
The role of C5a-C5aR1 axis in
bone pathophysiology: A
mini-review

Anna Ruocco1†, Anna Sirico1†, Rubina Novelli2, Silvia Iannelli 1,
Shane Vontelin Van Breda3, Diego Kyburz3, Paul Hasler4,
Andrea Aramini5 and Pier Giorgio Amendola1*
1R&D, Dompé Farmaceutici SpA, Naples, Italy, 2R&D, Dompé Farmaceutici SpA, Milan, Italy,
3Departement Biomedizin, University of Basel, Basel, Switzerland, 4Division of Rheumatology,
Kantonsspital Aarau AG, Aarau, Switzerland, 5R&D, Dompé Farmaceutici SpA, L’Aquila, Italy

Bone remodeling is a physiological, dynamic process that mainly depends on

the functions of 2 cell types: osteoblasts and osteoclasts. Emerging evidence

suggests that complement system is crucially involved in the regulation of

functions of these cells, especially during inflammatory states. In this context,

complement component 5a (C5a), a powerful pro-inflammatory anaphylatoxin

that binds the receptor C5aR1, is known to regulate osteoclast formation and

osteoblast inflammatory responses, and has thus been proposed as potential

therapeutic target for the treatment of inflammatory bone diseases. In this

review, we will analyze the role of C5a-C5aR1 axis in bone physiology and

pathophysiology, describing its involvement in the pathogenesis of some of the

most frequent inflammatory bone diseases such as rheumatoid arthritis, and

also in osteoporosis and bone cancer and metastasis. Moreover, we will

examine C5aR1-based pharmacological approaches that are available and

have been tested so far for the treatment of these conditions. Given the

growing interest of the scientific community on osteoimmunology, and the

scarcity of data regarding the role of C5a-C5aR1 axis in bone pathophysiology,

we will highlight the importance of this axis in mediating the interactions

between skeletal and immune systems and its potential use as a therapeutic

target.
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Introduction

Complement component 5a (C5a) is one of the most potent inflammatory proteins of

the complement system. It results from the cleavage of the precursor protein C5 by the

enzyme C5 convertases and binds to C5a receptor 1 (C5aR1 or CD88) (Ehrnthaller et al.,

2011) and C5aR2 (C5a receptor-like two or C5L2), which are expressed on the surface of

immune cells and, also, ubiquitously on other cell types (Monk et al., 2007). As

complement component 3a (C3a), C5a is an anaphylatoxin, whose activation leads to

clearance of foreign cells, vasodilation, chemotaxis of inflammatory cells, cytokine and
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chemokine release, oxidative burst of immune cells (Guo and

Ward, 2005) and induction and amplification of inflammatory

reactions (Ricklin et al., 2010).

Besides its crucial role in the immune system-mediated

protection from internal and external threats, C5a and its

widely expressed receptors are also emerging as important

players in different pathophysiological processes (Zheng et al.,

2019; Carvelli et al., 2020; Giorgio et al., 2021; Wu et al., 2022). In

addition to its activation in response to pathogens in fact, C5a

formation can be also triggered by complement-independent

enzymes, such as thrombin, neutrophil elastase and a

macrophage serine protease, which have C5 convertase (C5a-

generating) activity (Huber-Lang et al., 2015) and can thus

activate C5a in tissues in response to several stimuli. Among

the processes and tissues that are targets of C5a functions,

growing evidence has shown that C5a-C5aR axis has an

impact on the skeletal system, where it regulates bone

metabolism and turnover both under physiological and

pathophysiological conditions (Modinger et al., 2018).

In this mini-review, we will discuss the role of the

C5a-C5aR1 axis in bone physiology and pathology,

focusing on its involvement in the pathogenesis of

inflammatory disorders of the skeletal system, as in

particular rheumatoid arthritis, and also osteoporosis and

cancer metastasis to the bones.

The role of C5a in bone physiology

Bone is an extremely dynamic tissue that undergoes

continuous remodeling during the lifetime, and this process is

carried out by three types of cells (Ponzetti and Rucci, 2019):

osteoclasts, which are bone-resorbing cells deriving from stem

cells of the macrophage-hematopoietic lineage; osteoblasts, that

are bone-forming cells (Matsuoka et al., 2014); and osteocytes,

which are former osteoblasts buried in the bone mineral matrix

(Metzger and Narayanan, 2019).

