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Summary
Copy-number variations (CNV) are believed to play an important role in a wide range of complex traits, but discovering such associa-

tions remains challenging. While whole-genome sequencing (WGS) is the gold-standard approach for CNV detection, there are several

orders of magnitude more samples with available genotyping microarray data. Such array data can be exploited for CNV detection using

dedicated software (e.g., PennCNV); however, these calls suffer from elevated false-positive and -negative rates. In this study, we devel-

oped a CNV quality score that weights PennCNV calls (pCNVs) based on their likelihood of being true positive. First, we established a

measure of pCNV reliability by leveraging evidence from multiple omics data (WGS, transcriptomics, and methylomics) obtained from

the same samples. Next, we built a predictor of omics-confirmed pCNVs, termed omics-informed quality score (OQS), using only

PennCNV software output parameters. Promisingly, OQS assigned to pCNVs detected in close family members was up to 35% higher

than the OQS of pCNVs not carried by other relatives (p < 3.0 3 10�90), outperforming other scores. Finally, in an association study

of four anthropometric traits in 89,516 Estonian Biobank samples, the use of OQS led to a relative increase in the trait variance explained

by CNVs of up to 56% compared with published quality filtering methods or scores. Overall, we put forward a flexible framework to

improve any CNV detectionmethod leveragingmulti-omics evidence, applied it to improve PennCNV calls, and demonstrated its utility

by improving the statistical power for downstream association analyses.
Introduction

Copy-number variations (CNV) are unbalanced structural

variations that alter the dosage of genomic regions via

deletion and duplication events. Approximately 9.5% of

the human genome is subject to CNVs,1 which vary in

length, ranging from a few dozens to several millions of

base pairs (bp) in length. CNVs tend to have more severe

phenotypic consequences compared with single-nucleo-

tide variations (SNVs) as, due to their larger size, they can

encompass entire coding regions.

CNVs have been associated with a number of con-

ditions including autism,2 schizophrenia,3 neurode-

generative disorders,4,5 and cancer.6 A number of large

recurrent deletions and duplications have been com-

bined into the DECIPHER CNV syndromes list.7 Impor-
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tantly, incomplete penetrance of several syndromic

CNVs has been established by studying large population

biobanks, where CNV load was shown to increase the

risk of obesity, physical or cognitive impairment, and

congenital malformations while lowering educational

attainment and socio-economic status.8–11 In parallel,

CNV genome-wide association studies (GWASs) have

been conducted on numerous diagnoses12,13 and medi-

cally relevant continuous traits,11,14,15 including a large

meta-analysis on anthropometric measurements,16

revealing the important role of CNVs in shaping the hu-

man phenome.

Over the years, multiple CNV detection algorithms have

been developed for CNV detection from SNV genotyping

microarray probe intensities.17 Currently, PennCNV18 is

the most widely used software for genotyping array-based
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Figure 1. Workflow overview
(A) Quality estimation and modeling pipeline for PennCNV copy-number variation calls (pCNVs).
(B and C) The pCNV quality metrics are estimated based on (B) whole-genome sequencing (WGS) data and (C) gene expression (GE)
and/or overall methylation (MET) intensity of genes/CpG sites overlapping the corresponding CNV calls.
(B) WGS metric is a fraction of pCNV that can be mapped to WGS CNVs of the same individual.
(C) To calculate GE/METmetrics, the reference distribution of expression/intensity based on non-carriers (pink area) is approximated to
standard normal distribution (red dashed line), and the Z score of the expression/intensity of each pCNV carrier (xi) is compared with it
one at a time. The metric is a difference between the fraction of non-carriers with the corresponding value %xi and those with the cor-
responding value >xi and captures how extreme xi is compared with the reference distribution of non-carriers. In case a pCNV overlaps
with several genes/CpG sites, the metric values are averaged over them.
calling. For each sample, a hidden Markov model (HMM)-

based algorithm uses overall signal intensity and contin-

uous allelic intensity at polymorphic probes to estimate

the probability of a hidden copy-number state at this

genomic location. Unfortunately, CNV regions found by

different array-based detection methods only agree in

about 20% of cases,19 indicating the high likelihood of

false-positive calls. To counter this, various filtering strate-

gies have been employed, usually by setting cut-off values

to combinations of parameters including number of CNVs

per sample, minimum CNV length, probe density, and

PennCNV confidence score.9,12,18,20,21 Filtering based on

arbitrary thresholds is suboptimal and a continuous CNV

quality score that predicts the probability that a CNV re-

gion is a consensus (R70% call overlap) between

PennCNV, QuantiSNP,22 and CNVpartition (an Illumina

developed GenomeStudio software plug-in, web resources)

has been proposed.19 We refer to this as consensus-based

quality score (cQS).

Still, cQS relies only on a single input dataset (i.e., mi-

croarray data). An alternative strategy to improve CNV

calling can be to incorporate various types of omics data-

sets. Previously, software have been developed to infer

CNVs from high-density DNA methylation arrays23,24 or

RNA sequencing data of highly and stably expressed
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genes.25 While promising, none of these approaches

were developed with the intent of performing scalable

and reliable genome-wide CNV detection in large

biobanks.

