OPEN 8 ACCESS Freely available online

@'PLOS ‘ ONE

Comparative Genomic Analysis of s/c39a12/ZIP12: Insight
into a Zinc Transporter Required for Vertebrate Nervous «
System Development

Winyoo Chowanadisai*

Department of Nutrition, University of California Davis, Davis, California, United States of America

Abstract

The zinc transporter ZIP12, which is encoded by the gene s/c39a12, has previously been shown to be important for neuronal
differentiation in mouse Neuro-2a neuroblastoma cells and primary mouse neurons and necessary for neurulation during
Xenopus tropicalis embryogenesis. However, relatively little is known about the biochemical properties, cellular regulation,
or the physiological role of this gene. The hypothesis that ZIP12 is a zinc transporter important for nervous system function
and development guided a comparative genetics approach to uncover the presence of ZIP12 in various genomes and
identify conserved sequences and expression patterns associated with ZIP12. Ortholog detection of slc39a12 was conducted
with reciprocal BLAST hits with the amino acid sequence of human ZIP12 in comparison to the human paralog ZIP4 and
conserved local synteny between genomes. ZIP12 is present in the genomes of almost all vertebrates examined, from
humans and other mammals to most teleost fish. However, ZIP12 appears to be absent from the zebrafish genome. The
discrimination of ZIP12 compared to ZIP4 was unsuccessful or inconclusive in other invertebrate chordates and
deuterostomes. Splice variation, due to the inclusion or exclusion of a conserved exon, is present in humans, rats, and cows
and likely has biological significance. ZIP12 also possesses many putative di-leucine and tyrosine motifs often associated
with intracellular trafficking, which may control cellular zinc uptake activity through the localization of ZIP12 within the cell.
These findings highlight multiple aspects of ZIP12 at the biochemical, cellular, and physiological levels with likely biological
significance. ZIP12 appears to have conserved function as a zinc uptake transporter in vertebrate nervous system
development. Consequently, the role of ZIP12 may be an important link to reported congenital malformations in numerous
animal models and humans that are caused by zinc deficiency.
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different mammals due to impaired intestinal zinc transport
caused by spontancous or targeted mutations of slc39a4 (ZIP4) in
humans [17,18], mice [19], and cows [20] demonstrates how
physiological functions for SLC39 members may be conserved
across species.

The zinc transporter ZIP12 encoded by the slc39a12 gene was
uncovered by analyses of gene expression across different human

Introduction

Zinc is required for enzyme catalysis, cell signaling, and DNA
repair by all organisms and is vital for growth and development
and multiple physiological processes including immune and brain
function [1-3]. During pregnancy, maternal zinc deficiency can
increase the frequency of congenital malformations across many

animal species [4]. Symptoms of zinc deficiency in humans include
weight loss, severe dermatitis, slow wound healing, male hypogo-
nadism, and reduced immune function [5]. Zinc deficient
experimental diets in laboratory animals [6] or plant protein-
based feed with low zinc bioavailability in livestock [7,8] lead to
similar symptoms such as impaired growth, development, fertility,
and epidermal health.

Members of the solute carrier 39 (SLC39) gene family encode
zinc transport proteins that are critical mechanisms for maintain-
ing zinc homeostasis across a wide range of species [9]. The
SLC39 family, with similarity to iron transporter IRT1 [10], is
present in Saccharomyces cerevisiae yeast [11], Arabidopsis plants
[12], invertebrates [13], and vertebrates [14] including humans
[15,16]. The phenotypic similarities of zinc deficiency across
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tissues [21]. ZIP12, which highly expressed in the brain, is
required for multiple aspects of neuronal differentiation including
cAMP response element binding protein (CREB) phosphorylation
and activity, neurite outgrowth, and microtubule polymerization
and stability [21]. ZIP12 is also necessary for embryogenesis
because inactivation of ZIP12 by antisense morpholino knock-
down halted neural tube closure in Xenopus tropicalis, resulting in
arrested development and lethality during neurulation [21].
Comparative genomics can be useful for determining the
functions of genes in varied and assorted contexts. The general
assumption of comparative genomics is the conservation of
genomic sequence due to evolutionary constraints that imply
some kind of biological importance or function [22] encoded by
the conserved sequence. Comparative genomics may predict the
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physiological role of genes due to the relationship between tissue
expression profiles and biological function [23]. Models and
approaches based upon comparative genomics have been used to
determine possible functions for genes and their protein products
at different levels. For example, comparative genomics can be used
to identify possible interaction partners [24], protein folding and
structure [25], and the evolution of protein phosphorylation sites
[26]. Comparative genomics may be able to identity genomic
differences between organisms that confer physiological differences
and species identity [22]. For example, nonsynonymous changes in
the human FOXP2 gene from non-human primates are hypoth-
esized to be responsible for language development [27].

Because ZIP12 appears to be conserved and is highly expressed
in the brain across humans, mice, and frogs [21], a comparative
analysis of the slc39al2 gene across multiple species and the
SLC39 gene family was conducted to uncover information about
this transporter. These analyses indicate that there are conserved
elements in the slc39a12 gene across various organisms that likely
contribute towards important biochemical, physiological, and
developmental functions for this zinc transporter. The presence of
sle39a12 in nearly all vertebrate genomes examined and a possible
lack of slc39a12 in other invertebrate organisms may indicate an
association between ZIP12 and neurulation during vertebrate
embryogenesis.