In physiological conditions, studies have been indicating a

direct involvement of complement system in bone development

and homeostasis. In support of this, osteoblasts express both

C3 and C5, while osteoclasts express only C3, but both cells are

able to cleave C5 (and not C3) and generate C5a. Moreover, the

receptors C3aR, C5aR1 and C5aR2 are expressed on both cell

types (Ignatius et al., 2011a) (Figure 1). Multiple complement

components, including C3 and C5, were described to have a

characteristic expression pattern in distinct zones of the

epiphyseal growth plate, suggesting a role for complement

during bone development (Andrades et al., 1996). The specific

expression of C5 in the hypertrophic zone of the growth plate

together with the evidence that C5-deficient mice have thicker

epiphyseal growth plates, potentially due to delayed

endochondral ossification, suggest in fact that C5 requirement

FIGURE 1
The role of C5a as a modulator of osteoblast-osteoclast interplay. 1) Activated complement system leads to the generation of C5a which can
bind to C5aR1/2 on osteoblasts; 2) once activated by C5a, osteblasts start to release IL-6 and RANKL, thus inducing 3) osteoclastogenesis and bone
resorption as well as differentiation of osteoclast progenitors; 4) activated osteoblasts can also secrete other chemokines and cytokines, such as
MCP-1, CCL2 and IL-8, which in turn act on osteoblasts inducing a non-proliferative osteoclast-promoting state; 5) C5a also regulates the first
phase of osteoclastogenesis maturation. Created with BioRender.com.
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is important during bone formation and longitudinal bone

growth (Ehrnthaller et al., 2013). Finally, C3a, C3aR, and

C5aR have shown to be crucial for the regulation of calcified

cartilage matrix degradation mediated by osteoclasts, the

formation — but not the resorption activity — of which is

significantly enhanced in the presence of C3a and C5a

(Ignatius et al., 2011a; Kovtun et al., 2017).

Although no observations on bone malformations in

development or bone density have been published in humans

carrying C5 deficiency, and this is most probably due to the rarity

of such condition and its lethality (i.e., Leiner`s disease, which is

particularly fatal if not corrected at infancy) (Guenther, 1983),

the relevance of the C5a-C5aR axis in bone formation and

regulation of its structure has been confirmed in preclinical

studies. Twelve-week-old C5aR1-knockout (ko) and C5aR2-ko

mice showed in fact a higher bone-mass phenotype compared to

wild-type controls, and this effect was more pronounced in

C5aR1-ko mice, where it was associated with decreased

osteoclasts in trabecular bone (Kovtun et al., 2017). Moreover,

pharmacological inhibition of C5a pathway during embryo-

foetal development using avacopan, a small molecule C5aR

antagonist (Harigai and Takada, 2022), induced an increased

incidence of skeletal variations in hamsters, further confirming

the role of the complement during bone development (European

Medicines Agency, 2022).

