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Abstract: Accurate human identification using radar has a variety of potential applications, such as
surveillance, access control and security checkpoints. Nevertheless, radar-based human identification
has been limited to a few motion-based biometrics that are solely reliant on micro-Doppler signatures.
This paper proposes for the first time the use of combined radar-based heart sound and gait signals
as biometrics for human identification. The proposed methodology starts by converting the extracted
biometric signatures collected from 18 subjects to images, and then an image augmentation technique
is applied and the deep transfer learning is used to classify each subject. A validation accuracy of 58.7%
and 96% is reported for the heart sound and gait biometrics, respectively. Next, the identification
results of the two biometrics are combined using the joint probability mass function (PMF) method to
report a 98% identification accuracy. To the best of our knowledge, this is the highest reported in the
literature to date. Lastly, the trained networks are tested in an actual scenario while being used in an
office access control platform to identify different human subjects. We report an accuracy of 76.25%.

Keywords: millimeter-wave radar; FMCW; micro-Doppler signatures; human identification; convo-
lutional neural networks; transfer learning; non-destructive sensing; security

1. Introduction

Increased demand for surveillance and security has accelerated research in human
identification based on remote sensing technologies [1–5]. Radar, as a sensing modality,
offers robustness and privacy compared to other technologies [6–10]. For example, in
Refs. [7,9], the human identification is based on iris scanning, which is highly dependent
on lighting conditions. Additionally, in Refs. [6,8], the identification is vision-based, which
adds to the light dependency problem the aspect of subject-image privacy. Radar, on the
other hand, is insensitive to both light and weather conditions and provides contactless
sensing without compromising subject privacy.

Furthermore, motion-produced micro-Doppler signatures have been studied exten-
sively to enable the use of radar sensors in the fields of human detection and activity
recognition. As such, deep learning methods, including convolutional neural networks
and recurrent neural networks, are being implemented for their capabilities to achieve
state-of-the-art results by automatically learning features from the raw sensor data. For
example, Ref. [11] extracts the micro-Doppler signatures of human aquatic activities for
the purpose of classification using transfer machine learning, while Ref. [12] proposes a
deep convolutional autoencoder to classify 3D micro-Doppler signatures extracted from
various human activities. Moreover, Ref. [13] proposes a feature fusion algorithm based
on a stacked autoencoder for synthetic aperture radar automatic target recognition. In
Ref. [14], multiple micro-Doppler-based forms of echoes and a wide variety of deep learning

Sensors 2022, 22, 5782. https://doi.org/10.3390/s22155782 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155782
https://doi.org/10.3390/s22155782
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5458-0109
https://doi.org/10.3390/s22155782
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155782?type=check_update&version=1


Sensors 2022, 22, 5782 2 of 17

structures are reported in a survey of the deep-learning-based human activity recognition.
However, most of the published research so far has focused on the identification of humans
using one single biometric signature in a segmented user-dependent approach.

Gait, which can be defined as the pattern of movement of the limbs during any type of
motion over a solid substrate, has drawn much attention as a radar-based application [3,15].
Gait is considered a unique signature due to the physical and behavioral characteristics
difference between individuals, which can be used as a biometric for human identification.
As observed in the literature [16–18], micro-Doppler-based methods have been imple-
mented using a variety of machine learning structures with the purpose of identifying
human targets based on their gait signatures. The main challenges are to maximize the
accuracy of identification, minimize the need for larger training datasets and minimize the
limitations imposed on the implementation scenarios. Although satisfactory results have
been achieved, previous literature is still fully dependent on the target motion.

Additionally, heart sounds, which can be defined as the noises generated by the
beating heart and the resultant flow of blood through it, are introduced in the proposed
system as a unique biometric identifier due to the differences of people’s physical and,
more specifically, cardiovascular characteristics. In previous literature [2,19], the related yet
distinguishable radar-based heartbeat signal is proposed as a biometric identifier. While
both signals can be extracted from the chest displacement waveform, the main difference is
that heart sounds are smaller in magnitude and higher in frequency. The main advantage
from choosing the heart sound signal is that it involves more than three distinct sounds
that are related to, and indicative of, the condition of the heart. Consequently, this provides
more features that can be utilized in classification.

Further, Refs. [20,21] demonstrate the feasibility of radar-based heart sound detection,
and Ref. [22] proposes the electronic-stethoscope-based heart sound as a biometric for
human identification. To the best of our knowledge, the use of the radar-based heart
sound was not proposed in the literature to date as a biometric for human identification.
While this work and Refs. [23,24] share the same methodology of extracting the target
displacement by unwrapping the phase over the chirp time, Ref. [23] utilizes the extracted
displacement waveform to detect the micron-level vibrations of reflective objects through
a lossy material. Alternatively, Ref. [24] utilizes the extracted displacement waveform
to sense anomalous drilling vibrations during vehicle transport on metallic containers.
However, this work filters the extracted displacement waveform to detect the heart sound
frequencies and generate time-frequency representations that can be further processed
using image classification deep networks.