Materials and Methods

Sequence analyses, alignment, and phylogenetic tree

Nucleotide and amino acid sequences (Table 1) for slc39a12
were obtained from annotated entries, BLASTP or TBLASTN
using human slc39a12 amino acid sequence, in Xenbase (for
Xenopus laevis, 6.0 scaffolds) [28], Ensembl (for Ciona intestinalis
and Petromyzon marinus) [29], Joint Genome Institute (for
Branchiostoma floridae), or National Center for Biotechnology
Information (NCBI) (all other organisms) [30]. UCSC Genome
Browser, PhyloP, and PhastCons were used to display broad
phylogenetic alignments and sequence conservation of slc39a12 in
vertebrates [31]. BLASTP was used to compare ZIP12 amino acid
sequences of various organisms to both human ZIP12 and ZIP4.
Additional information about slc39a12 in Xenopus laevis was also
obtained from daudin.icmb.utexas.edu. The amino acid sequence
of ZIP12 from various organisms (see Table 1) was aligned by
ClustalW [32] using Bioedit software version 7.0.9.0 [33]. The
phylogenetic tree was drawn using TreeDyn [34] using Phylogen-
y.fr [35]. Because the existence of an exon, which is included in the
long isoform, could not be confirmed in all organisms tested, the
phylogenetic tree was drawn using only the putative short isoforms
of ZIP12 from each organism. EST representations of slc39a12 in
the nervous system (brain, eye, spinal cord) and other tissues of
different organisms were accomplished using NCBI Unigene [30].
Bioedit was used to calculate the nucleotide composition of the 5’
and 3’ untranslated and upstream regions.

Sequence motif scanning

Possible transcription factor binding sites were scanned using
TRANSFAC (Match) Matrix Search for Transcription Factor
Binding Sites [36]. Eukaryotic Linear Motif [37] was used to
search for possible dileucine and tyrosine motifs associated with
intracellular sorting and localization, as described previously by
Huang and Kirschke for ZIP1 [38]. Positive matches for
transcription factor binding sites and dileucine and tyrosine motifs
were further examined for conservation across species in aligned
amino acids sequences.
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Synteny analyses

Local synteny for slc39a12 and neighboring genes (cubn, vim,
stam, mrcl, cacnb2, nsun6, and arl5b) in most vertebrate
organisms was discovered using NCBI Homologene [30]. Xenbase
[28] was used for synteny analysis of slc39al2 in Xenopus
tropicalis. Searches for slc39a12 and nearby genes in the genomes
of zebrafish, Drosophila, C. elegans, and Ciona intestinalis were
conducted using TBLASTN using translated protein versions of
cubn, vim, stam, mrcl, cacnb2, nsun6, and arl5b in cither tilapia
or Xenopus tropicalis [30].

Detection of splice variants of ZIP12 in different species

Bioinformatic searches for exon 9, which is not present in annotated
entries for slc39a12 in the chicken, cow, opossum, or platypus
genomes, was detected by TBLASTN using a translated sequence
(GLXLVNXHVGHXHHLXLNXELXDOXXXGKSXSTIQL) in
exon 9 completely conserved across humans and mice.

Total brain RNA of human, cow, rat, and mouse origin was
obtained from Zyagen (San Diego, CA). cDNA was reverse-
transcribed from total RNA as described previously [21], using
either a polyT primer or a ZIP12-specific primer (human and cow:
acttatattttaatattttg; rat: atgtgaacatataaattcat; mouse: tgagtcatttcag-
gaagc). The different splice variants were detected using primers
that flank exon 9, which is present in the long isoform and absent
in the short isoform (Human- Fwd: acgctctgctecaccttateectea, Rev:
aaattatgcaggctgtccccaacca; Cow- Fwd: acagetgegaggagaactaca-
ggctca, Rev: ggttttgcattttctgttggegetett; Rat- Fwd: cgaaagccaaagt-
cctatttggaagetg, Rev: gagcacagcaaagtcteccattteatgt; Mouse- Fwd:
taaccttgggctccatgettgggacag, Rev:  ggcetggeacattgectatgggtageac)
and the following PCR conditions: 94°C, 1 min; 37 cycles:
94°C, 30 s, 68°C, 1 min with Platinum Hifi Taq (Invitrogen,
Carlsbad, CA). PCR products and DNA molecular weight
markers (1 kb Trackit or 1kb+, Invitrogen) were separated by
agarose gel electrophoresis and viewed as described previously
[21]. From accompanying gels not exposed to ultraviolet light,
bands corresponding to the different isoforms were excised
(Qiagen, Hilden, Germany) and confirmed by DNA sequencing.