In the adult skeleton, osteoclasts and osteoblasts, and their

respective mesenchymal and haematopoietic precursors, closely

interact and communicate in a fine-tuned balance that is a

prerequisite for bone homeostasis. The C5a-C5aR1 axis plays

a role in this context, as it can regulate the expression of different

mediators that are involved in this process (Modinger et al.,

2018). C5a can, for example, modulate the release of interleukin

(IL)-6 from osteoblasts (Pobanz et al., 2000), thus inducing

osteoclastogenesis and bone resorption (Ishimi et al., 1990),

and this can happen via the induction of the expression of

receptor activator of nuclear factor kappa-B (RANK) ligand

(RANKL) in osteoblasts (Ishimi et al., 1990) or without its

induction (Figure 1). Secreted by osteoblasts, RANKL

stimulates osteoclastogenic differentiation by binding to its

receptor RANK on the membrane of osteoclast-committed

monocytes (Lacey et al., 1998), while other chemokines (e.g.,

monocyte chemoattractant protein-1 (MCP-1; CCL2) and

cytokines, including IL-8 (CXCL8), act on osteoblasts

inducing a non-proliferative but osteoclast-promoting state

(Pathak et al., 2015) (Figure 1). Indeed, in vitro IL-8

stimulation has been shown to enhance IL-6 gene expression

and protein production by human osteoblasts obtained from

bone biopsies, indicating that IL-8-stimulated osteoblasts can

produce factors that are essential for osteoclast formation

(Pathak et al., 2015). Notably, the role of C5aR in regulating

the first phases of osteoclast maturation has also been recently

demonstrated in RAW264.7 cells (D’Angelo et al., 2020), which

are murine monocytes/macrophages that upon treatment with

RANKL can form multinucleated and functionally active

osteoclast-like cells. Indeed, in these cells, both C5aR

downregulation and antagonism—by C5aR antagonist PMX-

53 and two newly synthesized allosteric C5aR antagonists,

DF2593A and DF3016A—inhibited osteoclast maturation, as

demonstrated by the reduced RANKL-triggered transcription

of the most important osteoclast differentiation markers, such as

NFATc1, MMP-9, cathepsin-K, and TRAP. Interestingly, it was

observed that, as osteoclast differentiation progressed, C5aR

mRNA expression decreased, with a consequent less impact of

C5aR on the regulation of later events of osteoclast fusion

(D’Angelo et al., 2020).

C5a can also induce the production of macrophage-colony

stimulating factor (M-CSF) and plays a chemotactic role,

together with the anaphylatoxin C3a, for immune cells,

human mesenchymal stem cells (MSCs) (Schraufstatter et al.,

2009; Moll et al., 2011), osteoclast and osteoblast precursors, and,

at an even higher rate, for mature osteoblasts (Ignatius et al.,

2011b).

Thus, complement proteins, and especially C5a-C5aR1 axis,

are directly and indirectly involved in the physiology of the bone

tissue during development and homeostasis (Pobanz et al., 2000;

Ignatius et al., 2011a), as well as in its pathology, especially when

a pro-inflammatory status develops in the bone environment

(DiScipio et al., 2013). Indeed, the state of complement activation

has been found to play a role in the development and progression

of several bone-related inflammatory disorders, and in particular

rheumatoid arthritis (RA), which is an excellent model of

osteoimmunology because of the extensive involvement of the

immune system in its pathogenesis, and also osteoporosis and

cancer bone metastasis.

C5a in Rheumatoid Arthritis

Rheumatoid Arthritis (RA) is a systemic autoimmune disease

that affects 0.24% of the general population worldwide, according

to the Global Burden of Disease 2017 study (Disease, 2018; Safiri

et al., 2019), with a higher prevalence in females than males. The

risk to develop RA is age-dependent, with an incidence peak

between 65 and 80 years of age and a lifetime risk of 1.7% in men

compared to 3.6% in women (Crowson et al., 2011; Eriksson

et al., 2013; World Health Organization, 2018). RA main clinical

manifestations include pain and swelling of hands, wrists, and

foot and knee (polyarthritis) joints. Some patients may also

develop manifestations in other organs, even with no articular

involvement, such as interstitial lung disease (ILD), pericarditis,

pleural effusion, or bronchiectasis (Littlejohn and Monrad, 2018;

Conforti et al., 2021). Treatment of RA is aimed at reducing joint

inflammation and pain, preventing joint destruction and

maximizing joint function: first-line RA treatments are

nonsteroidal anti-inflammatory drugs (NSAIDs) (Bullock

et al., 2018), and corticosteroids are also used, but for a short
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period of time and at low doses due to their greater side effects

(Lim and Bolster, 2019). In addition, there are the disease-

modifying antirheumatic drugs (DMARDs) that can be

synthetic (small chemical molecules given orally) or biologic

(proteins administered parenterally).

The etiology of RA remains unknown; however, it is generally

accepted that it results from the combined effects of patients’

genotype and environment (Klareskog et al., 2006). In RA

patients, the persistent articular inflammation is driven by the

proliferation of synovial tissue fibroblasts and by the infiltration

of immune cells, such as T and B lymphocytes, neutrophils and

monocytes, and induces the formation of the pannus, an

abnormal synovial tissue, which invades and destroys local

articular structures. The infiltrating cells of the pannus express

pro-inflammatory cytokines, chemokines (as IL-6, IL-8, TNF-

alfa and IL-1) and matrix metalloproteinases, such as MMP-2

and MMP-9, that contribute to a progressive distruction of both

cartilage and bone (McInnes et al., 2016; Zhang, 2021).

