
Vol.:(0123456789)1 3

Journal of Computer-Aided Molecular Design (2022) 36:677–686
https://doi.org/10.1007/s10822-022-00471-4

Prot2Prot: a deep learning model for rapid, photorealistic
macromolecular visualization

Jacob D. Durrant1

Received: 13 July 2022 / Accepted: 1 August 2022 / Published online: 26 August 2022
© The Author(s) 2022

Abstract
Molecular visualization is a cornerstone of structural biology, providing insights into the form and function of biomolecules
that are difficult to achieve any other way. Scientific analysis, publication, education, and outreach often benefit from photo-
realistic molecular depictions rendered using advanced computer-graphics programs such as Maya, 3ds Max, and Blender.
However, setting up molecular scenes in these programs is laborious even for expert users, and rendering often requires
substantial time and computer resources. We have created a deep-learning model called Prot2Prot that quickly imitates
photorealistic visualization styles, given a much simpler, easy-to-generate molecular representation. The resulting images
are often indistinguishable from images rendered using industry-standard 3D graphics programs, but they can be created in
a fraction of the time, even when running in a web browser. To the best of our knowledge, Prot2Prot is the first example of
image-to-image translation applied to macromolecular visualization. Prot2Prot is available free of charge, released under
the terms of the Apache License, Version 2.0. Users can access a Prot2Prot-powered web app without registration at http://
durra ntlab. com/ prot2 prot.

Keywords Prot2Prot · Molecular visualization · Web app · Machine learning · Proteins · Style transfer

Introduction

Molecular visualization is a critical structural-biology tool
that provides valuable insights into the form and function
of biomolecules. Artistically rendered photorealistic images
can also inspire students and the public via education and
outreach. Though well-known desktop programs such as
VMD [1], UCSF Chimera [2], ChimeraX [3, 4], and PyMOL
[5] were conceived principally as analysis tools, these pro-
grams can also produce striking images. But they under-
standably lack many of the advanced rendering techniques
commonly used in the video game and film industries, and
they are not designed to run in a web browser. Browser-
based JavaScript molecular-visualization libraries such as
Mol* [6], NGL Viewer [7, 8], 3Dmol.js [9], and Molmil [10]
are also visually impressive, but they too are not designed to
produce photorealistic renderings.

Several desktop computer-graphics programs implement
industry-standard rendering techniques, including Maya, 3ds
Max, and Blender. Among these, Blender is notable because
it is free and open source. However, none of these programs
are designed for molecular visualization specifically. Sev-
eral programs and plugins seek to address this shortcoming,
including our BlendMol plugin [11], which allows users to
easily import molecular models into the Blender environ-
ment. Though BlendMol greatly simplifies photorealistic
molecular rendering, it still requires a good understanding
of Blender, a program with a notoriously steep learning
curve. And to produce high quality images and videos, even
knowledgeable users must undertake the laborious process
of setting up lighting, creating materials, positioning the
camera, etc. Rendering itself is also computationally inten-
sive, further limiting use.

We here describe a deep-learning model called Prot-
2Prot that imitates a Blender-rendered molecular image
given a much simpler and easier-to-generate representa-
tion (“sketch”) of a protein surface. Prot2Prot outputs an
image that is often indistinguishable from a BlendMol-based
visualization in a fraction of the time, allowing image “ren-
dering” even in a web browser. Unlike the desktop tools

 * Jacob D. Durrant
 durrantj@pitt.edu

1 Department of Biological Sciences, University of Pittsburgh,
Pittsburgh, PA 15260, USA

http://durrantlab.com/prot2prot
http://durrantlab.com/prot2prot
http://crossmark.crossref.org/dialog/?doi=10.1007/s10822-022-00471-4&domain=pdf

678 Journal of Computer-Aided Molecular Design (2022) 36:677–686

1 3

for molecular analysis described above [1–5], Prot2Prot is
primarily a browser-based tool for generating photorealistic
molecular renderings. Similarly, Prot2Prot is not meant to
compete with desktop programs such as Blender/BlendMol
[11], which are more difficult to use but provide exquisite
control over lighting, materials, etc. Finally, Prot2Prot does
not replace JavaScript libraries for browser-based molecular
visualization [6–10], which display schematic (not photo-
realistic) renderings at high frame rates to enable smooth
rotation and zooming. Rather, Prot2Prot aims to simply
the process of generating photorealistic visualizations by
abstracting away the complex settings typical of such a task
while simultaneously offering the convenience of browser-
based use.

The success of the Prot2Prot approach demonstrates how
machine learning can serve as a valuable tool for enhanc-
ing scientific communication, with potential applications to
fields beyond molecular visualization. We release Prot2Prot
free of charge under the terms of the Apache License, Ver-
sion 2.0. Users can access a Prot2Prot-powered web app
without registration at http:// durra ntlab. com/ prot2 prot.

Materials and methods

Simplified protein‑surface “sketches”

We first developed a simple 2D molecular representation
that is easy to generate, even in slow and memory-limited
environments such as web browsers (Fig. 1A). We represent
each atom as a simple circle, sized according to the van der
Waals radius and distance from the virtual “camera” (i.e.,
depth). Each circle is outlined in black to gray depending on
its depth to emphasize atomic boundaries.

