
Vol.:(0123456789)1 3

Journal of Computer-Aided Molecular Design (2022) 36:677–686 
https://doi.org/10.1007/s10822-022-00471-4

Prot2Prot: a deep learning model for rapid, photorealistic 
macromolecular visualization

Jacob D. Durrant1

Received: 13 July 2022 / Accepted: 1 August 2022 / Published online: 26 August 2022 
© The Author(s) 2022

Abstract
Molecular visualization is a cornerstone of structural biology, providing insights into the form and function of biomolecules 
that are difficult to achieve any other way. Scientific analysis, publication, education, and outreach often benefit from photo-
realistic molecular depictions rendered using advanced computer-graphics programs such as Maya, 3ds Max, and Blender. 
However, setting up molecular scenes in these programs is laborious even for expert users, and rendering often requires 
substantial time and computer resources. We have created a deep-learning model called Prot2Prot that quickly imitates 
photorealistic visualization styles, given a much simpler, easy-to-generate molecular representation. The resulting images 
are often indistinguishable from images rendered using industry-standard 3D graphics programs, but they can be created in 
a fraction of the time, even when running in a web browser. To the best of our knowledge, Prot2Prot is the first example of 
image-to-image translation applied to macromolecular visualization. Prot2Prot is available free of charge, released under 
the terms of the Apache License, Version 2.0. Users can access a Prot2Prot-powered web app without registration at http://​
durra​ntlab.​com/​prot2​prot.
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Introduction

Molecular visualization is a critical structural-biology tool 
that provides valuable insights into the form and function 
of biomolecules. Artistically rendered photorealistic images 
can also inspire students and the public via education and 
outreach. Though well-known desktop programs such as 
VMD [1], UCSF Chimera [2], ChimeraX [3, 4], and PyMOL 
[5] were conceived principally as analysis tools, these pro-
grams can also produce striking images. But they under-
standably lack many of the advanced rendering techniques 
commonly used in the video game and film industries, and 
they are not designed to run in a web browser. Browser-
based JavaScript molecular-visualization libraries such as 
Mol* [6], NGL Viewer [7, 8], 3Dmol.js [9], and Molmil [10] 
are also visually impressive, but they too are not designed to 
produce photorealistic renderings.

Several desktop computer-graphics programs implement 
industry-standard rendering techniques, including Maya, 3ds 
Max, and Blender. Among these, Blender is notable because 
it is free and open source. However, none of these programs 
are designed for molecular visualization specifically. Sev-
eral programs and plugins seek to address this shortcoming, 
including our BlendMol plugin [11], which allows users to 
easily import molecular models into the Blender environ-
ment. Though BlendMol greatly simplifies photorealistic 
molecular rendering, it still requires a good understanding 
of Blender, a program with a notoriously steep learning 
curve. And to produce high quality images and videos, even 
knowledgeable users must undertake the laborious process 
of setting up lighting, creating materials, positioning the 
camera, etc. Rendering itself is also computationally inten-
sive, further limiting use.

We here describe a deep-learning model called Prot-
2Prot that imitates a Blender-rendered molecular image 
given a much simpler and easier-to-generate representa-
tion (“sketch”) of a protein surface. Prot2Prot outputs an 
image that is often indistinguishable from a BlendMol-based 
visualization in a fraction of the time, allowing image “ren-
dering” even in a web browser. Unlike the desktop tools 
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for molecular analysis described above [1–5], Prot2Prot is 
primarily a browser-based tool for generating photorealistic 
molecular renderings. Similarly, Prot2Prot is not meant to 
compete with desktop programs such as Blender/BlendMol 
[11], which are more difficult to use but provide exquisite 
control over lighting, materials, etc. Finally, Prot2Prot does 
not replace JavaScript libraries for browser-based molecular 
visualization [6–10], which display schematic (not photo-
realistic) renderings at high frame rates to enable smooth 
rotation and zooming. Rather, Prot2Prot aims to simply 
the process of generating photorealistic visualizations by 
abstracting away the complex settings typical of such a task 
while simultaneously offering the convenience of browser-
based use.

The success of the Prot2Prot approach demonstrates how 
machine learning can serve as a valuable tool for enhanc-
ing scientific communication, with potential applications to 
fields beyond molecular visualization. We release Prot2Prot 
free of charge under the terms of the Apache License, Ver-
sion 2.0. Users can access a Prot2Prot-powered web app 
without registration at http://​durra​ntlab.​com/​prot2​prot.