Synovitis, swelling and joint damage are caused by a complex

autoimmune and inflammatory process mediated by both the

innate and adaptive immune systems (Gibofsky, 2014).

Inflammatory cell recruitment into the synovial fluid and

tissue occurs as a result of the organized action of

chemoattractants (e.g., RANTES) and macrophage

inflammatory proteins (i.e., MIP-1α, MIP-2α and IL-8)

produced by activated macrophages, synovial fibroblasts, and

other cells in the inflamed joint. The increase in inflammatory

cells is also due to the chemotactic action of complement

activation products, such as C5a, the level of which is

increased in synovial fluid (SF) compared to plasma

concentration (Moxley and Ruddy, 1985; Jose et al., 1990;

Boackle, 2003) (Figure 2).

C5a is a potent neutrophil chemoattractant and priming

agent that induces oxidative bursts and release of effector

molecules from neutrophils and of cytokines from monocytes

and macrophages (Hogasen et al., 1995). In RA, neutrophils and

macrophages are the cells that primarily express C5aR (Hornum

et al., 2017), also described as a key initiator of neutrophil

adhesion (Miyabe et al., 2017). Interestingly, when neutrophils

in vitro were exposed to GM-CSF and C5a, which are both

abundant factors in RA, neutrophil extracellular traps (NETs)

formation has been observed. NETs are networks of modified

FIGURE 2
C5a in rheumatoid arthritis. In secondary tissues of RA patients, production of autoantibodies 1) activates inflammation and attracts immune
cells 2), such as T and B lymphocytes, neutrophils and monocytes, to the inflammation site. The release of proinflammatory molecules 3) drives the
proliferation of synovial tissue fibroblasts, which can contribute to the increase of C5a levels in the synovial fluid (SF) 4). C5a contributes to additional
immune cell recruitment 5) and activation: neutrofils can undergo NETosis releasing proteaseses (i.e., MPO, elastase, MMP-9), while
macrophages can release inflammatory proteins (i.e., MIP-1α, MIP-2α and IL-8). The release of proteases and proinflammatory proteins supports
cartilage degradation, joint inflammation and bone remodeling, amplyfing the inflammatory state 6). Created with BioRender.com.
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histones (citH3), DNA fiber and antimicrobial proteins (MPO,

elastase, others) released by neutrophils to entrap and facilitate

the killing of pathogens in a process named NETosis (Disease,

2018). In RA pathogenesis, the role of NETosis has been

investigated (Crowson et al., 2011; Eriksson et al., 2013),

demonstrating that when NETosis occurs, citrullinated

proteins are released and, when recognized by anti-

citrullinated protein antibodies (ACPAs), initiate and

propagate the aberrant immune responses and inflammation

that is characteristic of RA (World Health Organization, 2018;

Safiri et al., 2019). NETs have also been shown to provide a

scaffold for the alternative complement pathway, leading to C5a

generation. In addition, properdin, which is an essential positive

regulator of the complement pathway that allows for the

formation of the C3 convertase C3bBb of the alternative

pathway and thus the formation of C5a, has also been

observed to be present on NETs (Wang et al., 2015).

C5a/C5aR1 axis acts also on the luminal endothelium surface

of the joint vasculature, where immune complexes that deposit in

the joint can trigger C5a generation. Interestingly, the inhibition

of NETosis by DNase one abrogated C5a production, ultimately

reducing endothelial cell damage in vitro (Schreiber et al., 2017).

C5a then binds to heparan sulfate proteoglycan (HSPG) on

synovial endothelium, leading to the arrest of neutrophils via

ß2 integrin activation. This signalling causes the release of

leukotriene B4 (LTB4), initiating autocrine/paracrine actions

via the BLT1 receptor and allowing neutrophils to move from

the blood vessel lumen into the interstitium. Neutrophils in the

joint space can then propagate their survival via CXCL2-CXCR2

signaling (Sadik et al., 2018).