In this paper, a robust human identification system is proposed based on millimeter-
wave frequency-modulated continuous wave (FMCW) radar that identifies human subjects
based on gait and heart sound signatures with an accuracy of 98% using a fully autonomous
signal processing pipeline. The combination of the two signatures improves the overall
identification accuracy of the system. It also adds flexibility and robustness to the system
as it enables the identification of human subjects in stationary scenarios where the motion-
dependent gait-based identification is less advantageous. The system is also tested in an
actual scenario to identify people belonging to an office. The purpose of this experiment
is to evaluate the system performance as an identification platform. We believe that the
developed methods can be useful for human identification in situations where a small to
medium number of subjects follow a predictable route, such as in workplaces.

In summary, this paper makes the following contributions:

1. The use of the radar-based heart sound as a biometric identifier.
2. Combining two biometrics to improve the overall accuracy of the system and add

flexibility.
3. Testing the system in an actual scenario to evaluate its performance as an identification

platform.
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2. Proposed Methodology

To collect the data, the platform shown in Figure 1a was used. Two control laptops
operate the two millimeter-wave radar sets using MATLAB and mmWave Studio software.
Each of the two radar sets, as depicted in Figure 1b, is composed of a radar module, TI
AWR1642EVM, and a capture card, TI DCA1000EVM. The mmWave Studio software is
used to set the radar configuration parameters, trigger each scan and transfer the raw data
files to the output directory. This process can be automated and executed in MATLAB
using the LUA shell in the mmWave Studio software.
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Figure 1. The data collection platform: (a) the complete setup incorporating two millimeter-wave
radar sets and two laptops; (b) a radar set composed of radar module (front) and capture card (back).

To construct the training dataset, 18 volunteers were scanned to measure both the
heart sound and gait biometrics. Each volunteer was scanned 100 times for each biometric
alternately. The subjects walked towards the platform to gather the gait signature using the
upper radar set at an average pace of 1.36 m/second. Upon completion of the first scan, we
started another scan of the subject, standing still, to gather the heart sound signatures using
the lower radar set. After that, the augmentation technique is applied, which increased the
number of samples by a factor of eight. This led to a total of 28,800 samples. The average
height and weight of the volunteers are 171 cm and 76 kg, respectively. Additionally, their
ages range from 22 to 50, with an average of 27 years. None of the participants reported
any major health problems.

2.1. Heart Sound as a Biometric Identifier

In this section, we elaborate upon the scan parameters and signal pre-processing
techniques used to generate the heart sound images for network training, validation and
the practical testing. The FMCW waveform is a linear ramped time-frequency signal over
the chirp ramp time, TR, to cover chirp bandwidth, ∆f.

In Equation (1), the transmitted FMCW signal (STX) is defined where α is the chirp
ramp rate, given as α = ∆f/TR, and fc is the center frequency:

STX(t) = Re
{

ATX e j(2π f ct+παt2)
}

(1)
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The reflected signal is then down-converted through mixing it with the transmitted
signal, yielding an intermediate-frequency (IF) signal that is a function of the target reflec-
tivity and echo time delay (τ). The down-converted IF signal is then passed through a
low-pass filter. At this point, the IF signal for any given channel is:

SIF(t, τ)= LPF{ S TX(t)ŜTX(t − τ)} = 1
2

ATX ARXrect
(

t
TCRI

)
e j(2πατt+2π f cτ− πατ2) (2)

where STX is the transmitted signal, ŜTX(t − τ) is the time delayed receive signal, ATX is
the transmitted waveform amplitude and ARX is the received signal amplitude, accounting
for path losses. The IF signal is then digitized by an ADC at a fast-time sampling rate.
Throughout a single pulse, the frequency of the down-converted signal contains the range
by being linearly dependent on the echo time delay. There are two phase terms on the IF
signal. The term that is quadratic in the echo time delay is typically ignored. The chirp is
repeated at a slow-time chirp repetition interval (CRI), TCRI .

The goal of this processing pipeline shown in Figure 2 is to extract the subject’s heart
sound vibration data from the radar returns. The first step in the signal-preprocessing chain
is to determine the down-converted beat frequency. From Equation (2), the beat frequency
can be determined by a Fourier transform over fast-time, referred to as a range FFT. The
signal after the range FFT is now:

SIF( f ,τn) =
1
2

ATX ARX ∗ TCRI
sin(π( f − ατ))

π( f − ατ)
ej2π f cτn , n ∈ [1,NPulses] (3)
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Figure 2. The signal processing pipeline for the heart sound biometric showing the major steps
followed to extract the heart sound waveform and to convert it to an image (scalogram).

