tuberous
Sclerosis (TSC) syndrome. TSC is an autosomal dominant disease
with an estimated incidence of 1 in 5800 at birth and is caused by
loss-of-function mutations of the TSC1 or TSC2 gene52–54. As
heterodimeric TSC1 and TSC2 complex normally inhibits
mTORC1 signaling by converting the active GTP-bound Rheb (a
positive regulator of mTORC1) into the inactive GDP-bound form,
the inactivating mutations of TSC1 or TSC2 cause hyperactive
mTORC1 signaling in the TSC patients20. Although the main
characteristics of TSC are benign tumors in skin, brain, kidney, and
heart, 40–60% of the patients develop sclerotic bone lesions55,56.
Recently, mice with TSC1 specifically deleted in neural crest cells
were shown to exhibit sclerotic craniofacial bone lesions similar to
those in TSC patients56. The study further revealed that deletion of
TSC1 caused an expansion of osteoprogenitor cells at an early
postnatal stage, leading to an increase in osteoblast number and
consequently excessive bone formation. Remarkably, the sclerotic
bone phenotype was completely reversed when rapamycin, a
chemical inhibitor of mTORC1, was administered at an early
postnatal stage, demonstrating that hyperactive
mTORC1 signaling underlies the bone overgrowth caused by
TSC1 deletion. In other studies, deletion of Tsc2 in mature
osteoblasts or deletion of Tsc1 in preosteoblasts accelerated
proliferation, but impaired osteoblast differentiation, probably
through activating the STAT3/p63/Jagged/Notch pathway and
suppressing Runx251,57. Thus, Tsc1/Tsc2 appears to function as an
important modulator for proper mTORC1 signaling to ensure a
balance of osteoblast proliferation and differentiation necessary
for optimal bone formation.
The exact role of mTORC1 in regulating the osteoclast lineage is

controversial at present. In one study, inactivation of mTORC1 by
deletion of Raptor, or hyperactivation of mTORC1 by deleting Tsc1
in osteoclast precursors with LyzM-Cre either enhanced or
impaired osteoclastogenesis, respectively58. The study further

PreOB (Osx-Cre) OBMP
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Fig. 2 Multiple growth factors activate mTORC1 to stimulate
osteoblast differentiation and activity.Curved arrows denote pro-
liferation. MP mesenchymal progenitor, PreOB preosteoblast tar-
geted by Osx-Cre, OB osteoblast
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suggested that mTORC1 inhibits osteoclast differentiation through
suppression of NF-kappaB and NFATc1, both critical transcription
factors of osteoclastogenesis58. However, a recent study showed
that inhibition of mTORC1 in bone marrow macrophages by either
genetic deletion or rapamycin treatment suppressed osteoclast
differentiation in vitro, which was rescued by over-expression of
constitutively active S6K159. Moreover, mice with ablation of
raptor in osteoclasts with Ctsk-Cre exhibited high bone mass
phenotype due to decreased bone resorption59. Besides direct
regulation, indirect inhibition of osteoclastogenesis and bone
resorption has been reported for mTORC1 signaling in mesench-
ymal progenitors though not osteoblasts60. Therefore,
mTORC1 signaling may exert stage-specific effects on the
osteoclast lineage through both direct and indirect actions but a
clear understanding about the roles and mechanisms warrants
further investigation.