Detection of slc39a12 and igf1 genes by PCR

Comparisons of genomic sequences for slc39a12 of Japanese
medaka, Nile tilapia, and European seabass by bl2seq were used to
design PCR primers with some degeneracy. As a positive control,
PCR primers were also designed for the igfl (insulin growth
factor-1) gene present in zebrafish (NC_007115) using similar
comparisons between Japanese medaka, Nile tilapia, and Europe-
an seabass. This region of igfl was previously identified by
Faircloth et al. [39] as containing an ultraconserved element
among ray-finned fish (Node 267).

Genomic DNA was isolated from fish carcasses purchased at
grocery stores (Nile tilapia and European seabass) using the
QIAamp DNA Mini Kit (Qiagen). Zebrafish and Japanese
medaka genomic DNAs were kindly provided as a gift by Bruce
Draper (University of California-Davis) and Swee Teh (University
of California-Davis). Using 100 ng of genomic DNA as a template,
the slc39al12 and igfl genes were amplified by PCR using the
following primers (sle39al2- Fwd: ccantcanctggngganatt, Rev:
attnccnagcaactgntga; igf1- Fwd: cccagetgtttectgttgaa, Rev: ttc-
cnactttgttccattge; degeneracy underlined) and conditions: 94°C,
1 min; 40 cycles: 94°C, 20 s, 55°C, 20 s, 72°C, 40 s with GoTaq
(Promega, Madison, WI), and PCR products were viewed as
described above.
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Figure 1. Human s/c39a72 gene structure. Exon-intron structure
drawn to approximate scale. Exon 2 (shaded gray) contains the
translation start codon. Exon 9 (shaded black) contains a variable exon
depending on splice variation that leads to exon inclusion or exclusion.
Exon 13 (striped) contains the stop codon (ochre). The exon structure
(number of exons, relative exon size) of slc39a12 is conserved in mice
and Xenopus tropicalis.

doi:10.1371/journal.pone.0111535.g001

Results and Discussion

The human slc39a12 gene spans 13 exons across 91.4 kilobases
(kb) on chromosome 10p12.33 (Figure 1, Figure 2). Orthologs to
the human slc39a12 gene (Table 1) were identified by combina-
tions of Homologene searches, reciprocal BLAST hits [40], and
local synteny preservation [41]. Identified orthologs of ZIP12
shared amino acid identities with the human ZIP12 that correlated
with the relatedness of the organisms to humans, ranging from 86
to 99 percent for non-human primates to 48 to 50 percent in fish
(Table 1). In contrast, the amino acid identities of the ZIP12
orthologs to human ZIP4 ranged between 31 to 40 percent
without any correlation to relatedness with humans (Table 1).
Because there are many common elements between members of
the SLC39 gene family, particularly between ZIP12 and ZIP4
[9,42], it can be difficult to distinguish orthologs of ZIP12 from
SLC39 paralogs solely based upon sequence similarity such as
BLAST. Local synteny between ortholog candidates is extremely
useful in confirming reciprocal BLAST hits [41], especially in
cases of gene families with large numbers of paralogs, such as the
case with the solute carrier (SLC) gene families [43,44]. In general,
synteny was observed across vertebrates (Figure 3, Figure S1), but
possible disruptions of the syntenic block in more distant
organisms corresponded with reduced relatedness to humans,
possibly due to genomic rearrangements during evolution [45]. As
with the case with most orthologous genes in vertebrates [46], the
coding exon structure of slc39a12, including number of exons and
exon size, is conserved across humans, mice, and Xenopus
tropicalis (data not shown). An alignment of human ZIP12 with
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other related ZIP genes (Figure S2) and with other ZIP12
orthologs (Figure S3) shows that many C-terminus elements are
conserved, especially those predicted to encode the transmem-
brane helices and zinc transport function, such as the HEX-
PHEGD motif that is present in the LIV-1 subfamily of ZIP
transporters [47-49]. The phylogenetic tree (Figure 4) indicates
that the relatedness of ZIP12 across different organisms is highly
correlated with the relatedness of the whole genomes across
organisms [50-52].

Xenopus laevis embryology has a long history as a develop-
mental model that precedes the use of Xenopus tropicalis in
biological research, but the availability of a genome sequence for
Xenopus tropicalis supports its use in genetic applications [53].
The larger size of Xenopus laevis embryo relative to Xenopus
tropicalis can facilitate micromanipulations, such as microdissec-
tions, explants, tissue transplants, and targeted microinjections at
advanced cleavage stages [54,55]. Although Xenopus laevis has a
pseudotetraploid genome [56] with some gene duplication, only a
single match for slc39a12 in Xenopus laevis [Joint Genome
Institute (JGI) scaffold 000029451: 376741-407094] was detected,
and the expected protein shares 85% amino acid identity with
ZIP12 in Xenopus tropicalis. However, because the Xenopus laevis
genome s still being assembled [57], the possibility of another
duplicate slc39a12 gene in the Xenopus laevis genome cannot be
ruled out. The combination of a single ZIP12 ortholog in Xenopus
laevis and larger embryo size may ease the study of ZIP12 in this
organism and could complement further studies of ZIP12 in
Xenopus tropicalis.