Thus, not only is C5a responsible for NET formation, but

it can also be important for diapedisis into the joint, where

the NETs can further damage cartilage and bone. Apart from

causing damage in RA joints, NETs can further provide a

scaffold for the alternative pathway, increasing formation of

C5a and acting as an amplification loop for C5a production,

recruitment of neutrophils into the joint, NET production,

and cartilage and bone damage (Figure 2). Targeting C5a or

the C5aR might thus be a viable solution for modulating NET

formation in RA, thus preventing the destruction of cartilage

(Carmona-Rivera et al., 2020) and bone (O’Neil et al., 2020)

and reducing endothelial cell damage (Schreiber et al., 2017).

In agreement, both genetic ablation or pharmacological

inhibition of the C5a-C5aR axis improved arthritis or

prevented the disease in animal studies (Wang et al., 1995;

Goodfellow et al., 2000; Ames et al., 2001; Grant et al., 2002; Ji

et al., 2002; Woodruff et al., 2002; Katschke et al., 2007; Banda

et al., 2012). This strategy could be effective as it can

target also the pro-osteoclastogenic effect of C5a that in

the inflammed bone, as happens in RA and bone healing,

enhances the inflammatory response of osteoblasts and

increases osteoclast formation (Hornum et al., 2017;

Modinger et al., 2018).

Other diseases

C5a/C5aR1 axis in osteoporosis-related
bone fracture

Osteoporosis is a bone disease characterized by a decrease of

bone mineral density and bone mass (Nikolaou et al., 2009). The

etiologic determinants of osteoporosis include endocrine and

metabolic conditions andmechanical factors, including sex, body

size, race, family history, changes of hormones (postmenopausal

hormonal condition, pregnancy), diet (insufficient vitamin D and

calcium intake), lifestyle and long term use of certain medications

(Yun and Lee, 2004). Specific pathologies, such as gastrointestinal

diseases, RA, certain types of cancer, HIV/AIDS and anorexia

nervosa, have also been considered as triggers of osteoporosis

(Ginaldi et al., 2005). In osteoporosis patients, risk of bone

fractures is raised and frequently associated with healing

complications, prolonged hospitalization, and increased

morbidity and mortality (Nikolaou et al., 2009; von Rüden

and Augat, 2016; Giannoudis et al., 2007).

Emerging clinical and molecular data, along with a growing

understanding of bone remodeling processes, have suggested that

inflammation is crucially involved in bone turnover (Lorenzo,

2000) and healing, and thus in the onset of osteoporosis and

recovery after fractures in these patients (Kiecolt-Glaser et al.,

2003). Following an isolated fracture, the complement system

critically modulates bone regeneration and healing (Huber-Lang

et al., 2015), particularly through the C5a/C5aR1 axis (Bergdolt

et al., 2017). C5a in fact is a strong activator of mast cells and

triggers the rapid release of pre-formed granular factors (Moon

et al., 2014; Erdei et al., 2004; el-Lati et al., 1994) that mediate

osteoclastogenic effects (Kroner et al., 2017). C5aRs, on the other

hand, are strongly expressed in the fracture callus, not only by

immune cells, but also by bone cells and chondroblasts (Huber-

Lang et al., 2015), and the relative spatial expression and

functionality of the two C5a receptors on bone and immune

cells during the healing period crucially influences post-fracture

outcome (Ehrnthaller et al., 2013).

Genetically modified animal models have allowed to

investigate and demonstrate the crucial role of the C5a/C5aR

axis in fracture healing (Ehrnthaller et al., 2013). C5-deficient

mice for example displayed a reduced volume and mechanical

properties in fracture calluses, indicating impaired healing

(Ehrnthaller et al., 2013). In addition, C5aR1 knockout mice

showed a decrease of early inflammation in the fracture callus but

also a disturbed final healing outcome in late healing stages,

including the cartilage-to-bone transition (Kovtun et al., 2017).

Interestingly, similarly disturbed fracture healing was also

observed in C5aR2-ko mice subjected to a femur fracture

(Kovtun et al., 2017). On the other hand, osteoblast-specific

C5aR1-overexpression disturbed fracture healing in mice

subjected to a femur fracture, with or without the induction

of an additional systemic inflammation by thoracic trauma,
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diminishing mechanical properties of the healed femur, reducing

bone content of the fracture callus, and increasing impairment

following severe trauma compared to wild-type littermates

(Bergdolt et al., 2017). These data strongly suggest that the

C5a/C5aR axis directly affect osteoblasts activity on bone

healing and regeneration, exerting a fine and tight regulation

of fracture healing during the entire process (Bergdolt et al.,

2017).