MTORC2 SIGNALING IN BONE HOMEOSTASIS AND
OSTEOPOROSIS
Like mTORC1, mTORC2 is also implicated in regulating osteoblast
differentiation and function. Bone marrow stromal cells (BMSC)
lacking Rictor gene exhibited reduced osteogenic potential, but an
increased capacity to undergo adipogenic differentiation
in vitro30,42,61. Similarly, knockdown of rictor in primary cultures
of preosteoblasts impaired their osteogenic differentiation62.
Interestingly, expression of Rankl, but neither Opg nor M-CSF,
was significantly downregulated in Rictor-deficient BMSC, which
exhibited a diminished capability to supporting osteoclastogen-
esis in vitro42,63. Thus, besides a cell-autonomous role in
stimulating osteoblast differentiation, mTORC2 signaling in the
osteoblast precursors also indirectly promotes osteoclastogenesis
by modulating the expression of Rankl. The stimulatory effect of
mTORC2 on both osteoblasts and osteoclasts helps to explain the
relatively normal trabecular bone mass when Rictor was deleted in
the limb mesenchymal progenitors in the mouse even though the
cortical bone mass was reduced42,63. The differential net effect on
trabecular versus cortical bone mass in those mice may be due to
the more active bone resorption normally occurring in the
trabecular bone. Similarly, deletion of rictor in mature osteoblasts
simultaneously decreased osteoblast activity and bone resorption
in the mouse, leading to notably impaired cortical bone, along
with some subtle changes in the trabecular bone mass62.
mTORC2 appears to be a common mediator for both

mechanical and biochemical signals to stimulate osteoblast
differentiation and bone formation (Fig. 3). Rictor-deficient bones

exhibited a lesser anabolic response not only to mechanical
loading, but also to the anti-sclerostin antibody therapy that
enhances Wnt signaling in bone42,63. The later finding is consistent
with biochemical studies demonstrating that bone anabolic Wnt
ligands such as Wnt3a, Wnt7b or Wnt10b signal through Lrp5 to
activate mTORC2 and to reprogram glucose metabolism28. In
addition, mTORC2 was shown to participate in Hedgehog (Hh)-
induced osteoblast differentiation, as Hh-Gli2 signaling induced
Igf2 expression that activated the mTORC2-Akt-Gli2 cascade
further stimulating Hh signaling and osteogenesis29.
Multiple lines of evidence have implicated mTORC2 in age-

related osteoporosis. Studies have shown a decrease in the
expression of rictor in osteoblastic lineage cells during aging and
that decreased rictor expression could contribute to the age-
related switch from osteoblast to adipocyte differentiation64,65.
Deletion of rictor in osteoblasts accelerated age-related bone loss
in the mouse64. Interestingly, several miRNA including miR-188
and miR-218 increase with aging in either BMSC or osteoblasts,
and may be responsible for the age-dependent decrease in rictor
expression64,65. Thus, mTORC2 may serve as a potential ther-
apeutic target for treating age-related bone loss.

MTOR SIGNALING AND OSTEOARTHRITIS
Osteoarthritis (OA) is a chronic degenerative joint disease
characterized by gradual loss of articular cartilage, synovial
inflammation, and subchondral bone remodeling. Recent studies
have shown that mTOR was up-regulated in human OA cartilage
and the articular cartilage of dogs and mice with injury-induced
OA66,67. Moreover, activation of mTORC1 signaling via conditional
ablation of Tsc1 in osteochondral progenitors with Col2a1-Cre
caused spontaneous OA in mice, whereas inducible deletion of
Tsc1 in chondrocytes in two-month-old mice promoted progres-
sion of aged-related and surgery-induced OA67. Mechanistically,
activation of mTORC1 reduced expression of FGFR3 and PTH/
PTHrP receptor in chondrocytes, probably through p73 and ERK1/
267. Conversely, inhibition of mTORC1 signaling either pharmaco-
logically or genetically attenuated OA pathology in animal
models68–71. In particular, systemic administration of rapamycin
significantly reduced cartilage degeneration and synovial inflam-
mation in a murine model of OA. Similarly, local administration of
rapamycin through intra-articular injection inhibited chondrocyte
hypertrophy and the expression of angiogenic factor VEGF by the
articular cartilage in a murine injury model, therefore attenuating
OA progression. Likewise, intra-articular injection of Torin 1, a
potent inhibitor of both mTORC1 and mTORC2, significantly
alleviated articular cartilage degeneration in a rabbit model of
collagenase-induced OA partly through suppression of MMP13
and VEGF71. Moreover, genetic ablation of mTOR in chondrocytes
reduced chondrocyte apoptosis and the expression of MMP13 in a
surgery-induced OA model, thus alleviating cartilage degrada-
tion66. The ablation of mTOR in chondrocytes also suppressed
TGF-β/Smad3 signaling in synovial tissues, thus decreasing
synovial fibrosis66. Thus, multiple lines of evidence support the
notion that hyperactive mTOR signaling contributes to OA
pathogenesis.
The mechanism underlying the contribution of aberrant