In agreement with Feeney et al. [58], attempts using different
strategies to detect the slc39al2 gene in zebrafish were
unsuccessful. The slc39a12 gene is present in other teleost fish,
including tilapia, European sea bass, and green spotted pufferfish
(Figure 3). Local synteny near slc39al2 is preserved across
humans, mice, European sea bass, and green spotted pufferfish
(Figure 3). In contrast, for slc39a12 and genes such as cacnb2 and
nsun6 that surround slc39a12 in other species (Figure Sl), the
genomic arrangement is disrupted in zebrafish. Furthermore, the
slc39a12 gene could be detected in Japanese medaka, European
sea bass, and tilapia by PCR using degenerate primers, but
slc39a12 was not detectable in zebrafish (Figure S4). Because
ZIP12 is required for embryonic viability in Xenopus [21], it is
unclear how neurulation in zebrafish [59] proceeds without the
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CUBN VIM STAM MRC1 SLC39A12 CACNB2 NSUN6 ARL5B
Human (NC_000010)
Mouse (NC_000068)
Xenopus frog (NW_003163763)
MRC1 SLC39A12 CACNB2 NSUN6 ARL5B
Tilapia (NT_167382)
) MRC1 SLC39A12 CACNB2 NSUN6 ARL5B
Pufferfish (NC_018899)
European seabass (FQ310508) MRC1 SLC39A12 CACNB2 NSUN6 ARL5B
CUBN VIM STAM MRC1 CACNB2 NSUNG6
Zebrafish
Ch 24 Ch2 Ch7
. CUBN VIM STAM CACNB2 NSUN6 ARL5B
Drosophila fly
Chr X Ch 2L Ch 3L
Caenorhabditis elegans worm STAM CACNB2
Chl
CUBN SLC39A12*

Ciona intestinalis (NW_004190481)

Figure 3. Synteny of s/c39a12 is preserved across nearly all vertebrates examined. Xenopus refers to tropicalis species of frog. NCBI
accession numbers are indicated in parentheses where slc39a12 is present. Gaps between solid lines within the same chromosome indicate that
genes may be distant from each other. Chromosome number (Ch) is noted to indicate chromosome location of genes. The asterisk indicates that the
putative slc39a12 gene in Caenorhabditis elegans could not be confirmed using reciprocal BLAST hits.

doi:10.1371/journal.pone.0111535.g003

presence of ZIP12. One possibility is that slc39al2 resides in a
region of the zebrafish genome that is still being resolved [60], but
the disruption of microsynteny in surrounding genes in zebrafish
relative to other teleosts and inability to detect slc39al2 by PCR
in zebrafish do not support this explanation. Although there are
morphological differences in neurulation between amphibians and
teleosts [61], slc39al2 is present in other fish species and the
cellular mechanisms in neurulation are conserved between frogs
and fish. A likely explanation is that the function of ZIP12 has
been substituted with another SLC39 family member, possibly due
to genome duplication [62]. Studies have shown that the zebrafish
has retained many duplicated genes, whereas the pufferfish has lost
many of the duplicated genes [63]. More research is required to
resolve this issue and to provide an explanation for the apparent
absence of the slc39a12 gene in zebrafish.

The identification and comparison of genes in invertebrates and
vertebrates can provide significant insight into the origins of genes
and their role in development. Neurulation is limited to chordates,
including Ciona [64] and Petromyzon [65], but Drosophila [66], C.
elegans [67], and Strongylocentrotus [68] have nervous systems but
do not undergo neural tube closure. Neurulation in Branchiostoma
proceeds with some distinct differences compared to vertebrates
[69]. Regulatory subfunctionalization, which occurs through
changes in cis-regulatory domains of duplicated genes, is
recognized as a possible mechanism for the development of
paralogs following a presumed gene duplication event [70]. For
zinc transporter genes of the SLC30 family, Gustin et al. [71]
proposed that the retention of duplicated genes occurs through
changes in the expression patterns leading to eventual neofunctio-
nalization or subfunctionalization. To test for a role of ZIP12 in
neurulation, searches for ZIP12 were conducted in invertebrates
with no or limited aspects of neural tube closure during
embryogenesis. If ZIP12 functions in a critical role during neural
tube closure, then positive selection may apply to slc39a12 in
vertebrate genomes, whereas organisms that do not undergo
neurulation may lack the evolutionary pressures that led to the

PLOS ONE | www.plosone.org 5

emergence of slc39al2 in vertebrates. The criteria used to
successfully identify ZIP12 in vertebrates, including reciprocal
BLAST, conserved synteny, and conserved HNFAD and
HEIPHE motifs in predicted transmembrane helices (Figure S2),
was used to detect ZIP12 in other organisms.