The circles are colored according to carefully selected
red, green, and blue (RGB) values. The red and green chan-
nels encode the atomic element. R/G values correspond-
ing to carbon, nitrogen, oxygen, hydrogen, and phosphorus
atoms are set at 100/100%, 100/0%, 0/100%, 0/50%, and
50/50%, respectively. All other atoms are encoded as car-
bons. Depth is encoded on the blue (B) channel. It is set at
100% for those atoms close to the camera and 0% for those
atoms that are distant. A subtle three-step gradient is applied
to each atom to capture its three-dimensional (spherical)
shape.

To provide data sufficient for training a machine-learning
model, we generated hundreds of representative protein-sur-
face sketches (1024 × 1024). We first assembled a set of 49
diverse proteins from the Protein Data Bank [12] and added
hydrogens to each of these proteins using Reduce [13]. To
further augment the dataset, we used the 49 proteins to gen-
erate additional models. In some cases, we removed water
molecules (if present) to generate new, water-free models. In
other cases, we removed hydrogen atoms (important given
that most models in the PDB lack hydrogens). When hydro-
gen atoms were retained, we randomly replaced occasional
hydrogen atoms with rarer elements (e.g., sulfur, phospho-
rus, metals, halides). And we randomly rotated and scaled
the models to capture proteins at many different angles and
distances.

Blender/BlendMol‑rendered molecular
visualizations

For each protein-surface sketch, we rendered a matching
photorealistic image (1024 × 1024) using Blender 3.0.0, an
open-source computer-graphics toolset. We created custom
Python scripts that load a PDB file into Blender using the
BlendMol plugin [11]; automatically adjust the focal point
of the Blender camera; create a fog-to-white effect; set the
surface materials, lighting, and other parameters; and render
a photorealistic image to disk using the Cycles path-tracing
render engine.

Training a Prot2Prot model to map input sketches
to rendered images

We trained Pix2Pix, a generative adversarial network (GAN)
[14], to translate molecular sketches into the correspond-
ing photorealistic protein images (Fig. 1; PyTorch Pix2Pix
implementation available on GitHub [15]). In the context of
this project, we call the model Prot2Prot rather than Pix2Pix.
We used the default values for training, except we selected
U-Net 128 as the generator architecture and used instance
rather than batch normalization. For each of three photore-
alistic styles, we trained separate Prot2Prot models to gen-
erate 1024 × 1024, 512 × 512, and 256 × 256 output images,

Fig. 1 Prot2Prot image mapping. Proliferating cell nuclear antigen
(PCNA) bound to the PCNA-interacting motif (PIP box) of the DNA-
dependent metalloprotease SPRTN (DVC1; 6099 atoms; PDB ID:
5IY4). A) The input image is a simplified 2D molecular representa-
tion that is straightforward to generate. B) The output image mimics
the appearance of a photorealistic rendering of the same protein, as if
created using Blender/BlendMol

http://durrantlab.com/prot2prot

679Journal of Computer-Aided Molecular Design (2022) 36:677–686

1 3

respectively. To generate 512 × 512 and 256 × 256 images
for training, we used ImageMagick [16] to scale the original
1024 × 1024 images. In all cases, we trained on roughly 1000
sketch/render pairs for 1000 epochs using the default initial
learning rate, and then for another 1000 epochs as the learn-
ing rate decayed linearly to zero.

To further augment the data set available for training,
we scaled the images by ~112% and then randomly cropped
them at the original size (e.g., 256 × 256 images were
scaled to 286 × 286 and then randomly cropped to produce
256 × 256 images). To allow the models to learn to mimic
the consistent directional lighting of the rendered target
images, we did not rotate or flip images, an otherwise com-
mon technique used for further data augmentation.

Because Prot2Prot is a GAN, there is no intuitive metric
to monitor training progress or performance in an absolute
sense (i.e., there is no straightforward loss function). Rather,
a generator model learns to mimic real Blender-rendered
images, while a discriminator model simultaneously learns
to distinguish between the real and mimicked images. The
performance of each model is always relative to the perfor-
mance of its opponent. But visual inspection, albeit subjec-
tive, suggests the fully trained generator model mimics the
actual Blender-rendered images surprisingly successfully.

Model conversion for use with tensorflow.js

We exported the trained PyTorch models to the ONNX for-
mat using the torch.onnx.export function. We then converted
the ONNX files to the TensorFlow SavedModel format using
the TensorFlow Backend for ONNX [17]. Finally, we con-
verted the SavedModel files to the TensorFlow.js graph-
model format using the tensorflowjs_converter command
[18]. In this last step, we also applied 1-byte affine quantiza-
tion to multiple nodes, which substantially reduced the file
size without substantial impact on image quality.

Colorization

Prot2Prot produces images with consistent, predetermined
color schemes. However, users can modify the color palette
after inference, allowing some degree of customizability. A
color-intensity matrix, w, determines how much a user-spec-
ified color influences various portions of the output image.
The entries of the matrix range from 0.0 (no influence on the
output image) to 1.0 (full influence).