After the range FFT, the data are spatially focused by performing an angle FFT over
the receive channels. To determine the subject’s location, the range and angle bin with
the highest magnitude target return is chosen. The vibration data are linearly related to
the phase of the range and angle FFT output when tracked at the target bin. For this step,
we note that the IF phase differences mostly appear over the slow-time intervals. The
next step is to extract the phase over the slow-time chirp repetitions and unwrap it to
generate the vibration signal. At this point in the signal processing chain, the IF phase
contains not only the heart sound vibration information but also the information from
other vibrations unique to the target, such as breathing and small random movement.
These interreferences are observed and expected since the targets are standing during the
stationary heart sound measurements. They can make tiny random movements during the
10 s that are comparable in magnitude with the chest displacement caused by the heart
sounds. Similarly, the breathing of the targets is not always limited to frequencies lower
than 16 Hz. Subsequently, the waveform is filtered for the primary heart sound frequencies
of 16–80 Hz using a brick-wall bandpass filter with a passband gain of 0 dB and a stopband
gain of −60 dB, as in (4):
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SV(n) = BPF
{

unwrap(0,2π)∠(SIF( fsel, n))
}

(4)

At this stage, (4) represents the raw extracted target vibration signal. An example of
the extracted vibration waveform can be seen in Figure 3a. Although the vibration signal is
filtered for the most primary heart sound frequencies, other sources of 16–80 Hz vibrations
will still be present. We rely upon the neural network to distinguish 16–80 Hz vibration
features between subjects. To generate an image that can be used for transfer learning
training and verification, a continuous wavelet transform (CWT) is applied to the heart
sound signal to generate a time-frequency scalogram [25]. We extended the CWT method
to PCG time-frequency image generation displayed in Figure 3b. A careful consideration is
paid to the number of scans that were needed to train the network. By training with several
different dataset sizes, we experimentally determined that one hundred scans per subject
was sufficient to train the network. The trained network is then used to identify subjects in
the second portion of the experiment, where we took ten new scans of each subject for the
testing task.
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Figure 3. Heart sound signal representations as (a) a time-domain chest displacement waveform and
(b) a time-frequency representation based on the absolute value of the CWT coefficients of (a), which
is the final output corresponding to each scan.

In Table 1, we show the chirp parameters that were used based on the radar manu-
facturer recommendations for ultra-short-range scenes [26]. We further refined the recom-
mended settings to ensure that the full bandwidth of the signal is captured. To achieve the
Nyquist rate on the heart sound signal, a maximum TCRI of 8 ms is needed; we chose a TCRI
of 5 ms. To increase the frequency domain resolution without unreasonably long scan times,
we chose 2000 pulse repetitions for a single scan, yielding a scan duration of approximately
10 s. The fast-time chirp parameters were chosen to fill a 4 GHz pulse bandwidth over a
1 ms chirp duration.

Table 1. Radar configuration parameters for heart sound measurements.

Parameter Value

Carrier frequency (GHz) 77
Chirp duration (ms) 1

Frequency slope (MHz/µs) 4
ADC sampling rate (ksps) 512

Number of ADC samples per chirp 256
Number of chirps per frame 1

Chirp repetition interval (ms) 5
Number of chirps 2000
Tx/Rx channels 1/4
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2.2. Gait as a Biometric Identifier

The second biometric feature used for the joint identification is gait. The task is to
measure a walking subject using the mm-Wave radar and then extract the individual’s
Doppler signature, which will be applied to transfer learning.

The gait preprocessing pipeline, as depicted in Figure 4, is used to generate a Doppler-
frame image that could be used for training and identification purposes.
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Figure 4. The signal pre-processing pipeline for the gait biometric used to extract the Doppler-frame
heat map.

The proposed gait pre-processing pipeline starts with the radar data cube. We first
perform a range FFT, similar to the first step of the heart sound signal processing. At this
point in the pipeline, the signal is identical to that in Equation (3). In this case, however, the
pulses are repeated over a frame at a much higher rate than that of the heart sound. From
here, the velocity of the target is assumed constant over a single frame since the frame is
relatively small (50 ms) compared to the velocity of the subject. We then gather sequential
frames to allow for variation in velocity across the scan. Each frame is made up of NPulses
number of repeated pulses.

SIF( f ,τn) = |SIF( f ,τn)|∗e j 2π
λc (2r+2(n−1)vTCRI), n ∈ [1,NPulses/Frame] (5)

As can be seen from Equation (5), the Doppler frequency due to target motion ap-
pears in the phase of the exponential, which can be extracted using a Fourier transform,
henceforth referred to as the Doppler FFT. Finally, a Fourier transform is performed along
the channel dimension of the data-cube and non-coherently integrated to obtain a range-
Doppler plot for each frame. Equivalently, we can write the range-Doppler data as 3-D FFT,
where the angle dimension is collapsed by summing over it.

Sm( f IF, fd) =
Nch

∑
k=1
|F3D{SIF(n, p, k)}|2 (6)

where n ∈ [1, NFast Time] and p ∈ [1, NPulses/Frame]. To generate the Doppler-frame heatmap,
we first slice each frame over the range dimension and look for the highest return. Then, a
limited number of nearby range bins, ∆R, is selected and the range dimension is squeezed
out by summing to generate the Doppler-frame heatmap:

S(m, fd) =
R+ ∆R

2

∑
R− ∆R

2

Sm( f IF, fd) (7)

In Figure 5, the samples for the outputs of the three main blocks (third, fifth and sixth)
of the pipeline in Figure 4 are shown. Note that the range-frame heatmap clearly indicates
the position of the target throughout the scan.
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 Figure 5. Gait signal processing outputs after the main processing blocks: (a) a sample for the
range-Doppler map showing the targets’ ranges versus their frequency of motion in a single time
frame; (b) a sample for the range-frame map showing target movement (range) towards the radar
versus time frames; (c) a sample for the resulting Doppler-frame map showing the target’s body and
limbs’ motion toward the radar.