Materials and methods

Simplified protein‑surface “sketches”

We first developed a simple 2D molecular representation 
that is easy to generate, even in slow and memory-limited 
environments such as web browsers (Fig. 1A). We represent 
each atom as a simple circle, sized according to the van der 
Waals radius and distance from the virtual “camera” (i.e., 
depth). Each circle is outlined in black to gray depending on 
its depth to emphasize atomic boundaries.

The circles are colored according to carefully selected 
red, green, and blue (RGB) values. The red and green chan-
nels encode the atomic element. R/G values correspond-
ing to carbon, nitrogen, oxygen, hydrogen, and phosphorus 
atoms are set at 100/100%, 100/0%, 0/100%, 0/50%, and 
50/50%, respectively. All other atoms are encoded as car-
bons. Depth is encoded on the blue (B) channel. It is set at 
100% for those atoms close to the camera and 0% for those 
atoms that are distant. A subtle three-step gradient is applied 
to each atom to capture its three-dimensional (spherical) 
shape.

To provide data sufficient for training a machine-learning 
model, we generated hundreds of representative protein-sur-
face sketches (1024 × 1024). We first assembled a set of 49 
diverse proteins from the Protein Data Bank [12] and added 
hydrogens to each of these proteins using Reduce [13]. To 
further augment the dataset, we used the 49 proteins to gen-
erate additional models. In some cases, we removed water 
molecules (if present) to generate new, water-free models. In 
other cases, we removed hydrogen atoms (important given 
that most models in the PDB lack hydrogens). When hydro-
gen atoms were retained, we randomly replaced occasional 
hydrogen atoms with rarer elements (e.g., sulfur, phospho-
rus, metals, halides). And we randomly rotated and scaled 
the models to capture proteins at many different angles and 
distances.

Blender/BlendMol‑rendered molecular 
visualizations

For each protein-surface sketch, we rendered a matching 
photorealistic image (1024 × 1024) using Blender 3.0.0, an 
open-source computer-graphics toolset. We created custom 
Python scripts that load a PDB file into Blender using the 
BlendMol plugin [11]; automatically adjust the focal point 
of the Blender camera; create a fog-to-white effect; set the 
surface materials, lighting, and other parameters; and render 
a photorealistic image to disk using the Cycles path-tracing 
render engine.

Training a Prot2Prot model to map input sketches 
to rendered images

We trained Pix2Pix, a generative adversarial network (GAN) 
[14], to translate molecular sketches into the correspond-
ing photorealistic protein images (Fig. 1; PyTorch Pix2Pix 
implementation available on GitHub [15]). In the context of 
this project, we call the model Prot2Prot rather than Pix2Pix. 
We used the default values for training, except we selected 
U-Net 128 as the generator architecture and used instance 
rather than batch normalization. For each of three photore-
alistic styles, we trained separate Prot2Prot models to gen-
erate 1024 × 1024, 512 × 512, and 256 × 256 output images, 

Fig. 1   Prot2Prot image mapping. Proliferating cell nuclear antigen 
(PCNA) bound to the PCNA-interacting motif (PIP box) of the DNA-
dependent metalloprotease SPRTN (DVC1; 6099 atoms; PDB ID: 
5IY4). A) The input image is a simplified 2D molecular representa-
tion that is straightforward to generate. B) The output image mimics 
the appearance of a photorealistic rendering of the same protein, as if 
created using Blender/BlendMol

http://durrantlab.com/prot2prot
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respectively. To generate 512 × 512 and 256 × 256 images 
for training, we used ImageMagick [16] to scale the original 
1024 × 1024 images. In all cases, we trained on roughly 1000 
sketch/render pairs for 1000 epochs using the default initial 
learning rate, and then for another 1000 epochs as the learn-
ing rate decayed linearly to zero.

To further augment the data set available for training, 
we scaled the images by ~112% and then randomly cropped 
them at the original size (e.g., 256 × 256 images were 
scaled to 286 × 286 and then randomly cropped to produce 
256 × 256 images). To allow the models to learn to mimic 
the consistent directional lighting of the rendered target 
images, we did not rotate or flip images, an otherwise com-
mon technique used for further data augmentation.