The color-intensity matrix is calculated via element-wise
multiplication of four image-derived matrices. First, to leave
non-protein-surface regions unmodified, we convert the
input “sketch” to a binary mask, where entries correspond-
ing to the protein surface are set to 1.0, and other entries are
set to 0.0 (Fig. 2A). Second, to influence well-lit protein-
surface regions more than shadowed areas, we separately

convert the output “rendered” image to a grayscale matrix
whose values correspond to averaged red, green, and blue
values, scaled from 0.0 to 1.0 (Fig. 2B). Third, to preserve
the fade-to-white fog effect, we create a third matrix from
the blue channel of the input sketch image, which encodes
depth (i.e., distance from the virtual camera). The values
of this matrix range from 0.0 (most distant) to 1.0 (closest;
Fig. 2C). Fourth, to allow the user to control the coloriza-
tion effect’s global strength, we create a matrix with identi-
cal entries equal to a user-defined color-strength parameter
(Fig. 2D). After the element-wise multiplication of these
four matrixes, the final matrix (Fig. 2E) can be optionally
blurred to remove any sharp edges, per the user-defined
color-blend parameter.

We use this color-intensity matrix to adjust the original
Prot2Prot output image (Fig. 2F). A weighted average com-
bines each pixel’s red, green, and blue values with those of
a solid, user-defined color (Fig. 2G). The pixel’s color is
unchanged if the corresponding color-intensity-matrix value
is 0.0 and replaced by the user-defined color entirely if the
corresponding value is 1.0 (Fig. 2H).

Browser implementation

We created a browser-based version of Prot2Prot following
our established open-source approach [19–21]. The graphi-
cal user interface (GUI) is written in TypeScript using the
Vue.js framework [22], the BootstrapVue CSS library [23],
the TensorFlow.js machine-learning library [18], the Web-
pack module bundler [24], and Google’s Closure Compiler
[25].

The “Input PDB File” panel (Fig. 3A) allows users
to load a PDB file into their web browser’s memory by

Fig. 2 Prot2Prot colorization procedure. A The mask matrix indicates
which image regions include the protein surface. B The grayscale
matrix distinguishes well-lit and in-shadow protein-surface regions.
C The depth matrix indicates how far a protein region is from the
virtual camera. D The color-strength matrix allows the user to fur-
ther modify the strength of the colorization effect. E The final color-
intensity matrix, called w, is calculated via element-wise multiplica-
tion of the four preceding matrices. F The original Prot2Prot output
image. G A solid, user-specified color. H The final image, created by
averaging the images in (F) and (G), weighting by the color-intensity
matrix, w

680 Journal of Computer-Aided Molecular Design (2022) 36:677–686

1 3

selecting a file on their local computer or providing a PDB
ID for remote download. Alternatively, clicking the “Use
Example File” button automatically loads an example
(PDB ID: 5IY4 [26]). Once the PDB file is loaded, the
Prot2Prot user interface provides limited structure-editing
options (e.g., users can remove ligands, water molecules,
chains, etc.).

The “Prot2Prot Renderer” panel (Fig. 3B) allows users
to choose from various rendering styles and image dimen-
sions (see “Results and discussion” for a description). It
also briefly explains the visual features of the selected
style.

Users can position and display their molecules in the
“Molecular Viewer” panel (Fig. 3C). Structures are ini-
tially shown in “Preview” mode as fields of atomic spheres
that can be easily rotated and scaled using the mouse,
mouse wheel, or touch gestures. Once ready, the user
clicks the “Prot2Prot” button to generate the correspond-
ing photorealistic image in the browser. The “Save” but-
ton allows users to save the viewer image. Users can also
toggle the “Colorize Prot2Prot Render” setting to specify
color, color-strength, and color-blending options (Fig. 3C,
where green is selected). Finally, the app provides “View-
port” information that can be copied and pasted to restore
the rotation/zoom settings (Fig. 3D).

Command‑line‑interface implementation

Aside from running Prot2Prot in a web browser, users can
also access the model via a command-line interface (CLI)
powered by the Node.js JavaScript runtime environment.
CLI Prot2Prot is well-suited for rendering single images
and image sequences, which can be combined into videos.
CLI Prot2Prot provides several default animations, including
“still,” “rock,” “turntable” (rotation about a user-specified
axis), and “zoom.” If a PDB file contains multiple frames,
CLI Prot2Prot will also render protein dynamics, allowing
users to visualize molecular dynamics simulations or inter-
polated protein structures (Online Resource 1).

Results and discussion

The Prot2Prot machine-learning model effectively renders
photorealistic molecular representations via image-to-image
translation of much simpler, easy-to-generate, molecular-
surface “sketches.” Prot2Prot illustrations are well suited
for scientific publication, outreach, and education. CLI
Prot2Prot can also generate animations of protein motions
(Online Resource 1 and 2).