This position is tracked, and a limited number of adjacent bins are used to generate
the Doppler-frame heatmap according to the processing pipeline.

In Table 2, we show the chirp parameters used to produce the optimal Doppler
sampling for the gait biometric. Initial chirp parameters were based off the parameters of
previous gait experiments [17]. These parameters are set to cover an unambiguous Doppler
frequency of ±2 kHz or a radial target velocity of ±3.8 m/s. To cover the unambiguous
Doppler spectrum, we set the chirp repetition interval and the chirp duration. For the
fast-time parameters, we set a 4 GHz bandwidth over the 200 µs chirp ramp duration for
the optimal target resolution in the range dimension.

Table 2. Radar configuration parameters for gait measurements.

Parameter Value

Carrier frequency (GHz) 77
Chirp duration (µs) 200

Frequency slope (MHz/µs) 20
ADC sampling rate (ksps) 3000

Number of ADC samples per chirp 256
Number of chirps per frame 100

Chirp Repetition Interval (ms) 30
Number of chirps 200
Tx/Rx channels 1/4

2.3. Classification Using Deep Transfer Learning

While training the deep networks from scratch can achieve high classification accu-
racy [27], for smaller datasets (compared to ImageNet 1.5 million training samples), deep
transfer learning shows superior performance as the former method may not realize the
full potential of the deep network.

Transfer learning can be defined as the technique that transfers knowledge learned
from one task to another related task that lacks sufficient training data. This technique
improves the accuracy of classification given that the original and new datasets have some
similarity [11]. While the actual implementation might differ from one application to
another, a generalized procedure can be followed to apply transfer learning on a deep
convolutional neural network (DCNN): choose a deep network that has been trained on
a dataset similar to the targeted dataset, replace the output classification layer and fully
connected layer with new layers that match your targeted output size and fine-tune the
network parameters using the training dataset corresponding to your application.
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To apply transfer learning, we use GoogLeNet, as depicted in Figure 6, which is a deep
convolutional neural network that is 22 convolutional layers deep with about 6.8 million
parameters. In MATLAB, GoogLeNet is pre-trained on either the ImageNet or Places365
datasets. We use the network trained on ImageNet, which classifies images into 1000 object
categories, such as a mouse, a pencil, a keyboard and many other animals. The pretrained
network has an image input size of 224-by-224, which can be matched to any input using
the image resize function.
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Figure 6. GoogLeNet architecture composed of a mixture of convolutional (green), pooling (blue)
softmax (red) and fully connected (purple) layers.

To train the network, the adaptive moment estimation optimizer is implemented
using the hyper-parameters listed in Table 3. We then fine-tuned the pre-trained network
parameters using the images corresponding to the heart sound and gait data.

Table 3. Hyper-parameters used to train GoogLeNet.

Parameter Value

Initial Learning Rate 0.0001
Gradient Decay Factor 0.95

Squared Gradient Decay Factor 0.99
Max Epochs 30

Mini-Batch Size 25

The above implementation was carried out using the Deep Learning Toolbox in
MATLAB 2021b and utilized using Intel Core i7-11800H processor and NVIDIA GeForce
RTX 3050 TI GPU.

2.4. Image Augmentation Technique

After training GoogLeNet, the resulting classification accuracy showed that the net-
work performance is not optimal due to overfitting. Overfitting is defined as the phe-
nomenon in which a network learns a function with a very high variance in a way that
perfectly models the training data. This is common in many application domains that
lack access to big data. To overcome this issue, we looked for a technique that provides
a data-space solution to the applications of limited data. Subsequently, we compared the
various techniques presented in Ref. [28] and found the best performance improvement in
applying the rotation augmentation technique. To apply this technique, the random 2D
affine function is used in MATLAB to randomly rotate the training images between −180
and 180 degrees, as depicted in Figure 7.
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Figure 7. The image augmentation technique applied on the gait biometric: (a) a sample RGB image;
(b) the resulting images after applying the random 2D affine function.

Subsequently, eight new variations from each image are created, which increased the
sample size by a factor of eight.

In Table 4, we show the results of training GoogLeNet on the heart sound data before
and after applying the augmentation technique in which we see a significant improvement
in the accuracy from 27.27% to 58.7%.

Table 4. The confusion matrices for the heart sound biometric with and without the image augmenta-
tion technique showing true classes (rows) versus predicted classes (columns) for 18 subjects (also
known as classes). 1 indicates 100% of the samples in the corresponding class were predicted correctly,
while 0 indicates no correct predictions. Classes are marked in green if the prediction accuracy is 90%
or more.