To fill this gap, we propose a method to improve the

detection of false-positive CNV calls among PennCNV

output by discriminating between high-quality (true)

and low-quality (false) CNV regions based on multi-omics

data (Figure 1A). Specifically, we checked if PennCNV

calls (pCNVs) (1) are detectable by whole-genome

sequencing (WGS), (2) alter the expression levels of over-

lapping genes in the expected direction (i.e., decreased by

deletions, increased by duplications), and/or (3) alter the

total methylation probe intensity of overlapping CpG

sites in the expected direction. We built a predictor of

CNV quality inferred from WGS, transcriptomics, and

methylomics, solely based on PennCNV software output

parameters in these samples assayed by multiple omics

technologies. Predicted omics-informed quality scores

(OQSs) distinguish high- from low-quality CNVs even in

samples for which only SNV genotyping microarray

data are available. We show that OQS reduces false discov-

ery rate and improves CNV-trait association discovery

compared with both raw pCNVs and cQSs19 in regions

with variable CNV quality.
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Table 1. Overview of datasets and final sample sizes used in the analyses.

Dataset n

Sample counts per data type Analysis steps

WGS Methyl. RNA-seq
Omics-based metrics
calculation

Model
building

Model selection
and validation

CNV
associations

Estonian OmniExpress sample set (N ¼ 7,750)

EstBB-MO 1,066 983 295 382 þ þ – –

First-degree relatives 504a N/A N/A N/A – – þ –

Lifelines deep (N ¼ �1,500)

LLDeep 1,383 N/A 768 1,098 þ þ – –

Swiss Kidney Project on Genes in Hypertension (N ¼ 1,128)

SkiPOGH 466 N/A 148 405 þ – – –

Parent-child pairs 319 N/A N/A N/A – – þ –

Estonian Biobank GSA sample set (N ¼ �200,000)

EstBB-GSA (unrelated) 89,516 N/A N/A N/A – – – þ

MZ twins 312 N/A N/A N/A – – þ –

First-degree relatives 79,903 N/A N/A N/A – – þ –

UK Biobank (N ¼ �500,000)

UKB (unrelated British) 331,522 N/A N/A N/A – – – þ

MZ twins 302 N/A N/A N/A – – þ –

First-degree relatives 42,032 N/A N/A N/A – – þ –

N/A, not applicable.
aEstonian OmniExpress first-degree relatives do not overlap with EstBB-MO samples.
Material and methods

Cohorts

Estonian Biobank (EstBB; data freeze January 8, 2021; Note

S1; Table 1) is an Estonian population-based cohort that

consists of �200,000 adults (R18 years of age at recruit-

ment).26 About 7,750 individuals are genotyped on

Illumina Infinium OmniExpress-24 genotyping array

(�730,000 markers). A subset of these samples (referred

to as EstBB-MO) has one ormore of the following omics da-

tasets available: 303 coverage WGS, RNA sequencing,27

and/or methylation data (Illumina Infinium Human

Methylation 450 k Beadchip). Additionally, the full EstBB

cohort is genotyped on Illumina Global Screening Array

(GSA; �760,000 markers). All participants signed a broad

informed consent, and analyses were carried out under

ethical approval 1.1-12/624 from the Estonian Committee

on Bioethics and Human Research and data release N05

from the EstBB.

LifeLines Deep (LLDeep; Note S2; Table 1) is a deeply

phenotyped �1,500 individual subset of the Dutch popu-

lation cohort LifeLines.28 LLDeep samples are genotyped

on HumanCytoSNP-12 array (�300,000 markers), and

the majority of them have either RNA sequencing29 or

methylation data (Illumina Infinium Human Methylation

450 k Beadchip)30 available. The LLDeep study was

approved by the ethics committee of the University Medi-
Human
cal Centre Groningen. All participants provided a written

informed consent.

SwissKidneyProjectonGenes inHypertension (SkiPOGH;

Note S3; Table 1) is a Swiss family- and population-based

cohort of 1,128 individuals from 273 families recruited to

study thegeneticdeterminantsof bloodpressure.31The sam-

ples were genotyped on Illumina 2.5 array (�2,500,000

markers). RNA sequencing and methylation array (Illumina

Infinium Human Methylation 450 k) data were available

for a subset of participants.32 The study was approved by

the competent institutional ethics committees in Bern,

Geneva, and Lausanne. All participants signed a written

informed consent.

UK Biobank (UKB; phenotype data freeze March 22,

2018; Note S4; Table 1) is a cohort of �500,000 individuals

from the UK.33 The majority of samples (�450,000) are

genotyped on Affymetrix UKB Axiom array, while the

rest (�50,000) are genotyped on Affymetrix UK BiLEVE

Axiom array (both arrays have �820,000 markers). Partici-

pants signed a broad informed consent, and the data are

accessed through application numbers 17085 and 16389.