Fig. 3 Browser-app user inter-
face. A The “Input PDB File”
panel allows users to load and
edit molecular structures. B
The “Prot2Prot Renderer” panel
allows users to specify the ren-
dering style and image size. C
The “Molecular Viewer” panel
shows the rendered structure. D
Colorize options allow the user
to adjust the protein color. E
The Viewport information can
be copied and pasted to restore
the rotation/zoom settings

681Journal of Computer-Aided Molecular Design (2022) 36:677–686

1 3

Description of rendering styles

We trained Prot2Prot models to mimic three distinc-
tive rendering styles, which we call “Simple Surface,”
“Chalky,” and “Chalky Shadow.”

Simple surface

In the “Simple Surface” rendering style, carbon, oxygen,
nitrogen, sulfur, and hydrogen atoms are light silver, red,
blue, yellow, and white. Color support for other elements
is limited. When rendering the photorealistic Blender
images used for training, we applied two effects to give
the final images a better sense of depth. First, we used
Blender’s mist pass to render more distant protein regions
in lighter colors, producing a “fade-to-white” fog effect.
Second, we used Blender’s depth-of-field effect to focus
the virtual camera on the protein surface directly in front
of it, such that regions distant from that focal point appear
slightly blurred or out of focus.

We also used several advanced lighting techniques
to enhance photorealism. First, we applied a slight sub-
surface-scattering effect to all surfaces using Blender’s
Principled BSDF shader. When light hits many natural
materials, it penetrates the surface and is scattered in the
object’s interior. After a light ray makes its way back to the
surface, it leaves the object at a random angle, not the pre-
dictable angle typical of a perfectly reflective (“glossy”)
surface. Second, rather than light the scene with a single
point or directional light, we used a public-domain, high
dynamic range image (HDRI [27]) to surround and light
the surfaces. High-dynamic-range (HDR) lighting pre-
vents the darkest and lightest regions of the image from
being saturated as perfectly black or white, allowing the
viewer to see full detail across the entire image. Third, we
applied ambient occlusion to the scene. This non-physical
rendering technique approximates global illumination by
darkening surfaces that are only partially accessible to the
broader environment (e.g., enclosed pockets). After ren-
dering the image using Blender’s Cycles path-tracing ren-
der engine, we adjusted the color level using ImageMagick
to ensure the background was precisely white, as typically
required for publication-quality images.

We successfully trained our Prot2Prot models to mimic
these Blender-rendered output images given a correspond-
ing input “sketch image.” When converted to the Tensor-
Flow.js graph-model format, the final model takes up
roughly 40 MB. Figure 4A, B show how the model has
learned to mimic the fade-to-white-fog (*), depth-of-field
(†), and ambient-occlusion (‡) effects of the Blender-ren-
dered training images.

Chalky

The “Chalky” rendering style also has fade-to-white fog,
ambient occlusion, and depth-of-field blur. Unlike Simple
Surface, Chalky shows all atoms in the same white material,
without subsurface scattering. Instead, we set the “Rough-
ness” and “Clearcoat Roughness” settings on the Principled
BSDF shader to their maximum values to give the surface
a highly diffuse appearance. Chalky uses a public-domain
studio lighting setup obtained from blendswap.com [28] to
light the proteins rather than an HDRI. After rendering the
training images, we again adjusted the color levels using
ImageMagick.

Trained Prot2Prot models successfully mimic these
Blender-rendered output images as well. The Chalky models
also take up ~40 MB, with similar run times in the browser.
Figure 4C shows how Chalky images are particularly well
suited to the custom colorization procedure (in this case,
with a green tint) described in the Materials and Methods.

Chalky shadow

The “Chalky Shadow” rendering style is the same as the
“Chalky” style, except the virtual studio lights are allowed
to cast a shadow onto a pure-white floor below. The trained
Prot2Prot models successfully mimic the shadows computed
using advanced path tracing in Blender (Fig. 4D). Online

Fig. 4 An atomic resolution model of the human apoptosome
obtained via electron microscopy (70,189 atoms; PDB ID 3J2T),
visualized using Prot2Prot. A, B Simple Surface rendering style. C
Chalky rendering style, colorized with a green tint. D Chalky Shadow
rendering style. Examples of fade-to-white fog, depth of field, and
ambient occlusion are marked with *, †, and ‡, respectively

682 Journal of Computer-Aided Molecular Design (2022) 36:677–686

1 3

Resource 2 (bottom row) illustrates how these shadows even
convincingly change according to the protein orientation.
These models are also roughly 40 MB.

Video rendering via the command line interface

Command-line-interface (CLI) Prot2Prot also accepts multi-
frame PDB files as input, allowing users to create animations
of molecular dynamics simulations, conformational transi-
tions, etc. Prot2Prot provides four different animation styles
via its CLI (Online Resource 1). A “still” animation captures
only the frame-by-frame motions of individual atoms with-
out imparting any large-scale rotations to the entire protein.
Alternatively, three whole-scene rotation animations can
further facilitate visualization: “rock,” “turn table,” and
“zoom.”