Heart sound without the
rotation technique

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0.18 0.27 0.00 0.18 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.09
2 0.00 0.45 0.09 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.09 0.09 0.09
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5 0.00 0.00 0.09 0.09 0.18 0.00 0.00 0.36 0.09 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09
6 0.00 0.18 0.00 0.00 0.09 0.27 0.00 0.09 0.00 0.09 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.09
7 0.00 0.09 0.00 0.00 0.00 0.00 0.09 0.09 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.18 0.00 0.45
8 0.00 0.09 0.00 0.27 0.00 0.00 0.00 0.09 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.09
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.27 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.27 0.09 0.00 0.00 0.18 0.00 0.18 0.00 0.00 0.18 0.00 0.09 0.00 0.00 0.00
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14 0.00 0.00 0.00 0.18 0.27 0.00 0.00 0.18 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.09 0.00 0.09
16 0.09 0.18 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.36
17 0.00 0.36 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.18 0.00 0.27 0.00
18 0.00 0.18 0.00 0.09 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.09 0.45

Heart sound with the
rotation technique

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0.52 0.08 0.00 0.00 0.02 0.02 0.08 0.00 0.00 0.00 0.03 0.01 0.00 0.02 0.03 0.12 0.00 0.07
2 0.02 0.63 0.05 0.01 0.00 0.01 0.02 0.02 0.00 0.00 0.02 0.00 0.00 0.01 0.05 0.02 0.07 0.05
3 0.00 0.02 0.84 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.02 0.03 0.02
4 0.00 0.04 0.17 0.55 0.00 0.00 0.00 0.02 0.00 0.03 0.03 0.01 0.01 0.03 0.04 0.01 0.02 0.01
5 0.01 0.00 0.03 0.04 0.61 0.07 0.02 0.00 0.02 0.03 0.00 0.02 0.01 0.03 0.01 0.05 0.01 0.02
6 0.00 0.03 0.03 0.02 0.00 0.63 0.05 0.03 0.01 0.07 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.08
7 0.00 0.07 0.00 0.00 0.00 0.02 0.52 0.00 0.00 0.02 0.05 0.00 0.00 0.01 0.01 0.18 0.00 0.11
8 0.01 0.05 0.03 0.07 0.05 0.03 0.03 0.33 0.07 0.04 0.01 0.03 0.05 0.00 0.04 0.01 0.08 0.05
9 0.00 0.00 0.00 0.00 0.09 0.01 0.00 0.04 0.64 0.02 0.00 0.05 0.03 0.11 0.00 0.00 0.00 0.00
10 0.02 0.02 0.05 0.01 0.03 0.07 0.01 0.03 0.11 0.38 0.00 0.05 0.03 0.08 0.02 0.04 0.01 0.02
11 0.05 0.11 0.02 0.01 0.01 0.01 0.04 0.00 0.00 0.01 0.45 0.00 0.00 0.00 0.10 0.03 0.08 0.08
12 0.01 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.87 0.00 0.02 0.00 0.00 0.00 0.00
13 0.00 0.02 0.07 0.00 0.03 0.01 0.00 0.00 0.03 0.05 0.00 0.07 0.64 0.03 0.00 0.01 0.03 0.00
14 0.02 0.01 0.02 0.01 0.13 0.01 0.00 0.02 0.07 0.05 0.00 0.08 0.05 0.49 0.00 0.01 0.00 0.02
15 0.00 0.08 0.00 0.01 0.00 0.01 0.02 0.01 0.00 0.03 0.10 0.00 0.00 0.00 0.62 0.03 0.04 0.04
16 0.00 0.05 0.00 0.00 0.01 0.05 0.02 0.01 0.00 0.00 0.03 0.01 0.00 0.00 0.10 0.65 0.01 0.04
17 0.02 0.09 0.08 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.02 0.00 0.05 0.01 0.61 0.02
18 0.08 0.07 0.01 0.01 0.02 0.10 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.05 0.01 0.01 0.59
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2.5. Joint Probability Mass Function (PMF) Method

After optimizing the classification results from each biometric independently, we
combine the two prediction results using the joint probability mass function. To do so, we
calculate the probability of the two classifiers predicting the same person assuming the two
events are independent.

Therefore, we first define the joint probability mass function of two discrete random
variables X and Y as follows:

PXY(x, y) = P(X = x, Y = y)
= P((X ∪Y) = (x, y))

= Px(x)⊗ Py(y)
(8)

Next, we apply Equation (8) to the prediction scores array resulting from each classifier,
which is a 1 × N array that specifies the prediction score for each of the N subjects, by
extracting the diagonal elements of the Kronecker tensor product. We then normalize the
resulting array to obtain a summation of one. The resulting 1×N array shows the combined
prediction scores from the two biometrics, which can be visualized as the probability of the
detected target being any of the subjects scanned during the training process.

2.6. Practical Testing

In this section, the trained networks are deployed in an actual scenario and used
in an access control platform. The purpose of this experiment is to evaluate the system
performance in a practical implementation as an identification platform. To do that, the
trained networks are implemented in classifying eight subjects out of the eighteen subjects
who contributed to train the networks 4 months after the training data were collected. Ten
samples are collected per biometric from each subject, which leads to a total number of
160 samples. After that, the samples are processed, and the results are compared to those
obtained previously during the validation procedure. Feasibly, this platform could be used
along with badge readers, which are commonly implemented to secure vital entrances.