Data preparation

Sample sets

We included three independent datasets—LLDeep,

SkiPOGH, and a subset of Estonian samples (EstBB-MO)—

in CNV quality calculations and modeling. Each of these
Genetics and Genomics Advances 3, 100133, October 13, 2022 3



datasets had additional omics data (WGS, methylation ar-

rays, and/or RNA sequencing) available. The summary of

PennCNV output parameters for each quality-controlled

cohort are shown in Table S1. For model selection and vali-

dation steps, we extracted monozygotic (MZ) twins and

first-degree relatives from the EstBB and the UKB and

parent-child pairs from the SkiPOGH. Finally, we extracted

unrelated quality-controlled EstBB-GSA and UKB samples

for CNV association analyses. Datasets and their usage for

various analyses are summarized in Table 1. Sample quality

control steps are summarized in Notes S1–S4.

CNV detection

We used PennCNV18 as our main CNV detection algo-

rithm due to its popularity (PubMed citations: PennCNV:

885; QuantiSNP:22 279; Birdsuite:34 466; September 8,

2021). We detected putative autosomal CNV regions

(pCNV) for EstBB, LLDeep, SkiPOGH, and UKB datasets

as previously described19 (Notes S1–S4). For each sample,

we obtained the pCNV together with the values of four

CNV-specific and nine sample-specific parameters

described in Table S2. In all datasets, we filtered out sam-

ples with more than 200 pCNVs and with pCNVs larger

than 10 Mbp, as these are likely to be either samples

with poor genotyping quality or extreme cases that

might distort the analysis. Additionally, we detected

CNVs from EstBB WGS reads (WGS-CNVs) using

the Genome STRiP35 discovery pipeline (v.2.00.1611;

Note S5). All genomic coordinates are in GRCh37 build

version.

Methylation and RNA sequencing data preprocessing

We obtained methylation intensities (Infinium Human

Methylation 450 k Beadchip) and RNA sequencing data

for EstBB-MO, LLDeep, and SkiPOGH datasets. The data

preparation is described in detail in Notes S6 and S7.

Briefly, where applicable, after the quality control step,

we corrected for age, sex, batch, blood cell counts, and

population stratification based on four principal compo-

nents (PCs) calculated from pruned SNP genotypes (minor

allele frequency >1%). Additionally, we corrected for PCs

calculated based on methylation/gene-expression data

(Figures S1 and S2). Gene-expression residuals were further

corrected for independent expression quantitative trait

loci (eQTL) within 500 kbp of the gene.

CNV quality metrics based on multi-omics data

WGS quality metric

WGS data were available for a subset of EstBB-MO samples

(n ¼ 979). For each pCNV in these individuals, we defined

a WGSmetric as the fraction of the pCNV (in bps) overlap-

ping with WGS-CNVs in the same sample (Figure 1B).

Metric calculation was restricted to pCNV deletions and

duplications longer than 1 and 2 kb, respectively, as we

did not detect shorter WGS-CNVs (Note S5). Additionally,

these samples were used to estimate the fraction and distri-

bution of false negative (FN) and false positive (FP) pCNVs.

High-confidence FN calls were defined as WGS-CNVs

(copy numbers between 0 and 4) with less than 10% bp
4 Human Genetics and Genomics Advances 3, 100133, October 13, 2
overlap with pCNVs in the same sample. pCNVs with

WGS metric <0.1 were defined as high-confidence FPs.

MET quality metric

Analogously to SNP arrays, higher or lower total signal in-

tensity captured by methylation array at a CpG site indi-

cates excess or lack of DNA material, respectively, regardless

of the methylation status of the region. Exploiting this phe-

nomenon, CpG site intensity data can be used to validate

duplications (i.e., excess genetic material leading to

increased total intensity) and deletions (i.e., reduced genetic

material leading to decreased total intensity). This approach

was used to assess CNV quality in EstBB-MO, LLDeep, and

SkiPOGH datasets. For each methylation probe passing

the preprocessing steps (Note S6), we used the samples

with no pCNVs overlapping the corresponding CpG site

(i.e., non-carriers) to construct the approximately Gaussian

reference distribution of site overall intensity (sum of the

methylated and un-methylated intensities). For each carrier,

we then transformed its CpG site overall intensity into a

Z score by using the mean and standard deviation of the

constructed reference distribution. We denoted the quality

metric based on the methylation data for the i-th pCNV

(pCNVi) across all its overlapping CpG sites as

METi ˛ ½�1; 1� and calculated its value as

METi ¼
Pni

j¼1

�
F
�
mij

� � �
1 � F

�
mij

���
ni

;

where ni is the total number of CpG sites overlapping

pCNVi, F is the cumulative distribution function of the

standard normal distribution, and mij is the Z score calcu-

lated for the j-th CpG site overlapping pCNVi (Figure 1C).