To demonstrate these animation styles, we first used
UCSF Chimera [2] to generate a multi-frame PDB file
of S. cerevisiae hexokinase 2 (ScHxk2). Specifically, we
used Chimera’s “Morph Conformations” tool to capture
the transition between open and closed ScHxk2 structures
extracted from a recent molecular dynamics simulation
[29]. We created video animations of this transition from
image sequences of 48 Prot2Prot-rendered trajectory frames
(Online Resource 1).

These animations convincingly capture the ScHxk2
open-to-close transition, but the protein surfaces appear to
“flicker.” This subtle artifact arises because Prot2Prot ren-
ders each frame without regard for adjacent frames (i.e., the
resulting animations lack temporal coherence). To address
this issue, we used Prot2Prot to re-render the ScHxk2

trajectory to only twelve images. We then used the Real-
time Intermediate Flow Estimation (RIFE) 3.1 algorithm
[30], as implemented in the Flowframes software package
[31], to interpolate between these twelve images. The result-
ing animations capture the same open-to-close transition
but without the flicker (Online Resource 2). We had similar
success using the commercial frame interpolation algorithm
implemented in Adobe After Effects.

Compatibility and run times

We have tested the Prot2Prot Web App on all major operat-
ing systems and web browsers (Table 1), including some
mobile devices. The Prot2Prot model is memory intensive,
and the web app will crash if run on a device with a less
capable graphical processing unit (GPU). Where possible,
the app detects any crash and asks the user to (1) select a
smaller output-image size or (2) use the central processing
unit (CPU) rather than the GPU. Rendering on the CPU is
slower but also less memory restrained.

Prot2Prot currently runs fastest on Chromium-based
browsers (e.g., Google Chrome, Microsoft Edge, etc.)
because these browsers support OffscreenCanvas. On other
browsers (e.g., Firefox), TensorFlow.js must use the CPU to
run inference rather than the GPU. Users can already enable
OffscreenCanvas in Firefox via the advanced configuration
preferences, suggesting future versions will enable it by
default.

We tested CLI Prot2Prot on Ubuntu Linux running
Node.js 16.13.2. The Node.js runtime environment is

Table 1 Prot2Prot compatibility

We tested Prot2Prot on multiple operating systems, browsers, and Node.js versions

Prot2Prot web app

Operating system Browser

macOS MONTEREY 12.1 Chrome 100.0.4896.30
macOS Monterey 12.1 Firefox 98.0
macOS Monterey 12.1 Safari 15.2
Microsoft Windows 10 Enterprise 10.0.19042 Chrome 99.0.4844.51
Microsoft Windows 10 Enterprise 10.0.19042 Edge 99.0.1150.39
Microsoft Windows 10 Enterprise 10.0.19042 Firefox 98.0
Ubuntu Linux 20.04.4 LTS Chrome 99.0.4844.51
Ubuntu Linux 20.04.4 LTS Firefox 98.0
Android 12 Chrome 99.0.4844.58
Android 12 Firefox 98.1.1
iOS 15.3.1 Safari 15

Command-line-interface (CLI) Prot2Prot

Operating System Node.js

Ubuntu 20.04.3 LTS Node 16.13.2

683Journal of Computer-Aided Molecular Design (2022) 36:677–686

1 3

available on all major desktop operating systems, so we
expect CLI Prot2Prot to be broadly compatible as well.

Aside from benefiting from broad compatibility, Prot-
2Prot also produces high-quality images much faster than
dedicated 3D modeling programs such as Blender. Prot-
2Prot does not require users to set up lights, cameras,
materials, etc.—setup activities that typically take much
longer than rendering the image itself. But beyond elimi-
nating the need for this laborious setup, Prot2Prot also
has improved render times. To demonstrate, we rendered
a test scene using Blender 3.2.0 on a MacBook Pro with
an Apple X chip. The Blender Cycles path-tracing engine
took roughly one minute to generate a 1024 × 1024 image
using the GPU Compute device (Apple M1 Max GPU).
In contrast, the Prot2Prot web app running on the same
machine (Chrome browser) generated a similar image in
only 1.2 s once the WebGL shaders had compiled (~6 s).
Rendering times vary substantially depending on the
available software and hardware (e.g., GPU vs. CPU).
For example, older versions of Blender (e.g., 3.0.0) do not
support GPU rendering on Apple hardware, and Prot2Prot
does not run as quickly when using the CPU version of
TensorFlow.js (as required, for example, in Firefox and
Safari). But this comparison nevertheless demonstrates
that Prot2Prot can dramatically accelerate photorealistic
molecular visualization without requiring expertise in 3D
modeling.

Visual comparison with other software packages

Figure 5 compares a Prot2Prot rendering to renderings pro-
duced by other popular molecular-visualization packages.
Prot2Prot has learned advanced rendering techniques such as
lighting and subsurface scattering, so users need not under-
take the laborious process of setting these techniques up
themselves. Rendering a Prot2Prot image is thus as simple
as loading the protein, rotating and zooming, and pressing
the “Prot2Prot” render button. In contrast, other molecular-
visualization programs have many settings that users must
adjust to modify the presentation. To normalize the effort
invested in producing each image, we sought the path of
least resistance when creating comparable renderings using
other programs. We changed only those settings needed to
set the protein representation to surface, to match atom col-
oring to the extent possible, and to set the background color
to white. Figure 5A shows a Prot2Prot image rendered using
the Simple Surface style. Figure 5B, D show renderings gen-
erated using the popular desktop molecular-visualization
programs PyMOL [5], UCSF Chimera [2], and VMD [1],
respectively. Figure 5E, F show renderings generated using
two popular web-based visualization programs, Mol* [6]
and 3Dmol.js [9].