There are possible matches for ZIP12 in Ciona intestinalis and
Petromyzon marinus with similarity to human ZIP12, but a
sle39a12 gene could not be conclusively defined in these genomes.
The putative sea squirt and lamprey genes have the motifs
HNFTD-HEIPHE and HNFAD-HEVPHE that are near-matches

Human
Chimpanzee
Rhesus monkey
Bushbaby

Rat
Mouse
Guinea pig
Rabbit
Dog
Pig
Horse.
— Cow
Elephant
Opossum
| Platypus
Chicken
Anole lizard
Tilapia

Xenopus tropicalis frog

0.2

Figure 4. Phylogenetic tree based upon ZIP12 amino acid
sequences in different species. Common names of organisms are
listed. Scale bar indicates 0.2 amino acid substitutions per site.
doi:10.1371/journal.pone.0111535.g004
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Figure 5. Alignment for 5’ UTR, first 90 bp of coding region, and the proximal promoter (1000 bp upstream of transcription start
site) of human, mouse, and cow s/c39a72. Lowercase and uppercase in sequences indicate nucleotide and amino acid sequences, respectively.
Black shaded text indicates possible transcription factor binding sites in largely conserved regions. Gray shaded text indicates 5’ UTR. For coding
regions, possible signal peptide is underlined. Asterisks indicate nucleotides conserved in all sequences following alignment.

doi:10.1371/journal.pone.0111535.g005

for conserved transmembrane helices of ZIP12 in vertebrates.
Although BLAST searches using human and tilapia ZIP12 amino
acid sequences identify putative ZIP12 genes in tunicates and sea
lampreys, reciprocal BLAST searches were unable to distinguish
the putative tunicate and sea lamprey slc39a12 genes as orthologs
distinct from slc39a4. The putative Ciona slc39a12 gene is located
within 20 kb of an ortholog for cubulin, a gene that neighbors
sle39a12 in many vertebrate species (Figure 3). The limited size of
the genome scaffold and putative transcripts for ZIP12 available in
the sea lamprey restricted the analysis of slc39a12 and did not
enable synteny analysis. Two intriguing questions are whether
tunicates and lampreys contain slc39a12 genes with a similar
function to ZIP12 in vertebrate neurulation. Future experiments
may shed light on the developmental regulation of zinc transport
through functional characterization of putative zinc transporters of
the SLC39 gene family, and both gain-of-function and loss-of-
function approaches are possible in tunicate and lamprey embryos
[71,72].

Attempts to find ZIP12 in fruit flies, nematodes, sea urchins,
and lancelets using BLAST were unsuccessful. Local synteny in
Drosophila, C. elegans, Strongylocentrotus, and Branchiostoma was
not conserved for the genes that neighbor slc39a12 in vertebrates
(Figure 3). ZIP12 is required for both neurulation during
embryogenesis and neurite outgrowth in Neuro-2a cells and
primary mouse neurons [21]. However, the inability to conclusively
identify ZIP12 in these invertebrates, despite the presence of a
nervous system, suggests a possible link to neural tube closure as
opposed to later stages of nervous system development. It is possible
that the origins of slc39al12 come from the requirement for zinc
transport during neurulation in vertebrates (and possibly chordates),
and that a role of ZIP12 in vertebrate nervous system function
evolved following neurulation.

There may be some plausible alternate explanations for the
observed lack of slc39a12 in invertebrates. For example, the
mability to detect ZIP12 may be due to inadequate or overly
stringent search criteria or incomplete genome coverage. It is
possible that a similar ZIP transporter such as ZIP4 or other

metal-permeable transporters may substitute for ZIP12 in other
organisms. For example, a TRP channel mediates zinc transport
and is critical for development in Drosophila [73], an organism in
which ZIP12 was not detected. However, the lack of sl¢39a12 in
zebrafish, a teleost that undergoes neurulation [59], represents an
important observation that conflicts with the putative association
between ZIP12 and vertebrate neurulation. Functional character-
ization across various organisms such as mice, frogs, and other
developmental model organisms may shed light about the role of
ZIP12, other ZIP transporters, and zinc regulation during nervous
system development.

Many of the predicted sequences for slc39a12 (Table 1) were
performed through computational analyses [30], and some
sequences lack biological evidence such as cDNA support.
Bioinformatic and computational analyses are extremely useful,
especially for genome-wide annotation of genes, but there can be
some discrepancies or unresolved regions [74]. Accordingly, some
differences were detected between annotated versions of sle39a12
solely derived from computation and other versions of slc39al12
with additional bases including expressed sequence tags (ESTS)
and other biological experimentation. Comparisons with other
ZIP12 sequences showed that the rat ZIP12 protein sequence
[GenBank: NP_001099594] was likely missing the N-terminus
(Figure S3). As a result, the N-terminus of ZIP12 in this report was
reconstituted from the translated sequences of a rat EST
[GenBank: FM065041] and 12 nucleotides of the rat genome
[GenBank: NW_047496 3955687-3955698] (Figure 4, Figure S3).
The 5" untranslated region (UTR) of the annotated cow ZIP12
[GenBank: NM_001076878] (Figure 5) is missing at least 60 bp,
based upon EST data and the observation that the conserved
exon-intron structure of human, mouse, and chicken slc39a12 has
the start codon in exon 2 (Figure 1, Figure 2). A comparison of the
5" end of 2 EST clones [GenBank: EV626550 and EE901356]
aligns to a separate exon in the cow genome [GenBank:
AC_000170, 32666526-32666609]. The refinement of draft
genome sequences and the correct annotation of gene sequences
Is important because genome sequences often provide the initial

Table 2. Tissue origin of ESTs matching ZIP12 is predominantly brain and nervous system.