The proposed measure captures how extreme an observed

methylation intensity is compared with that of the bulk of

the samples (assumed to be copy neutral), equivalent to a

signed two-sided tail probability. We expected METi < 0

for deletions and METi > 0 for duplications. If this was

not the case, METi was set to zero. Finally, METi was con-

verted to its absolute value such that METi ˛ ½0;1�.
Gene expression (GE) quality metric

GE levels from RNA sequencing data were used to assess

CNV quality in the EstBB-MO, LLDeep, and SkiPOGH data-

sets. We extracted all the genic regions from Ensemble

database (GRCh37) using biomaRt.36 To avoid penalizing

genes whose transcript levels are not affected by CNVs,

we only retain genes for which expression is positively

correlated (Pearson R > 0.1) to the copy number of the

gene in an independent dataset.25 After preprocessing

steps (Note S7), we retained 10,786 genes. Additionally,

over 80% of the genic region was required to overlap the

pCNV for the gene to be included in the quality calcula-

tions of that pCNV. Requiring higher gene overlap did

not show considerable improvement (Figure S3). Expres-

sion values of genes with pCNVi overlap below 80% were

marked as missing. Analogously to METi , we constructed

the expression reference distribution based on non-carriers

and used its mean and standard deviation to calculate
022



an expression Z score for each carrier. We calculated GEi ˛
½ � 1;1�, the pCNVi quality metric based on GE across all its

overlapping genes (analogously to the metric for methyla-

tions), as

GEi ¼
Pni

j¼1

�
F
�
eij
� � �

1 � F
�
eij
���

ni

;

where ni is the number of genes overlapping at least 80% of

the pCNVi and eij is the Z score calculated for the j-th gene

overlapping pCNVi (Figure 1C). We set zero GEi values for

deletions with GEi > 0 and duplications with GEi < 0

and converted all GEi scores to their absolute values such

that GEi ˛ ½0;1�. Although we hypothesized that duplica-

tions could alter GE in either direction through either trip-

lication or disruption of gene sequence,37 this was not

observed in our results (Figure S3).

Combined metric

Let us define the collection of quality metrics Qi ¼
fMETi;GEi; WGSig Further metrics can be defined by their

mean, maximum, and the measure furthest away from 0.5

(i.e., most extreme; denoted as EXTRðQiÞ). We chose

EXTRðQiÞ as our final combined metric, the motivation be-

ing that if one metric clearly indicated the truth status of a

pCNV, thenwewould use thatmetric (even if othermetrics

are unsure) (Figure S4). Note that EXTR values are only

calculated for pCNVs that have at least two out of three

Qi metrics available.
CNV quality prediction models

In order to assess CNV quality in samples with no comple-

mentary omics data, we fitted prediction models for the

values of the previously defined four omics metrics, sum-

marized by Yi ¼ fMETi;GEi; WGSi;EXTRðQiÞg.
The set of possible explanatory variables

X ¼ fX1;X2; :::;Xng included CNV- and sample-specific

parameters from PennCNV output (CNV length, number

of overlapping probes, PennCNV-specific CNV confidence

score, number of pCNVs per sample [and its derivations,

see Figure S5], mean and standard deviation of the allelic

intensity ratios and B allele frequencies of a sample, signal

waviness factor; Table S2) and their interaction terms. CNV

coordinates were not included as explanatory variables.

We fitted a generalized linear regression model separately

on each column of Y :

P
�
Yj
��X� ¼ f

 
b0 þ

Xn
k¼1

Xkbk

!
;

where Yj is the j-th column of Y (representing one of the

four quality metrics), b0 is the intercept term, and bk is

the effect estimate of explanatory variable Xk. We used a

quasi-binomial link function f since instead of being

strictly binary, our response was a bimodal continuous var-

iable ranging from zero to one.

In order to choose the best subset of X, we implemented

a forward stepwise model selection (starting with an empty

parameter set) using custom R scripts. Briefly, in each
Human
round, a parameter was added if the resulting model mini-

mized the 10-fold cross-validation mean square error

(MSE). If adding any of the remaining parameters did not

improve the average MSE, the algorithm stopped and re-

turned the existing model. We tested model building

with eight different sets of conditions/parameters

fXs : Xs 3Xg to choose from and repeated the procedure

separately for deletions and duplications. The modeling

process and the eight parameter sets are characterized in

detail in Note S8 and Table S3.

The model coefficients bk can be used to predict omics-

informed CNV quality scores (OQSs) as

OQS ¼ 1

1þ exp
�� �

b0 þ
Pn

k¼1Xkbk

��:
For Xk not included in the final model, bk is set to be

equal to zero.
Selection of the best OQS and comparison with other

CNV calls

CNV quality models were fitted as described above for de-

letions and duplication from each multi-omics dataset

separately (Table 1). To determine the best models, we

incorporated family information. We reasoned that the

set of familial pCNVs present in at least two close family

members (Jaccard index based on overlapping bp count

of at least 0.9) contains a higher fraction of true-positive

CNV calls than the non-familial set (no overlap in a rela-

tive). Partially overlapping pCNVs with a Jaccard index

lower than 0.9 were discarded from the calculations. We

predicted and compared the OQS values of all familial

and non-familial pCNVs from MZ twins from the UKB

and EstBB-GSA and parent-child pairs from the SkiPOGH.

To select the best models, we maximized the difference

of mean OQS values between the two groups, averaged

over the three datasets. We validated our best models on

first-degree relative pCNVs from Estonian OmniExpress

samples, EstBB-GSA and UKB. To further reduce the likeli-

hood of two relatives carrying overlapping FP calls by

chance in our validation sets, we restricted the analysis

to rare (frequency <0.1%) familial pCNVs, with frequency

being calculated as the fraction of samples in the full

cohort with a pCNV overlapping the region in question.