Limitations

Prot2Prot is a powerful, easy-to-use tool for photoreal-
istic protein rendering, but it has several notable limita-
tions. First, it is generally useful only for rendering protein

Fig. 5 Renderings produced by
select molecular-visualization
software packages. A Prot2Prot
using the Simple Surface style.
B PyMOL, a desktop program.
C UCSF Chimera, a desktop
program. D VMD, a desktop
program. E Mol*, a web-based
program. F 3Dmol.js, a web-
based program. In all cases,
we changed only those settings
required to set the protein rep-
resentation to surface, to match
atom coloring to the extent pos-
sible, and to set the background
color to white

684 Journal of Computer-Aided Molecular Design (2022) 36:677–686

1 3

surfaces. We attempted to train a Prot2Prot model to gen-
erate a cartoon-like image of protein tertiary structure
given a sketch of the protein backbone atoms (Fig. 6A–C).
Prot2Prot often correctly identified alpha helices and beta
sheets, but misclassifications were frequent. Furthermore,
it depicted alpha helices as elongated blobs rather than
perfect cylinders.

The shadows rendered when using the Chalky Shadow
style are generally impressive. Still, occasionally they appear
to be more wavy than appropriate given the actual contours
of the protein’s profile (Fig. 6D, marked with †). Prot2Prot
also sometimes renders a shadow “blob” in the lower-left-
hand corner of its Chalky-Shadow output images (Fig. 6D,
marked with ‡). Fortunately, image cropping can easily
remove this small artifact.

Prot2Prot also often struggles to correctly render protein
surfaces with positioning that differs substantially from that
depicted in the training images. Artifacts typically occur
when proteins are very close to the virtual camera (Fig. 6E,
marked with *) or very distant (Fig. 6F). In the case of dis-
tant proteins, Prot2Prot appears to overemphasize the con-
tribution of carbon atoms (Fig. 6F, colored in light silver).
Finally, subtle checkered (“waffle”) patterns occasionally
appear when rendering proteins even at intermediate dis-
tances (Fig. 6G, marked with §). Rotating or scaling the
molecule slightly generally eliminates these patterns.

Finally, Prot2Prot is trained to render protein surfaces,
which are comprised primarily of carbon, oxygen, nitrogen,
sulfur, and hydrogen atoms. The model is not trained to
render macromolecules containing atoms of other elements
(e.g., nucleic acids, which contain phosphorus). In practice,
Prot2Prot can successfully render non-proteins when run
using the Chalky and Chalky Shadow styles, which depend
more on atomic positions that atom types. But running Prot-
2Prot using the Simple Surface style, which colors atoms
by element, is sometimes problematic. Fortunately, in many
cases the offending atom is obscured by other less prob-
lematic atoms (e.g., oxygen atoms, which often obscure an
offending phosphorus).

Conclusion

The literature describes several other applications of image-
to-image translation in medicine and biology. Examples
include enhancing medical [32] and histopathological [33]
images to facilitate diagnosis. Others have applied similar
approaches to images obtained from electron [34] and flu-
orescence [35–37] microscopy with the goal of detecting
gold nanoparticles or subcellular components. Still others
have experimented with translating amorphous shapes to 3D
representations [38]. But to the best of our knowledge, these

Fig. 6 Examples of Prot2Prot
shortcomings. A–C Prot2Prot is
best suited for rendering protein
surfaces. It cannot accurately
render a cartoon representa-
tion given a sketch of the
protein backbone atoms. D The
Chalky Shadow rendering style
sometimes generates shadows
that are excessively wavy (†).
An artifactual shadow “blob”
sometimes appears in the lower-
left-hand corner (‡). E Viewing
protein surfaces up close can
produce artifacts (*). F View-
ing protein surfaces at great
distances tends to overrepresent
carbon atoms (white). G On
rare occasions protein surfaces
may be subtly checkered even at
intermediate distances (§)

685Journal of Computer-Aided Molecular Design (2022) 36:677–686

1 3

approaches have never been applied to macromolecular visu-
alization with the goal of producing photorealistic images
for publication, outreach, and education.

Though the present work focuses on molecular visualiza-
tion, it also suggests how machine learning algorithms can
rapidly and effectively enhance scientific visualization gen-
erally. Blender specifically has been used to visualize many
scientific phenomena, ranging from quantum wave functions
[39] to tsunami hydrodynamics [40] to astrophysical data
[41, 42]. A similar approach—generating simple represen-
tations of scientific data and converting those representa-
tions to higher-quality images—could be fruitfully applied
in these other domains as well.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10822- 022- 00471-4.