Organism Unigene ID ESTs from brain 3" UTRA/U

Human (Homo sapiens) 193909 129/135 (95.6%) A:32.9% U:40.3%
Mouse (Mus musculus) 271009 31/47 (66.0%) A:31.8% U:41.8%
Cow (Bos taurus) 1209583 30/42 (71.4%) A:33.3% U:41.2%
Pig (Sus scrofa) 3109541 13/14 (92.9%) A:32.0% U:39.0%
Chicken (Gallus gallus) 1236550 5/8 (62.5%) A:30.0% U:34.4%
Macaque (Macaca fascicularis) 2484482 5/5 (100.0%) A:30.9% U:40.4%
Rat (Rattus norvegicus) 3092273, 1534920 4/5 (80.0%) A:31.6% U:41.5%
Rhesus monkey (Macaca mulatta) 5927016 2/2 100.0% A:31.2% U:40.3%
Dog (Canis lupus familiaris) 1193028 0/2 0% A:31.5% U:38.8%

region (UTR) of slc39a12 for each organism is listed.
doi:10.1371/journal.pone.0111535.t002
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The Unigene ID number for each organism (common and scientific name) is listed. The proportion and percentage of ESTs from brain, out of the total number of ESTs
matching ZIP12, are given. Data listed in order of sample size (total of ESTs) available from Unigene database. Brain includes all tissues for central nervous system,
including brain, eye, and inner ear. Both ESTs matching ZIP12 from dog originate from heart tissue. The composition of adenine (A) and uracil (U) in the 3" untranslated
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Figure 6. Rat s/c39a712 mRNA and translated protein sequences derived from EST and genome analyses. Full sequence was formed from
rat EST [GenBank: FM065041], genome sequence [GenBank: NW_047496, nucleotides 3955687-3955698], and current annotated entry for rat sic39a12
[GenBank: NM_001106124]. The additional N-terminus amino acid sequence is shaded gray. Stop codon (opal) upstream of putative start codon is

shaded black.
doi:10.1371/journal.pone.0111535.9006

foundation for biological experimentation, particularly in reverse
genetics.

ZIP12 is highly expressed in human, mouse, and Xenopus
tropicalis brain tissue [21]. In support of this observation, the
majority of expressed sequence tags (ESTs) matching ZIP12 is
derived from brain or other nervous system tissues. Over-
representation of ZIP12 in the brain occurred in almost all
mammalian and avian species examined, including human,
mouse, cow, pig, rhesus monkey, chicken, rat, and crab-eating
macaque (Table 2). Only in dogs (Table 2) were ESTs not derived
from brain tissue, and the pool of ESTs that match ZIP12 in dogs
has few samples. This observation largely supports the notion that
ZIP12 function in the nervous system is widely conserved across
vertebrates. The conserved expression of ZIP12 in the brain across
species is significant because the rate of evolution in tissue-specific
genes appears to be faster and genetic disorders with Mendelian
inheritance are more likely to be caused by mutations in tissue-
specific genes [75]. Consistent with this observation, inhibition of
ZIP12 function in mouse neurons and Xenopus tropicalis embryos
leads to impaired neuronal differentiation and neural tube defects,
respectively [21].

There are possible mechanisms outside the coding sequence
which may control the tissue-specific expression of slc39a12 in
vertebrates and are likely conserved. The 3’ untranslated region of
ZIP12 in many species is adenine/uracil (A/U) rich (Table 2). The
3" UTRs of many brain-specific genes are A/U rich [76]. There

Human NC_000010 18282113-18282220

Mouse NC_000068 14435659-14435766

EE-BEiN-00E8

Cow AC_000170 32715202-32715309

are proteins that can affect mRINA stability by binding to these A/
U rich regions [77], which may account for the high expression of
ZIP12 in the nervous system. An alignment of the 5" UTR, the
first 90 bp of the coding sequence, and the proximal promoter
(1000 bp upstream of the transcription start site) (Figure 5) shows
that there are areas of sequence conservation. A scan of the human
proximal promoter combined with an alignment of the sequences
with cow and mouse shows that there are putative transcription
binding sites for AP-1, Evi-1, FoxD3, and COMP1 (Figure 6). It is
possible that the N-terminus encodes a signal peptide, and the
prediction software SignalP [78] indicates that there may be a
cleavage site between amino acids 23-24 or 26-27 (Figure 5). In
contrast to many genes important for neuronal development [79],
the 5 UTR and proximal promoter are not guanine/cytosine
(GQ) rich (GC content: human 44.8%; mouse 39.3%; cow 39.8%),
and there was no difference in GC content between the 5" UTR
(41.8%) and proximal promoter (45.6%) of the human slc39al2
gene. More analyses, possibly combined with biological experi-
mentation, will be needed to determine if the 5' UTR, 3’ UTR, or
nearby upstream portions contribute towards the high expression
of ZIP12 in the nervous system. As an example of how regulatory
elements can control zinc uptake transporter expression, active
metal-response elements have been identified in the 5" UTR of
zinc transporter genes in mice and zebrafish [80,81]. Because
there are possible conserved elements in the distal promoter and
some intronic regions, as indicated by PhyloP and PhastCons