As a comparison, we estimated the quality of non-familial

and familial pCNVs using the previously published cQSs.19
CNV association analyses

We compared OQS with raw pCNV, four previously pub-

lished PennCNV output filtering approaches18,20,38,39

(Table S4), and cQS in an association analysis setting by

incorporating them into the association models analo-

gously to SNV dosages.16 We used 89,516 and 331,522

quality-controlled unrelated European individuals from

the EstBB-GSA and UKB data, respectively (Notes S1 and

S4). We considered 21 CNV-trait pairs (Table S5) involving

four continuous anthropometric traits—body mass index
Genetics and Genomics Advances 3, 100133, October 13, 2022 5



(BMI), height, weight, and waist-to-hip ratio (WHR)—and

13 CNV regions that had previously16 shown association

p <1 3 10�4. Importantly, these associations were ob-

tained using cQSs in the first wave of UKB genotype data

samples (n ¼ 119,873). All phenotypes were inverse

normal transformed and corrected for batch, sex, age,

age,2 and PCs prior further analysis (Notes S1 and S4).

We calculated association Z statistics (estimated effect

size over its standard error) and p values in a probe-by-

probe manner across all probes that overlapped with >5

pCNVs inside the 13 regions of interest. The analysis was

conducted separately for deletions, duplications, and mir-

roring effects. To model the mirroring effect (i.e., both de-

letions and duplications have similar effects but in oppo-

site directions), the OQS values for deletions were

negated. Associations were run using linear regression

(lm function) in custom R scripts. We used a Bonferroni-

corrected p value threshold of 0.05/21 ¼ 2.38 3 10�3 to

determine significance. All regions containing signifi-

cantly associated probes—except for the 18q21.32 region,

which in the EstBB-GSA did not contain the previously re-

ported CNV (Figure S6)—were included in the final associ-

ation comparison step.

Finally, for both datasets (i.e., UKB and EstBB-GSA) and

all four phenotypes, we estimated the change in explained

variance when applying the OQSmodel, as compared with

raw PennCNV values, four filtering approaches, or cQS

model. We started by clumping probes originating from

significant CNV regions with R2 > 0:5 using snp_clumping

from the bigsnpr R package.40 Clumping usually prioritizes

probes based on association summary statistics or allele fre-

quencies, which in our case are heavily dependent on the

applied CNV quality measure. To avoid any bias, we gener-

ated a random probe priority order instead. If after clump-

ing we retained m probes, we calculated

F ¼ Z0
2S

� 1Z2

Z0
1S

� 1Z1

;

where Z2 is an array of Z statistics (of clumped probes) from

association analysis using OQS, Z1 is the corresponding

array from the comparison analysis (either raw PennCNV,

filtering approaches, or cQS), and S is a probe correlation

matrix calculated based on raw pCNV. Under the null hy-

pothesis, F follows an F distribution with both degrees of

freedom equal to m. Since F depends on the probes re-

tained after the randomized clumping process, we repeated

the random clumping 20 times and used the average

F value.
Results

Omics-based metrics for CNV quality

We estimated pCNV quality based on methylation (MET),

GE, and WGS (only available in EstBB-MO dataset) data,

which resulted in up to three independent omics-based

CNV quality metrics in three independent datasets
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(EstBB-MO, LLDeep, and SkiPOGH; Tables 1 and S6).

Within all datasets, the metrics were positively correlated

with each other (Figures 2A, 2B, S7, and S8). Both MET

and GE metrics had high correlations (Pearson R R 0.7)

with the WGS metric. The correlations between MET and

GE metrics ranged between 0.59 and 0.80 for deletions

and 0.33 and 0.57 for duplications. The correlations be-

tween all three metrics and previously published cQSs19

ranged between 0.17 and 0.55 for deletions and 0.21 and

0.63 for duplications, depending on the dataset.

All three metrics had bimodal distributions with modes

near 0 and 1, which indicates clear differentiation between

true and false calls for the majority of pCNVs (Figures 2C,

S7, and S8). To retain just one quality metric per pCNV

(i.e., combined metric; Figure 2D), we retained the metric

that was furthest from 0.5 (denoted as EXTR in material

and methods). Detailed composition of this metric is char-

acterized in Figure S10.

We estimated the precision of pCNV based on the WGS

and the combined metric. In the EstBB-MO dataset, out of

3,496 pCNVs evaluated with the combined metric (1,750

deletions, 1,746 duplications), 47.3% of deletions and

47.5% of duplications had values inferior to 0.1, most

likely reflecting FP calls. In LLDeep and SkiPOGH, the per-

centages corresponding to high-confidence FP calls were

50.5%/28.3% and 70.9%/59.4% for deletions/duplica-

tions, respectively (Table S7). When considering a larger

EstBB-MO set of 15,063 deletions and 8,914 duplications

with the WGS metrics available, 31.6% (n ¼ 4,762) of de-

letions and 53.2% (n ¼ 4,745) of duplications could be

labeled as FPs. These results illustrate the need for CNV

quality filtering prior further analyses.