Acknowledgements We thank the University of Pittsburgh’s Center
for Research Computing for computer resources and Harrison Green
for help with the browser implementation.

Author contributions JDD is the sole author and is responsible for all
aspects of the study design and execution. He also wrote the present
manuscript describing the work.

Funding This work was supported by the National Institute of General
Medical Sciences of the National Institutes of Health [R01GM132353
to J.D.D.]. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Insti-
tutes of Health.

Data availability The computer software and trained models that sup-
port the findings of this study are available free of charge, without
registration, at http:// durra ntlab. com/ prot2 prot- downl oad/ (Apache
License, Version 2.0). Users can access the ready-to-use Prot2Prot-
powered web app without registration at http:// durra ntlab. com/ prot2
prot.

Declarations

Conflict of interest The author declares that he has no conflict of inter-
est. The author declares that he has no financial interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecu-
lar dynamics. J Mol Graph 14(1):33–38

 2. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt
DM, Meng EC, Ferrin TE (2004) UCSF chimera–a visualization
system for exploratory research and analysis. J Comput Chem
25(13):1605–1612

 3. Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS,
Morris JH, Ferrin TE (2018) UCSF ChimeraX: meeting modern
challenges in visualization and analysis. Protein Sci 27(1):14–25

 4. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS,
Croll TI, Morris JH, Ferrin TE (2021) UCSF ChimeraX: structure
visualization for researchers, educators, and developers. Protein
Sci 30(1):70–82

 5. Delano WL (2002) Pymol: An open-source molecular graphics
tool. CCP4 Newslett Protein Crystallogr 40(1):82–92

 6. Sehnal D, Bittrich S, Deshpande M, Svobodova R, Berka K,
Bazgier V, Velankar S, Burley SK, Koca J, Rose AS (2021) Mol*
viewer: modern web app for 3D visualization and analysis of large
biomolecular structures. Nucleic Acids Res 49(W1):W431–W437

 7. Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlic A, Rose
PW (2018) NGL viewer: web-based molecular graphics for large
complexes. Bioinformatics 34(21):3755–3758

 8. Rose AS, Hildebrand PW (2015) NGL Viewer: a web application
for molecular visualization. Nucleic Acids Res 43(W1):W576-579

 9. Rego N, Koes D (2015) 3Dmol.js: molecular visualization with
WebGL. Bioinformatics 31(8):1322–1324

 10. Bekker GJ, Nakamura H, Kinjo AR (2016) Molmil: a molecular
viewer for the PDB and beyond. J Cheminform 8(1):42

 11. Durrant JD (2019) BlendMol: advanced macromolecular visuali-
zation in blender. Bioinformatics 35(13):2323–2325

 12. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV,
Duarte JM, Dutta S, Fayazi M, Feng Z, Flatt JW, Ganesan SJ,
Goodsell DS, Ghosh S, Kramer Green R, Guranovic V, Henry J,
Hudson BP, Lawson CL, Liang Y, Lowe R, Peisach E, Persikova
I, Piehl DW, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Val-
lat B, Voigt M, Westbrook JD, Whetstone S, Young JY, Zardecki
C (2022) RCSB protein data bank: celebrating 50 years of the
PDB with new tools for understanding and visualizing biological
macromolecules in 3D. Protein Sci 31(1):187–208

 13. Word JM, Lovell SC, Richardson JS, Richardson DC (1999)
Asparagine and glutamine: using hydrogen atom contacts
in the choice of side-chain amide orientation. J Mol Biol
285(4):1735–1747

 14. Isola P, Zhu J-Y, Zhou T, Efros AA (2017) Image-to-image trans-
lation with conditional adversarial networks. Proceedings of the
IEEE conference on computer vision and pattern recognition
(CVPR). pp 1125–1134

 15. Zhu J-Y (2022) Image-to-image translation in pytorch https://
github. com/ junya nz/ pytor ch- Cycle GAN- and- pix2p ix. Accessed
11 Mar 2022

 16. Team TID (2021) ImageMagick <https:// image magick. org>.
Accessed 5 July 2022

 17. onnx/onnx-tensorflow (2022) Tensorflow backend for ONNX
https:// github. com/ onnx/ onnx- tenso rflow. Accessed 11 Mar 2022

 18. TensorFlow.js (2022) Machine learning for javascript developers
https:// www. tenso rflow. org/ js. Accessed 11 Mar 2022

 19. Green H, Durrant JD (2021) DeepFrag: an open-source browser
app for deep-learning lead optimization. J Chem Inf Model
61(6):2523–2529

https://doi.org/10.1007/s10822-022-00471-4
http://durrantlab.com/prot2prot-download/
http://durrantlab.com/prot2prot
http://durrantlab.com/prot2prot
http://creativecommons.org/licenses/by/4.0/
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://imagemagick.org
https://github.com/onnx/onnx-tensorflow
https://www.tensorflow.org/js

686 Journal of Computer-Aided Molecular Design (2022) 36:677–686

1 3

 20. Kochnev Y, Hellemann E, Cassidy KC, Durrant JD (2020)
Webina: an open-source library and web app that runs Auto-
Dock Vina entirely in the web browser. Bioinformatics
36(16):4513–4515