C5a, bone cancer and neutrophil
extracellular traps

Bone tumors represent a real challenge in oncology

(Ferguson and Turner, 2018). They can grow as primary

cancers or as consequence of metastatic colonization

(Ferguson and Turner, 2018). Primary bone cancers are rare,

accounting for about 0.2% of all malignancies worldwide, while

secondary bone tumors represent one of the most common type

of metastasis following advanced stages of lungs, liver, breast and

prostate cancers (Coleman, 2001; Pullan and Budh, 2021). There

are two main types of bone metastasis: the osteolytic lesions that

are caused by the cancer cell-induced activation of

osteoclastogenesis, which results in the complete destruction

of bone and its substitution with cancer cells (Guise et al.,

2006); and the osteosclerotic lesions, which are instead caused

by aberrant osteoblast activation that produces low quality extra

bone tissues (Ibrahim et al., 2010). Notably, the latter are also

characterized by an increased osteoclast activity and bone

resorption, which is needed to create the space for cancer cells

to growth (Maurizi and Rucci, 2018).

C5a plays a crucial role in regulating tumor growth,

metastasis, and drug resistance (Ajona et al., 2019).

Expression of C5aR1 on cancer cells enhances their

motility, invasiveness and epithelial to mesenchymal

transition (Nitta et al., 2013; Maeda et al., 2015; Hu et al.,

2016). In non-small-cell lung cancer (NSCLC) for example,

higher C5aR1 levels in the primary tumor predict bone

metastasis and result in decreased overall survival and

relapse free survival (Ajona et al., 2018a). Accordingly,

activation of the C5a/C5aR1 axis induced a pro-metastatic

phenotype in lung cancer cells in culture, while favoring bone

colonization via regulation of CXCL16 release, which in turns

promotes a proosteoclastogenic environment in bone

metastasis (Ajona et al., 2018a). In addition to cancer cells,

osteoblasts also highly express C5aR1 (Bergdolt et al., 2017)

further promoting a pro-metastatic environment. In response

to C5a in fact, C5aR1 interacts with TLR2 in osteoblasts,

promoting the upregulation of CXCL10 (Kwak et al., 2008;

Mödinger et al., 2018), a chemokine that is critical for bone

cancer cells recruitment, to support osteoclast differentiation

and to promote the formation of osteolytic bone metastases

(Lee et al., 2012).

Beside the direct actions on the bone, C5a/C5aR axis also

exerts indirect pro-metastatic effects by inducing C5a-dependent

recruitment of PMN-MDSCs (Corrales et al., 2012) that has been

observed to facilitate metastasis. PMN-MDSCs can in fact

suppress effector CD8+ and CD4+ T-cells responses in the

lungs and livers of mice with breast malignancy (Vadrevu,

2014) and undergo NETosis. C5a enhances PMN-MDSC

migration and invasion and, together with the costimulatory

factor nuclear protein high mobility group box 1 (HMGB1)

produced by cancer cells, induces the formation of NETs that

in turn promote cancer cell dissemination and lung metastasis

(Ortiz-Espinosa et al., 2022). Since NETs levels were shown to be

elevated in multiple advanced cancer patients (Tohme et al.,

2016; Rayes et al., 2019), further studies should be pursued to

understand more in depth the contribution of C5a/C5aR1 axis

and NETosis specifically during skeletal colonization.

C5a/C5aR targeting pharmacological
approaches

Activation of the complement system is a major pathogenic

event that drives various inflammatory responses in numerous

diseases. For this reason, a large number of anti-complement

drugs are in development, providing tools for blocking specific

complement activation pathways, or isolated complement

fragments, such as C5a (Floege and Feehally, 2013; Thurman

and Le Quintrec, 2016; Thurman and Yapa, 2019).