mTORC1 activation to OA is not completely understood. Recent
studies have implicated autophagy as an important downstream
mediator of mTORC1 signaling in OA pathogenesis. Autophagy is
an intracellular homeostatic mechanism responsible for degrading
and recycling defective macromolecules and cytoplasmic orga-
nelles, and is critical for cell survival. A number of studies showed
that the expression of major autophagy markers were suppressed
in human OA cartilage as well as in animal models of OA66,72.
Moreover, inhibition of autophagy caused chondrocyte apoptosis
and OA-like pathogenesis in vitro and in vivo73,74. Consistent with
the role of mTORC1 as a major suppressor of autophagy,
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Fig. 3 mTORC2 is a common mediator for mechanical and
biochemical signals to stimulate osteoblast differentiation.
mTORC2 signaling also inhibits (denoted by blocked arrow)
adipocyte differentiation from bipotential mesenchyaml progenitors
(MP)
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chondrocyte-specific activation of mTORC1 reduced the expres-
sion of key autophagy genes in the articular cartilage and caused
an OA phenotype in mice75. Conversely, inhibition of
mTORC1 signaling by either Rapamycin or Torin or by genetic
deletion of mTOR in chondrocytes increased autophagy and
attenuated OA progression66,71. Strikingly, inhibition of autophagy
negated the protective effects of rapamycin on OA phenotypes66.
Thus, suppression of autophagy in response to hyperactive
mTORC1 signaling appears to be an important contributor to
OA progression.

FUTURE DIRECTIONS
Despite the rapid progress in understanding the role of mTOR
singaling in the skeleton, many challenges remain. For instance,
the signal inputs to mTOR pathways and the corresponding
mechanisms for activating mTORC1 versus mTORC2 are not fully
understood76. Although multiple growth factors including Wnt,
Igf, and Bmp can stimulate mTOR signaling in the skeleton, their
relative contribution, likely dependent on the cellular context and
the niche environment, is yet to be explored. Moreover, it is not
clear how mTOR signaling is regulated by the nutrient status in
chondrocytes, osteoblasts or osteoclasts. Acquiring such knowl-
edge would require comprehensive biochemical studies in vitro,
as well as skeleton-specific genetic studies in vivo.
It is important to identify specific downstream effector(s)

mediating physiological or pathological functions of mTOR
complexes in the skeleton. A recent report revealed that S6K1
only partially mediated the osteogenic effect of Wnt-mTORC1
signaling77. As previous work has implicated S6K1 in mediating
mTORC1 signaling in aging, it would be of interest to determine
whether S6K1 mediates the role of mTORC1 in the pathogenesis
of OA, an age-related degenerative disease78. Such information
could be of clinical value as specific S6K1 inhibitors have been
developed and may be tested for therapeutic potentials in OA79.
A major challenge for targeting mTOR for therapeutic use lies

with the very fact that mTOR signaling plays critical roles in many
tissues and physiological processes. Although pharmacological
inhibitors of mTORC1, such as rapamycin, may be adjusted to
achieve partial inhibition of mTORC1 signaling, the long-term
effect of mTORC1 inhibition is still uncertain. Moreover, truly
specific inhibitors for mTORC1 versus mTORC2 are still lacking.
Even though rapamycin is commonly considered as an mTORC1-
specific inhibitor, prolonged rapamycin treatments also compro-
mise mTORC2 signaling. Instead of directly suppressing mTOR, the
future of drug development in this area may depend on tissue-
specific mTOR modulators and/or process-specific downstream
effectors. Identification of such modulators or effectors will also
allow for development of agonists of the mTOR-dependent
pathways that may be useful for stimulating bone growth in the
case of osteoporosis and bone fractures.
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