Using this EstBB-MO set, we studied the distribution of

FP calls across the genome (Figure S11). Overall, 120,395

probes (17% of all Illumina OmniExpress autosomal

probes, 77.5% of probes overlapping pCNV) had an FP

rate (FPR) >0. There was a modest negative correlation be-

tween FPR and pCNV frequency (Pearson R ¼ �0.12) indi-

cating that if a pCNV is detected in multiple samples, it is

more likely to be true. Still, for 939 probes, FP pCNVs were

discovered inR10 samples (FP frequency>1% in 979 sam-

ples) with 816 (86.9%) of them having a FPR >0.9. These

FP ‘‘hot spots’’ contributed to 5.1% (488/9,507) of all FP

calls.

Additionally, we estimated the fraction of FN pCNV calls

based on the overlap with WGS-CNVs to be 97.3%. When

only considering CNVs that overlapped R3 genotyping

array probes (n ¼ 69,889), thus meeting the minimum

requirement of the PennCNV discovery algorithm, this

number dropped to 75.7% (66.6% for deletions only, and

84.1% for duplications only). These percentages further

decreased with increasing number of overlapping probes,

remaining considerably higher for duplications, compared

with deletions (Figure S12). We further studied the

genome-wide distribution of FNs on a restricted set on

WGS-CNVs with a R3 probe overlap (Figure S13). We

observed that despite a large fraction of FNs, only 12,065
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Figure 2. Overview of CNV quality metrics in EstBB-MO
(A and B) Omics-based metrics— WGS, MET, and GE—and cQS19 Pearson correlations for EstBB-MO deletions (A) and duplication (B).
Note that the number of pCNVs used in correlation calculations is not identical in each group of metric pairs (Figure S9).
(C and D) Bimodal distribution of WGS, MET, and GE metrics (C), as well as their combined metric (see material and methods) (D) for
duplications (blue) and deletions (yellow). The combinedmetric is calculated for pCNVs that have at least two omics-basedmetrics avail-
able (n ¼ 3,496) and the fractions of high-confidence false (combined metric <0.1) and true (combined metric >0.9) calls are reported.
probes (1.7% of all probes, 40.0% of probes overlapping

WGS-CNVs) had an FN rate (FNR) >0. Unlike the FPR,

the FNR was positively correlated to WGS-CNV frequency

(Pearson R ¼ 0.19), and CNVs with >50% frequency

contributed to 31.8% (22,196/69,889) of all FN CNVs.

Prediction models for omics-informed CNV quality

scores (OQSs)

We built logistic regression models to predict the previ-

ously calculated CNV quality metrics based solely on

PennCNV output parameters to enable pCNV evaluation

in samples lacking multi-omics measurements. Due to a

smaller fraction of true-positive calls when compared

with other datasets, we omitted SkiPOGH from the

model-building step but retained it for model valida-

tions. Models were evaluated based on their ability to

discriminate between pCNVs that were shared (familial)

or not (non-familial) between MZ twins in the UKB

and EstBB-GSA and parent-child pairs in the SkiPOGH

(Tables S8 and S9), as pCNVs detected across multiple

family members are less likely to be FPs and, thus, should

act as a set of likely true-positive calls suitable for model

selection and validation. For both deletions and duplica-

tions, the best model was built based on the LLDeep

dataset using the combined metric. Models are

characterized in Tables S10 and S11. We refer to the

CNV quality measure (ranging from 0 to 1) predicted
Human
by the best models as the omics-informed CNV quality

score (OQS).

To validate the OQS, we performed a familial versus non-

familial pCNV comparison on first-degree relatives from

the Estonian OmniExpress, EstBB-GSA, and UKB that did

not overlap with individuals used for the CNV quality esti-

mation and model-building steps (i.e., samples with other

omics data; Figures 3 and S14). The average OQS for famil-

ial calls ranged between 0.67 and 0.82 for deletions and

between 0.48 and 0.70 for duplications, which was signif-

icantly higher (paired Wilcoxon test p < 1.4 3 10�21) than

for cQS (0.27–0.32 in deletions and 0.42–0.53 in duplica-

tions). As some genomic regions are more prone to FP

pCNVs, resulting in shared false calls between close rela-

tives by chance, we executed a similar analysis using

only rare (frequency <0.1%) familial pCNVs. This further

increased the average OQS values, which ranged between

0.76 and 0.83 for deletions and between 0.56 and 0.76

for duplications. In all cases except EstBB-GSA duplica-

tions, we observed significantly higher score values for

rare pCNVs with OQS compared with cQS (0.33–0.40

for deletions, 0.56–0.66 for duplications; Wilcoxon

p < 0.046). Furthermore, OQS distinguished well between

familial and non-familial pCNVs. The difference in OQSs

between two groups were between 0.22 and 0.35 depend-

ing on the dataset (0.16–0.25 for deletions and 0.12–0.48

for duplications; Wilcoxon p < 3.0 3 10�90). Only in the
Genetics and Genomics Advances 3, 100133, October 13, 2022 7



Figure 3. Comparison of quality scores on pCNVs of closely related Estonian samples
Consensus-based (cQS)19 and omics-informed (OQS) CNV quality scores of non-familial and familial (found in two ormore familymem-
bers) deletions (yellow) and duplications (blue) calculated on a subset of Estonian OmniExpress samples (n ¼ 504; do not overlap with
EstBB-MO). Familial pCNVs are likely true positives, while non-familial group contains both true and false positives. We included rare
(frequency<0.1%, striped background) familiar pCNVs as a subset of CNVs less likely to validate in a relative by chance. Themean score
of each pCNV group and their pairwise difference are shown on top of the figure. Compared with cQS, the OQS shows higher values for
familial pCNVs and larger differences between non-familial and familial pCNV quality. All differences for both scores are significant with
p < 1 3 10�16 (Wilcoxon test).
case of EstBB-GSA duplications was the average difference

larger with cQS.