CAGGGCCTGTCATTGGTTAATGGGCACGTGGGTCATTCCCACCATCTTGCACTCAACTCTGAATTAAGTGACCAGGCAGGCAGAGGCAAATCTGCTTCAACT
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---GGCGTGTCACTGGTTAATGGGCATGTGGCGCATTCCCGCCATCTTGCATTCAACCCTGAATTAAGTGACCAGTCAGGCAGAGGCAAATCTGCTTCAACTATCCAGTTG
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Opossum NC_008808 256030568-256030473 ---GGCCTTTCCCTAGTTAATGGGCACATGGGGCATTCCCATGAGCTCTCAGTGGACACTGACTTARATGACCAATCAGGCAGAGACAAATCCACTTCAACTATCCAGTTG

G L s LV NG HMGH
-==GGCCTTTCTTTAGTTAATGGGCACTGGGAACATTCCCATGATCTTCCAGTGGAATCTGAATTAAATGAACATTCAGGCAGAGACAAATCTACTTCAACCATACAG
6 L S L VNG HWE H

Chicken NC_006089 19266005-19265898
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Figure 7. Histidine-rich exon 9 present in human and mouse ZIP12 is also present in cow, opossum, and chicken genomes. Organism
common names are accompanied by accession numbers, corresponding nucleotides, and translated amino acid sequence. Amino acids conserved
between humans and mice are shaded in black. Corresponding amino acids that are conserved in cow, opossum, and chicken are shaded in grey.
doi:10.1371/journal.pone.0111535.9007
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Figure 8. Splice variation of ZIP12 confirmed in the brain of multiple species. Different splice variants of ZIP12 are present in (A) humans,
(B) cow, and (C) rat, but the short variant is not detectable in (D) mice. PCR was conducted on cDNA reverse-transcribed from polyadenylated or
ZIP12-specific RNA using primers spanning the exon that is present and absent in the long and short isoform, respectively. The corresponding

molecular weights of the DNA markers are indicated.
doi:10.1371/journal.pone.0111535.9008

(Figure 2), these areas may also contribute towards the distinct
pattern of ZIP12 expression in the vertebrate nervous system and
the possible regulatory subfunctionalization of ZIP12 and close
paralogs. The tissue specificity of slc39a12 in these species and
previous findings showing enriched expression of slc39al12 in
vertebrate brains [21] support a role for ZIP12 in the central
nervous system.

The alignment (Figure S3) uncovered 2 different isoforms of
ZIP12 frequently detected across many species which correspond
to the inclusion or exclusion of exon 9. Furthermore, this exon was
present in at least two non-mammalian organisms, Xenopus
tropicalis and tilapia (Figure S1), which supports an ancestral

history for this exon in slc39a12 that precedes the split with birds
and mammals [82]. Although this exon is likely present in other
mammalian organisms, the longer isoform has not been described
previously in chicken, cow, opossum, or platypus. TBLASTN
searches for exon 9 showed that the sequence is present in cow,
chicken, and opossum genomes (Figure 7). This sequence was not
detected in the platypus, but this may be due to gaps in the
genomic sequence [GenBank: NW_001594582, 1525899-
1525899, 1527878-1528642]. Reverse transcriptase-polymerase
chain reaction (RT-PCR) was used to determine that both
isoforms are expressed in humans, cows, and rats (Figure 8A-
8C). However, the shorter isoform in mice (Figure 8D) could not

.
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Figure 9. Amino acid alignment of ZIP12 demonstrates splice variation due to variable inclusion of a exon which contains a
histidine-rich motif. Where indicated, -1 and -2 indicate annotated entries for splice variants of ZIP12 from inclusion or exclusion of exon 9. Shown
alignment performed by ClustalW corresponds to amino acids 464-523 of the longer human ZIP12 variant (Human-2) [GenBank: NP_001138667].
Conserved histidine residues are shaded in black. Asterisks indicate organisms with a single annotated amino acid sequence for ZIP12 that lacks exon

9. Full sequence alignment is provided in Figure S3.
doi:10.1371/journal.pone.0111535.g009
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be detected by RT-PCR despite repeated attempts with different
primer sequences and PCR cycling conditions (data not shown).
The reading frame in this exon appears to be conserved across
species (111 bp in humans and 108 bp in other species, Figure 9).
It is possible that the reading frame of this exon is conserved, so
that inclusion or exclusion of this exon does not affect the
downstream reading frame. The translated product of this exon is
expected to increase the length of a cytoplasmic loop between
transmembrane domains 3 and 4 of ZIP12 [21]. The transcript
variation of ZIP12 is likely due to exon skipping, which is the most
common form of splice variation [83]. The intron-exon structure
flanking exon 9 is conserved across multiple vertebrate and
mammalian species (Figure 2), which supports the notion that this
variation has biological significance. Because this region of ZIP12
encodes a histidine-rich segment that is expected to lengthen a
cytoplasmic loop [21,48], this region could be important for post-
translational regulation of ZIP12. In support of this possible
function, ZIP4 contains a similarly located histidine-rich, cyto-
plasmic-facing motif that is sensitive to zinc and required for
ubiquitin-mediated protein degradation in response to excess zinc
[47]. Wide-scale global approaches have used comparative
genomics to discover novel human exons that were previously
unidentified because of weak or lacking cDNA support due to low
transcript levels or restricted tissue specificity [84].