In Figure 8, a sample of the data collection process is shown in which the subjects are
asked to walk normally towards an office entrance while being scanned for the gait and
heart sound biometrics sequentially. The total time needed to collect both biometrics is
calculated to be 13 s.
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Figure 9 shows the autonomous signal processing pipeline designed to work with two
millimeter-wave radar modules continuously.
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Figure 9. The signal processing pipeline used in the practical testing to classify the subjects and
validate the data.

The role of the signal processing pipeline is to run the classifiers each time the pre-
defined conditions are met, decide whether the acquired scans are valid and provide an
output that points to the identity of the detected target.

The process starts by an input from the operator using MATLAB by running the two
scripts, one on each laptop, which will then start the loop scanners. The loop scanners
will monitor the radar’s output folders continuously and move the raw data files to a
shared folder that is accessible to the two laptops. Additionally, the gait scanner, also called
secondary scanner, will store the last four files, each corresponding to a recording time of
three seconds, which results in total storage time of 12 s.

Conversely, the heart sound scanner, also called the primary scanner, will store only
one raw data file at a time corresponding to 10 s. During those loops, the primary scanner
will check the scan files for a stationary target 50 cm away from the platform. If the target is
detected, the primary scanner will issue a flag that will trigger the two classifiers. Then, the
primary scanner will use the same scan to extract the heart sound biometric. Additionally,
the secondary scanner will pick the least recent scan file corresponding to the time when
the subject was walking towards the platform. Subsequently, the classifiers will process
the data as explained in Sections 2.1 and 2.2 to produce two images that can be fed to the
trained neural networks. The neural networks will then classify the images independently
and produce two outputs per each image. One output will return the name of the predicted
class (i.e., name of the subject), while the other, in the form of a matrix, will return the
prediction score, P, for each class. After that, the primary scanner will check the results
to determine if the prediction scores for the predicted subjects are higher than 50%. If the
condition is satisfied, the results are combined using the joint PMF method, as explained
in Section 2.5, and the predicted subject is returned to the user with a successful detection
mark. On the other hand, if any of the two predictions has a prediction score that is less than
50%, the primary scanner will check if either of the two predictions has a prediction score
higher than 90%. If the result is true, it will return the predicted class from the biometric
with the highest prediction score with a successful detection mark or, otherwise, return a
no detection mark.

3. Experimental Results

In this section, we will show the results of training the neural networks for each of the
biometrics and the combined validation accuracy of the proposed system. Then, we will
go through the practical testing in which the trained networks are validated in an actual
scenario to evaluate the system performance as an identification platform.

3.1. DCNN Training Results

We trained the transfer learning network, GoogLeNet, using the parameters specified
in Table 3 independently for each biometric. Then, we used 87% of the collected data to
train each network and the remaining 13% to validate the training. In Figures 10 and 11,
we provide a visualization of sample input images corresponding to each biometric as it
passes through the convolutional layers of the trained GoogLeNet network.
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Figure 11. Features learned from the gait biometric: (a) a sample input image, which is an output of
the gait signal processing pipeline; (b) the features extracted from the first convolutional layer; (c) the
strongest feature in the third convolutional layer. White pixels represent strong positive activations
and black pixels represent strong negative activations.

Figures 10a and 11a shows RGB images extracted from a random scan as an input,
while Figures 10b and 11b shows the three features learned from the first convolutional
layer and Figures 10c and 11c shows the strongest feature, among 192 features, learned
from the third convolutional layer based on the activation strength.

Table 5 shows the confusion matrices resulting from the validation process, for a total
number of subjects (N) of 18. The heart sound biometric achieves an average accuracy of
58.695%, with a maximum of 80% and a minimum of 30%. Comparing it with the random
guess probability (RGP), which is given by: RGP = 1/N = 5.56%, we see that the heart
sound average identification accuracy is ten times higher.

On the other hand, the average accuracy for the gait biometric is 96.256%, with a
maximum of 100% and a minimum of 86%, which is significantly higher than the RGP
and comparable to the best reported validation accuracies in literature for the gait-based
classification [17].

Subsequently, the joint PMF method is applied to calculate the joint accuracy of the
two networks for each subject. By comparing the combined identification accuracy of each
subject to the single-biometric identification accuracies, we can see that the combination
reduces the error rate in most cases, which is very useful in scenarios where one biometric
is more capable of identifying the subject than the other. An example for such cases can
be observed with subjects 6 and 13, where the gait identification accuracy is 88% and 86%,
respectively. Comparing it with combined accuracy, we see that the heart sound increased
the accuracy by 10% and 12%, respectively. However, on some rare occasions, the heart
sound classifier predicts a subject incorrectly, with high prediction scores, which affects the
results of the joint PMF method negatively. An example for such occasions can be observed
with subject 9, where the accuracy of the combined biometrics is 6% less than that of the
gait biometric.