As the best models were built on the LLDeep dataset, we

could use EstBB-MO for out-of-sample validations

(Figure S15). We found that Pearson correlation coeffi-

cients between the combined metric and predicted OQSs

were 0.70 and 0.57 for deletions and duplication, respec-

tively. The area under the receiver operating characteristic

curve (AUC) values were 0.91 for deletions and 0.87 for

duplications (Figure S16).

Associations between CNV and anthropometric traits

We compared the association results obtained using raw

pCNV, four quality filtering parameter sets,18,20,38,39

cQS,19 and OQS. Of 21 previously established associa-

tions between CNVs and four anthropometric traits

(BMI, height, weight, and WHR),16 we replicated

(p < 2.38 3 10�3) 10 in the EstBB-GSA and 18 in the

UKB cohort (Tables S5, S12, and S13). For both datasets,

we calculated the change in variance explained per pheno-

type when using OQS compared with the other six

approaches.

First, we tested mirror-type associations where deletions

and duplications have similar effects but opposite effect di-

rections. We found that in the EstBB-GSA, OQS led to a

relative increase of 2%–34% and 23%–55% in the ex-

plained variance compared with raw PennCNV and cQS,

respectively, depending on the phenotype (Figure 4A;

Table S14). A good example is an association between the

16p11.2 BP4-BP5 CNV status and BMI (Figure 4B), for

which alone the relative variance explained increased by

26% and 40% compared with raw PennCNV and cQS,
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respectively. Compared with published quality filtering ap-

proaches, the relative increase of variance explained was

between 3% and 56%, depending on the approach and

the phenotype (except for Wang et al.18 and weight, for

which the explained variance decreased). For deletion-

only associations, the relative increase was equally good,

up to 33%, 42%, and 46% compared with raw PennCNV,

filtering approaches, and cQS, respectively (Figure S17).

For duplication-only analysis, only one BMI-associated

region was included, and it showed an up to 71% relative

increase in explained variance compared with the other

approaches. In the UKB, OQS showed improvement

compared with raw PennCNV in three out of four

phenotypes and compared with conventional filtering ap-

proaches in all four phenotypes. The greatest improve-

ments were over Palta et al.38 with >100% gain in ex-

plained variance and Chettier et al. 20 with, in some

cases, even >400% gain in explained variance. However,

compared with the cQS, the explained variance was

decreased in most cases. This was to be expected, as the

associations incorporated in this study were originally

detected using the cQS in a dataset where over 60% of

samples were from UKB.16 None of the changes were

statistically significant, as the number of independent

CNV regions per phenotype was very low, ranging from

one to seven.
Discussion

Genotyping microarray data are frequently used for CNV

calling and analyses, but up to 48% of the calls from
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Figure 4. Impact of OQS on CNV-trait associations
(A) Change of variance explained in mirror-type model when using OQS over raw PennCNV, four published quality filtering
approaches,18,20,38,39 or cQS19 in the EstBB-GSA and UKB, depicted as distribution of F statistics calculated by randomizing the probe
pruning priority order 20 times (see material and methods). Explained variance is increased when F>1 and decreased when F<1. Larger
F values indicate greater improvement in statistical power when using OQS over the given reference approach.
(B) Locus plot of a CNV region in 16p11.2 BP4-BP5 (red dashed lines: chr16:29,590,000–30,200,000 in GRCh37) associated with BMI in
EstBB-GSA dataset. The lines indicate the –log10 association p values using mirror model with raw PennCNV calls (light blue), cQS (pur-
ple), and OQS (black). The yellow and blue areas illustrate the frequency of PennCNV deletion and duplication counts, respectively,
across the region.
commonly used software, such as PennCNV, are not sup-

ported by other omics measures and are, therefore, likely

FPs. To counter this, a quality score based on results

overlap between three detection software tools has been

developed (cQS).19 We aimed at improving the discrimina-

tory capacity of this score by devising an omics-informed

CNV quality score—OQS—that incorporates independent

omics-based sources of evidence to identify high-quality

PennCNV CNV calls (pCNVs).

Datasets included in the development of our OQS

include GE levels from RNA sequencing (GE metric) and
Human
summed methylated and unmethylated intensities at

CpG sites (MET metric), as well as CNVs detected from

WGS reads (WGS metric). Each of these three approaches

yielded a quality metric between 0 and 1 for every pCNV,

all of which showed high concordance. We found that

the correlation between WGS and the other two metrics

was R0.7, suggesting that the use of MET and GE data

for CNV quality assessment is a suitable alternative if

WGS data are not available.