ZIP12 is present at both the plasma membrane and in
intracellular compartments in a similar fashion to other SLC39
transporters [21,38,85], but it is unclear what mechanisms control
the localization of ZIP12. Human ZIP12 has possible di-leucine
motifs [86] at L.94-L.95 (EPDALLI), L116-L118 (QRVSLLL), and
1255-L.256 (ELDQLLL) and a possible tyrosine motif at Y120
(YYII) that are conserved in many mammalian species (Figure S3).
Adaptor protein complexes recognize both di-leucine and tyrosine
motifs and bind to transmembrane proteins to dynamically alter
their cellular localization [86]. Human ZIP1 has a di-leucine motif
that is important for endocytosis from the plasma membrane
[38,86], which likely controls zinc transport activity by withdraw-
ing the zinc transporter from the plasma membrane [85] so that
zinc can no longer be transported from the extracellular media by
ZIP1. ZIP4 contains an ectodomain that is proteolytically cleaved
during zinc deficiency, which could be due to a metalloprotease
cleavage site [87]. The ectodomain of ZIP6 (LIV-1) can also be
separated from its transmembrane-spanning C-terminus [88,89].
Kambe and Andrews previously reported that the putative
metalloproteinase site in ZIP4 is conserved at amino acids 338—
341 (PGII) in human ZIP12 [87]. It is possible that these motifs
that are conserved in ZIP12 and present in other SLC39
transporters are important for regulating the biochemical and
cellular properties of this zinc transporter.

Conclusion

The conservation of ZIP12 expression in the nervous system of
vertebrates, combined with the previous report of the critical role
of ZIP12 in Xenopus embryogenesis and mouse neuronal
development supports the notion that zinc transport by ZIP12 is
crucial for many vertebrate organisms. Zinc deficiency in
numerous animal models is associated with congenital malforma-
tions and impaired development including neural tube defects
[4,6,19]. Conserved gene co-expression analysis [23] and geno-
type-phenotype relationships (phenologs) across species [90] have
been hypothesized by other researchers to predict candidate genes
in human disease. These observations further strengthen the

PLOS ONE | www.plosone.org

10

Comparative Genomic Analysis of s/c39a12/ZIP12

notion that slc39a12 may be a candidate gene for neural tube
defects or neurodevelopmental disorders [21].

The role of zinc in the evolution of embryogenesis is not
currently well-studied, but the wide presence of ZIP12 in
vertebrates and possibly chordates suggests a physiological
importance of zinc transporters in these pathways. Cellular zinc
homeostasis and free zinc availability is tightly regulated [91], even
in bacteria, but there is emerging evidence shows that zinc may
affect cell signaling [21,49] and post-transcriptional mechanisms
[13]. It is possible that the origins of zinc transporter functions in
cell signaling originated from the role of related paralogs and their
roles in zinc homeostasis and detoxification. Further investigation
is required in order to determine the origins of ZIP12 in relation to
the evolution of developmental processes and the likely significant
role of ZIP12 in nervous system function in vertebrate organisms.

Supporting Information

Figure S1 Synteny of slc39al2 is preserved across
nearly all vertebrates examined. NCBI accession numbers
are indicated in parentheses. Solid lines indicate that neighboring
genes on the same chromosome.

(TTF)

Figure 82 Sequence alignments of different members of
the SLC39 (ZIP) family. The amino acid sequences (and NCBI
accession numbers) are as follows: human ZIP12 [GenBank:
NP_001138667] and ZIP1 [GenBank: NP_055252], Saccharomy-
ces cerevisiae (yeast) ZRT1 [GenBank: NP_011259], Arabidopsis
ZIP2 [GenBank: NP_200760], and mouse ZIP4 [GenBank:
NP_082340], ZIP6 [GenBank: NP_631882], and ZIP14 [Gen-
Bank: NP_001128623]. The consensus sequence is represented
below the alignment, ranging from no (blank), low (.), medium (:),
to high conservation (¥). Conserved amino acids from the putative
transmembrane domains 4 and 5 are indicated by gray shading.
(PDF)

Figure S3 Sequence alignments of ZIP12 orthologs from
different vertebrates. NCBI accession numbers for amino acid
sequences are provided in Table 1. The consensus sequence is
represented below the alignment, ranging from no (blank), low (.),
medium (:), to high conservation (¥).

(PDF)

Figure S4 The slc39al2 gene is detectable in Japanese
medaka, Nile tilapia, and European seabass but not
zebrafish. The slc39a12 and igf] genes were detected by PCR
using genomic DNA from zebrafish, Japanese medaka, Nile
tilapia, and European seabass and primers with degeneracy. In
zebrafish, only the igf] gene was detected, whereas both slc39a12
and 4gf1 genes were detected in the other fish. The expected PCR
product sizes for slc39al2 and igfl are 106 bp and 130 bp,
respectively.

(TIF)
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