Sensors 2022, 22, 5782 13 of 17

Table 5. The confusion matrices for heart sound and gait biometrics showing true classes (rows)
versus predicted classes (columns) for 18 subjects (also known as classes). 1 indicates 100% of the
samples in the corresponding class were predicted correctly, while 0 indicates no correct predictions.
Classes are marked in green if the prediction accuracy is 90% or more.

The heart sound
biometric

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0.52 0.08 0.00 0.00 0.02 0.02 0.08 0.00 0.00 0.00 0.03 0.01 0.00 0.02 0.03 0.12 0.00 0.07
2 0.02 0.63 0.05 0.01 0.00 0.01 0.02 0.02 0.00 0.00 0.02 0.00 0.00 0.01 0.05 0.02 0.07 0.05
3 0.00 0.02 0.84 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.02 0.03 0.02
4 0.00 0.04 0.17 0.55 0.00 0.00 0.00 0.02 0.00 0.03 0.03 0.01 0.01 0.03 0.04 0.01 0.02 0.01
5 0.01 0.00 0.03 0.04 0.61 0.07 0.02 0.00 0.02 0.03 0.00 0.02 0.01 0.03 0.01 0.05 0.01 0.02
6 0.00 0.03 0.03 0.02 0.00 0.63 0.05 0.03 0.01 0.07 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.08
7 0.00 0.07 0.00 0.00 0.00 0.02 0.52 0.00 0.00 0.02 0.05 0.00 0.00 0.01 0.01 0.18 0.00 0.11
8 0.01 0.05 0.03 0.07 0.05 0.03 0.03 0.33 0.07 0.04 0.01 0.03 0.05 0.00 0.04 0.01 0.08 0.05
9 0.00 0.00 0.00 0.00 0.09 0.01 0.00 0.04 0.64 0.02 0.00 0.05 0.03 0.11 0.00 0.00 0.00 0.00
10 0.02 0.02 0.05 0.01 0.03 0.07 0.01 0.03 0.11 0.38 0.00 0.05 0.03 0.08 0.02 0.04 0.01 0.02
11 0.05 0.11 0.02 0.01 0.01 0.01 0.04 0.00 0.00 0.01 0.45 0.00 0.00 0.00 0.10 0.03 0.08 0.08
12 0.01 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.87 0.00 0.02 0.00 0.00 0.00 0.00
13 0.00 0.02 0.07 0.00 0.03 0.01 0.00 0.00 0.03 0.05 0.00 0.07 0.64 0.03 0.00 0.01 0.03 0.00
14 0.02 0.01 0.02 0.01 0.13 0.01 0.00 0.02 0.07 0.05 0.00 0.08 0.05 0.49 0.00 0.01 0.00 0.02
15 0.00 0.08 0.00 0.01 0.00 0.01 0.02 0.01 0.00 0.03 0.10 0.00 0.00 0.00 0.62 0.03 0.04 0.04
16 0.00 0.05 0.00 0.00 0.01 0.05 0.02 0.01 0.00 0.00 0.03 0.01 0.00 0.00 0.10 0.65 0.01 0.04
17 0.02 0.09 0.08 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.02 0.00 0.05 0.01 0.61 0.02
18 0.08 0.07 0.01 0.01 0.02 0.10 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.05 0.01 0.01 0.59

The gait biometric

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
3 0.00 0.00 0.97 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.10 0.00 0.88 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.89 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.02 0.01 0.00
12 0.00 0.00 0.00 0.05 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.01 0.12 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
17 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.98 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

The combined
biometrics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
3 0.00 0.00 0.99 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.01 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.93 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.97 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.01 0.01 0.00
12 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.99 0.00 0.00
17 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00
18 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
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Furthermore, in the first section of the table, we see that the heart sound classifier is
producing significantly lower accuracies compared to the gait classifier. A major factor
behind this degradation is that the filtered heart sound signals are incorporating vibrations
generated from the small random movements of the target and from the chest displacement
during breathing. While the heart sound signals that are unique to each target are seen
by the radar and distinguished by the classifier, it is relatively small in magnitude and,
therefore, affected by those interferences. Alternatively, for the gait biometric, we can relate
the superior accuracies to the higher visibility of the targets’ micro-Doppler motions in the
generated Doppler-frame heat maps. In part, we obtain very good results due to filtering
the Doppler frequencies, which is applied to show only the negative domain that represents
the target motion towards the radar. This yields to heat maps that are fully exploited in
terms of the size of useful content inside each image.

In Table 6, the achieved validation accuracies are summarized and compared with
the state-of-the-art radar-based human identification results published from 2016 to 2021.
The accuracies are sorted based on the biometrics used in each work, the neural network
implemented for classification and the number of participants involved in the experiments.

Table 6. Summary of the achieved identification accuracy results compared to literature.