 21. Young J, Garikipati N, Durrant JD (2022) BINANA 2: character-
izing receptor/ligand interactions in python and javascript. J Chem
Inf Model 62(4):753–760

 22. You E (2022) Vue.js—the progressive javascript framework.
https:// vuejs. org/. Accessed 11 Mar 2022

 23. BootstrapVue (2020) https:// boots trap- vue. org/. Accessed 11 Mar
2022

 24. Koppers T (2022) Webpack. https:// webpa ck. js. org/. Accessed 11
Mar 2022

 25. Google (2022) Closure compiler: Google developers. https:// devel
opers. google. com/ closu re/ compi ler. Accessed 11 Mar 2022

 26. Wang Y, Xu M, Jiang T (2016) Crystal structure of human PCNA
in complex with the PIP box of DVC1. Biochem Biophys Res
Commun 474(2):264–270

 27. Majboroda S (2020) Photo Studio 01 HDRI. https:// polyh aven.
com/a/ photo_ studio_ 01. Accessed 11 Mar 2020

 28. Blend Swap (2021) SomeDude (2021) Studio lighting setup.
https:// blend swap. com/ blend/ 28426. Accessed 11 Mar 2022

 29. Hellemann E, Walker JL, Lesko MA, Chandrashekarappa DG,
Schmidt MC, O’Donnell AF, Durrant JD (2022) Novel mutation
in hexokinase 2 confers resistance to 2-deoxyglucose by altering
protein dynamics. PLoS Comput Biol 18(3):e1009929

 30. Huang Z, Zhang T, Heng W, Shi B, Zhou S (2020) Rife: real-time
intermediate flow estimation for video frame interpolation. arXiv
preprint arXiv:201106294

 31. N00MKRAD (2022) Flowframes—Fast Video Interpolation for
any GPU. https:// nmkd. itch. io/ flowf rames. Accessed 11 Mar 2022

 32. Shin H-C, Ihsani A, Xu Z, Mandava S, Sreenivas ST, Forster C,
Cha J (2020) Alzheimer’s disease neuroimaging I. GANDALF:
generative adversarial networks with discriminator-adaptive loss
fine-tuning for Alzheimer’s disease diagnosis from MRI. Springer,
New York

 33. Burlingame EA, Margolin AA, Gray JW, Chang YH (2018)
SHIFT: speedy histopathological-to-immunofluorescent transla-
tion of whole slide images using conditional generative adver-
sarial networks. Proc SPIE Int Soc Opt Eng 10581:29–35

 34. Jerez D, Stuart E, Schmitt K, Guerrero-Given D, Christie JM,
Hahn WE, Kamasawa N, Smirnov MS (2021) A deep learning
approach to identifying immunogold particles in electron micros-
copy images. Sci Rep 11(1):7771

 35. Shigene K, Hiasa Y, Otake Y, Soufi M, Janewanthanakul S,
Nishimura T, Sato Y, Suetsugu S (2021) Translation of cellu-
lar protein localization using convolutional networks. Front Cell
Develop Biol 9:635231

 36. Lee HC, Cherng ST, Miotto R, Dudley JT (2019) Enhancing high-
content imaging for studying microtubule networks at large-scale.
PMLR, New York

 37. Catchpole D, Shkeir N, Smith A (2020) Using generative adver-
sarial networks to create multi-channel images of cells undergoing
macropinocytosis

 38. Horvath R (2019) Image-space metaballs using deep learning
 39. Figueiras E, Olivieri D, Paredes A, Michinel H (2019)

QMBlender: particle-based visualization of 3D quantum wave
function dynamics. J Comput Sci 35:44–56

 40. Giannakidis A, Giakoumidakis G, Mania K (2014) 3D photore-
alistic scientific visualization of tsunami waves and sea level rise.
IEEE, pp. 167–172

 41. Naiman JP (2016) AstroBlend: an astrophysical visualization
package for blender. Astro Comput 15:50–60

 42. Kent BR (2013) Visualizing astronomical data with blender. Publ
Astron Soc Pac 125(928):731

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://vuejs.org/
https://bootstrap-vue.org/
https://webpack.js.org/
https://developers.google.com/closure/compiler
https://developers.google.com/closure/compiler
https://polyhaven.com/a/photo_studio_01
https://polyhaven.com/a/photo_studio_01
https://blendswap.com/blend/28426
https://nmkd.itch.io/flowframes

	Prot2Prot: a deep learning model for rapid, photorealistic macromolecular visualization
	Abstract
	Introduction
	Materials and methods
	Simplified protein-surface “sketches”
	BlenderBlendMol-rendered molecular visualizations
	Training a Prot2Prot model to map input sketches to rendered images
	Model conversion for use with tensorflow.js
	Colorization
	Browser implementation
	Command-line-interface implementation

	Results and discussion
	Description of rendering styles
	Simple surface
	Chalky
	Chalky shadow

	Video rendering via the command line interface
	Compatibility and run times
	Visual comparison with other software packages
	Limitations

	Conclusion
	Acknowledgements
	References