Among the drugs targeting the C5a/C5aR1/C5aR2 axis that have

reached the clinical phases of development for the treatment of

various immunological disorders, some are still under evaluation in

clinical trials (e.g., Zimura, Nomacopan, Tesidolumab and MOR-

210), while some of them have been discontinued (e.g., PMX-53,

MEDI-7814, Olendalizumab and others). Approved for clinical use is

avacopan, a selective C5a receptor inhibitor, that has been tested for

the treatment of ANCA-associated vasculitis with positive results

(Jayne et al., 2017). Another available approach to block C5a

biological activity is eculizumab, a monoclonal antibody targeting

C5 that thus prevents the generation of both C5a and the terminal

complement complex (Volokhina et al., 2015). Notably, a trial with

eculizumab has been conducted in RA patients (Sadik et al., 2018),

and the results from phase II suggested that inhibiting C5 might be a

promising approach for the treatment of this disease. These data are

in contrast with those of another study reporting that C5aR blockade

by PMX-53 in RA patients failed to reduce effectively synovial

inflammation (Vergunst et al., 2007), implying that further

investigations are necessary to fully explore the role of C5a-C5aR

inhibition in human RA.

Preclinical data have also shown that antagonizing

C5aR1 after bone fracture in rats by a single application of

PMX-53 immediately reversed the negative effect of the

trauma-induced systemic inflammation on fracture healing

outcome. However, when inhibiting C5aR1 in the early
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inflammatory phase in a model of uneventful fracture healing

with no additional traumatic injury, bone regeneration was

unaffected (Takayanagi, 2012). Due to the paucity of data and

in light of the fact that PMX-53 has being discontinued, further

pre-clinical and clinical studies with novel drugs targeting C5a/

C5aR axis for the treatment of fracture healing would be very

useful.

Given the involvement of C5a/C5aR1 axis in the development of

bone metastasis, studies have also aimed at finding the effect of

C5aR1 inactivation in this context. In a syngeneic model of breast

cancer for example, C5aR knockout mice or pharmacologic

inhibition of C5aR1 reduced lung and liver metastatic burden,

while CD8 T cells and inhibiting regulatory T cells were

increased. In contrast, there was no significant effect on the

growth of primary breast tumors (Ajona et al., 2018a). Moreover,

both genetic ablation and pharmacological inhibition of C5a

decreased bone metastasis in an in vivo mouse cancer model

(Ajona et al., 2018b). Interestingly, incubation with DF3016A, a

C5aR inhibitor, has been shown to diminish osteoclast-resorbing

activity in vitro (D’Angelo et al., 2020). Thus, it has been suggested

that DF3016A may be used as a potential double-edged blade

treatment to fight bone metastases from several tumors, as it can

both decrease the osteoclast activity required for the formation of the

bone metastatic niche and act at the level of tumor cells by reducing

their homing to bone (D’Angelo et al., 2020). Finally, blocking C5aR

signaling promotes the anti-tumor efficacy of PD-1/PD-L1 blockade,

while the combined immunotherapy based on C5a and PD-1

blockade has shown synergistic effects on both lung cancer

growth and metastatic progression (Ajona et al., 2017).

Notably, from the available clinical data, chronic therapies

with antagonists of the C5a/C5aR1/C5aR2 axis did not show

consistent evident adverse effects on bone density and bone

formation when administered in adult patients (Eschbach,

2000; Takata et al., 2004; ClinicalTrials.gov, 2021), thus

suggesting that the use of C5 antagonists — even chronically

— for related pathologies during post-natal/adult life can be

relatively safe from the bone/skeletal point of view.

Conclusion

Growing evidence has demonstrated the role that C5a-C5aR1

axis plays in mediating the interactions between skeletal and

immune systems, both in physiological conditions and in the

pathogenesis of several bone inflammatory disorders. Thus, the

combined used of standard therapies and of inhibitors of C5a-

C5aR1 axis might be a successful strategy for the treatment of

bone pathologies in which inflammation and complement

system are known to be crucially involved, as rheumatoid

arthritis in particular, for which also clinical trials have been

conducted using C5aR1 inhibitors, but also for osteopenia and

osteoporosis, fracture healing and metastatic bone disease. First

preclinical and clinical data indicate that this approach has

promises for all these conditions. Taking advantage of the

numerous C5aR1 inhibitory compounds that are already

available — and even approved for the clinical application —

further studies are urgently needed to deeply investigate the

effects of such approaches in the treatment of bone inflammatory

conditions.
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