Still, out of three omics layers used in our study, GE is the

noisiest, as the expression changes can have various
Genetics and Genomics Advances 3, 100133, October 13, 2022 9



biological and technical causes. We assumed deletions

to always decrease and duplication to increase the expres-

sion levels. Duplications, however, can also disrupt the

gene sequence, resulting in decreased expression levels

instead.37 To minimize the contribution of this scenario

to our analysis set, we required the gene (1) to be almost

fully (>80%) covered by a CNV region and (2) to show pos-

itive correlation (Pearson R> 0.1) to its copy number in an

independent study.25 Note that no significant improve-

ment in results was observed when requesting higher

gene-duplication overlap or allowing duplications to alter

expression in both directions.

Interestingly, the correlation between WGS and previ-

ously published cQSs is quite low for comparison (0.17

for deletions, 0.43 for duplications), illustrating the poten-

tial benefit of incorporating omics data in CNV quality

assessment compared with simple overlap between several

detection software (which are all prone to the same weak-

nesses, such as prioritization of longer and discarding

shorter CNV regions).

Using GE, MET, and WGS metrics, we built predictive

models relying only on output parameters of PennCNV

that allow estimating CNV quality in datasets where no

additional omics data are available. Although larger omics

data sizes can lead to better CNV quality models, we

believe that even modest sample sizes can be used in case

the assessed set of CNVs are a good representative of the

final CNV set in the analysis. In our study, the best-quality

models were built only on 441 pCNVs from an LLDeep da-

taset having both GE and MET metrics calculated.

In validation sets of close relatives, OQS clearly discrim-

inated between familial(true positives) and non-familial

pCNVs, the former being attributed to a higher OQS

compared with cQS. This effect was consistent over all in-

dependent tested datasets. Based on out-of-sample AUC

and correlations, predicting quality of deletions was easier

than predicting that of duplications. Possible explanations

include better detection of deletions by PennCNV due to

larger relative difference in allelic intensity ratio between

one and two copies compared with two and three copies

or stronger effect of deletions on GE and MET. In a second

step, we compared OQS with raw pCNV, four previously

published sets of CNV quality filtering thresholds, and

cQS through an association analysis exercise aiming at

replicating previously established CNV-trait associations.

We found that OQS systematically increases (up to 34%

in the EstBB-GSA and 10% in the UKB) the amount of

explained variance when compared with raw PennCNV.

The increase was even higher (up to 56% in the EstBB-

GSA and >400% in the UKB) when compared with sets

of filtering thresholds. This indicates that, especially in

the UKB, conventional filtering methods are too strict

and result in a major loss of power. Compared with cQS,

we observed a strong improvement in explained variance

in the EstBB-GSA (up to 55%) but not in the UKB (down

by 18%). As the associations we aimed at replicating were

originally detected in the UKB using cQS approach, cQS-
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based associations suffer from winner’s curse, which dis-

torts the effect magnitudes in favor of the cQS. Alterna-

tively, different quality scores might perform better in

different datasets, and combining the two might be a

good option (e.g., by incorporating the maximum of the

two scores in the analyses).

It is to be expected that the improvements offered by the

OQS is small when studying strong associations in a well-

known and -detectable genomic region, as we have done.

We expect to see greater improvement in intermediate-

quality CNV regions for which previous studies have

lacked statistical power for CNV-trait association detection.

As observed, when excluding a small number of FP hot-

spot regions, false pCNVs are distributed randomly and

uniformly acrossmost of the genome and, thus, only intro-

duce a modest amount of noise per probe/region. Howev-

er, given the difficulty to detect CNVs, which themselves

tend to be rare, even slight improvement in statistical

power to detect CNV associations can be beneficial.

Although we strived to optimize our models for different

genotyping array types and densities, our results may still

be specific to the arrays we explored. Furthermore, while

the OQS helps to reduce FP calls, it does not improve the

FNR, which remains high, especially for shorter CNVs

andCNVs in regions with low array probe density. Still, un-

like FP, FN load mainly originates from a few specific high-

frequency CNV regions.

Using only PennCNV output parameters as predictors is

a limiting factor in itself, as their prediction ability can vary

from dataset to dataset. Furthermore, the PennCNV detec-

tion algorithm considers each sample separately and does

not exploit between-sample similarities, which was shown

to improve the detection of short (and frequent) CNVs

considerably.15 Still, our omics-informed CNV quality

assessment approach is not limited to PennCNV but can

be used with any CNV detection method that produces

multiple output parameters.

In conclusion, we developed a modular and customiz-

able omics-based quality score framework that can be

used for both genome-wide and smaller-scale CNV ana-

lyses. The OQS developed in the current study is indepen-

dent of CNV coordinates or genome build and can be

applied directly to filter out high-confidence FP pCNVs

using a hard cutoff (i.e., OQS <0.5) or plugged into

dosage-based association models, eliminating the need

for an arbitrary CNV quality threshold. In turn, lower

FNRs increase statistical power to detect associations be-

tween CNVs and complex traits. Alternatively, with at least

one suitable multi-omics measurement available for a sub-

set of the samples, researchers can use our framework to

build their own custom models, which could be applied

to any CNV detection software, leading to further

improved results for follow-up analyses.
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and MET data can be accessed via European Genome-Phe-

nome Archive (accession code EGAS00001001077). EstBB,
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