Name Biometric Identifier Deep Model No. of
Participants Accuracy

This work
Heart sound

GoogLeNet 18
58.7%

Gait 96.2%
Gait + Heart sound 98.0%

[2] Heart µDoppler CNN 10 80%
[4] Gait CNN 15 95.20%
[15] Gait LSTM-RNN 29 89.10%
[16] Gait TCN 10–100 97–89%
[17] Gait CNN 20 96.70%
[29] Gait TCN 5 94.90%
[30] Gait RAN-CNN 6 96.20%
[31] Gait ResNet-50 22 84%
[32] Gait CNN 29 86.9%,
[33] Gait AlexNet 4–20 97–69%

We see that most of the recent results reported in the literature for the radar-based
identification are based on the gait biometric [4,15–17,29–33]. We can relate that to the
superior accuracies achieved using the gait signature compared to other signatures, as in
Ref. [2]. Additionally, a wide variety of deep learning structures are utilized for classifica-
tion, with numbers of participants that range from 4 [33] to 100 [16]. While the comparison
in this context is multi-dimensional, we compare our results to Ref. [17], in which transfer
learning is utilized in classifying 20 subjects to achieve an accuracy of 96.70%. The gait-
based classification reported in this work achieves an accuracy of 96.2%. We combine it
with the heart sound biometric to demonstrate an accuracy of 98%, which is the highest
radar-based human identification accuracy reported in literature so far. We note here that
the time needed to train each network is 83 min, which leads to a total training time of two
hours and 46 min.

3.2. Practical Testing

To further validate the reported training results, an experiment is conducted in which
the trained networks are tested using radar scans that are captured a few months after the
training scans to evaluate the system performance as an identification platform.

Table 7 shows the resulting confusion matrix for the combined predictions with 76.25%
average identification accuracy. Compared to the validation result of 98%, we notice a drop
of 20%, which can be justified by taking into consideration the variables incorporated into
the walking pattern and the cardiovascular status of the subjects. Some of those variables
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are weight, clothing style, activity level, walking speed and new physical health changes.
To compensate for the degeneration of accuracy observed on a few of the subjects, new
training data could be collected to retrain the neural networks. This can be generalized to
all future applications by asking the involved participants to take new training data every
time they go through significant physical changes or in frequent time intervals so as to
update the network with their new physical features.

Table 7. The eight-subject confusion matrix for the practical testing results.

1 2 3 4 5 6 7 8
1 0.9 0 0 0 0 0 0 0.1
2 0 0.4 0.2 0 0 0.1 0.2 0.1
3 0 0 0.9 0 0 0 0.1 0
4 0 0 0 0.9 0 0 0 0.1
5 0 0.2 0 0.1 0.4 0 0.3 0
6 0 0.1 0 0 0 0.9 0 0
7 0 0 0.2 0.1 0 0 0.7 0
8 0 0 0 0 0 0 0 1

4. Conclusions

In this paper, the feasibility of using radar gait and heart sound signatures was
investigated to classify human subjects using deep transfer learning to provide a remote
solution that does not suffer from privacy invasion for the problem of human identification.
A dataset of 18 subjects was established in which the gait and heart sound measurements
were collected using millimeter-wave radar. A preprocessing pipeline was then designed
for each biometric in which RGB images were generated out of the micro-Doppler and
vibration signatures to use the pretrained networks for image classification. Lastly, a
validation experiment was designed in which the trained networks were implemented
a few months after the collection of training data to evaluate the system performance as
an identification platform. The contributions of this work can be summarized as follows:
(i) the radar-based heart sound signal is implemented for the first time as a biometric for
human identification; (ii) a platform that combines two radar-based biometrics is proposed
to provide identification accuracy that outperforms the state-of-the-art results reported
to date; (iii) the system is tested in an actual scenario to evaluate its performance as an
identification platform.

Furthermore, as explained in the introduction, one of the promising applications for
this study would be business environments where personnel identification is crucial for
secure facilities. In addition to the advantage of privacy protection, the proposed system
provides robustness to light and weather conditions, which makes it more suitable to be
implemented in harsh outdoor environments where the vision-based systems might be
less advantageous. Additionally, while this work involves a limited number of subjects,
the proposed methodology can be applied to any number of subjects. The identification
accuracy, however, is expected to be lower, as shown in Ref. [16], which is due to the higher
complexity of the classification problem caused by the higher number of classes.

Notably, the gait measurements are not reaching 100% identification accuracy and can
be improved by either further optimizing the neural networks’ parameters or by increasing
the number of features extracted from the acquired data. The most significant limitations
of this work are observed in the heart sound measurements. A potential future work
direction might be in further investigating the acquisition process of the heart sound data
and optimizing the filtering techniques in order to generate more distinguishable time-
frequency representations. Additionally, a potential future research direction might be
further investigation of human identification through walls, which expands the features of
the radar-based systems. While the signal is expected to be weak and submerged in the
clutter and noise, preliminary work results [34] show that the significant suppression of
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the primary wall reflections is possible using digital filters that enhance the target signal to
clutter ratio.

Lastly, while the participants involved in this work are young and healthy, we expect a
better performance on other mixtures of health statuses and ages that include wider ranges
of variations. This is due to the anticipation of increased uniqueness in terms of the walking
patterns and cardiovascular shape. Examples of such populations might be the residents of
medical or senior living facilities.
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