Because Prot2Prot is a GAN, there is no intuitive metric 
to monitor training progress or performance in an absolute 
sense (i.e., there is no straightforward loss function). Rather, 
a generator model learns to mimic real Blender-rendered 
images, while a discriminator model simultaneously learns 
to distinguish between the real and mimicked images. The 
performance of each model is always relative to the perfor-
mance of its opponent. But visual inspection, albeit subjec-
tive, suggests the fully trained generator model mimics the 
actual Blender-rendered images surprisingly successfully.

Model conversion for use with tensorflow.js

We exported the trained PyTorch models to the ONNX for-
mat using the torch.onnx.export function. We then converted 
the ONNX files to the TensorFlow SavedModel format using 
the TensorFlow Backend for ONNX [17]. Finally, we con-
verted the SavedModel files to the TensorFlow.js graph-
model format using the tensorflowjs_converter command 
[18]. In this last step, we also applied 1-byte affine quantiza-
tion to multiple nodes, which substantially reduced the file 
size without substantial impact on image quality.

Colorization

Prot2Prot produces images with consistent, predetermined 
color schemes. However, users can modify the color palette 
after inference, allowing some degree of customizability. A 
color-intensity matrix, w, determines how much a user-spec-
ified color influences various portions of the output image. 
The entries of the matrix range from 0.0 (no influence on the 
output image) to 1.0 (full influence).

The color-intensity matrix is calculated via element-wise 
multiplication of four image-derived matrices. First, to leave 
non-protein-surface regions unmodified, we convert the 
input “sketch” to a binary mask, where entries correspond-
ing to the protein surface are set to 1.0, and other entries are 
set to 0.0 (Fig. 2A). Second, to influence well-lit protein-
surface regions more than shadowed areas, we separately 

convert the output “rendered” image to a grayscale matrix 
whose values correspond to averaged red, green, and blue 
values, scaled from 0.0 to 1.0 (Fig. 2B). Third, to preserve 
the fade-to-white fog effect, we create a third matrix from 
the blue channel of the input sketch image, which encodes 
depth (i.e., distance from the virtual camera). The values 
of this matrix range from 0.0 (most distant) to 1.0 (closest; 
Fig. 2C). Fourth, to allow the user to control the coloriza-
tion effect’s global strength, we create a matrix with identi-
cal entries equal to a user-defined color-strength parameter 
(Fig. 2D). After the element-wise multiplication of these 
four matrixes, the final matrix (Fig. 2E) can be optionally 
blurred to remove any sharp edges, per the user-defined 
color-blend parameter.

We use this color-intensity matrix to adjust the original 
Prot2Prot output image (Fig. 2F). A weighted average com-
bines each pixel’s red, green, and blue values with those of 
a solid, user-defined color (Fig. 2G). The pixel’s color is 
unchanged if the corresponding color-intensity-matrix value 
is 0.0 and replaced by the user-defined color entirely if the 
corresponding value is 1.0 (Fig. 2H).

Browser implementation

We created a browser-based version of Prot2Prot following 
our established open-source approach [19–21]. The graphi-
cal user interface (GUI) is written in TypeScript using the 
Vue.js framework [22], the BootstrapVue CSS library [23], 
the TensorFlow.js machine-learning library [18], the Web-
pack module bundler [24], and Google’s Closure Compiler 
[25].

The “Input PDB File” panel (Fig. 3A) allows users 
to load a PDB file into their web browser’s memory by 

Fig. 2   Prot2Prot colorization procedure. A The mask matrix indicates 
which image regions include the protein surface. B The grayscale 
matrix distinguishes well-lit and in-shadow protein-surface regions. 
C The depth matrix indicates how far a protein region is from the 
virtual camera. D The color-strength matrix allows the user to fur-
ther modify the strength of the colorization effect. E The final color-
intensity matrix, called w, is calculated via element-wise multiplica-
tion of the four preceding matrices. F The original Prot2Prot output 
image. G A solid, user-specified color. H The final image, created by 
averaging the images in (F) and (G), weighting by the color-intensity 
matrix, w 



680	 Journal of Computer-Aided Molecular Design (2022) 36:677–686

1 3

selecting a file on their local computer or providing a PDB 
ID for remote download. Alternatively, clicking the “Use 
Example File” button automatically loads an example 
(PDB ID: 5IY4 [26]). Once the PDB file is loaded, the 
Prot2Prot user interface provides limited structure-editing 
options (e.g., users can remove ligands, water molecules, 
chains, etc.).

The “Prot2Prot Renderer” panel (Fig. 3B) allows users 
to choose from various rendering styles and image dimen-
sions (see “Results and discussion” for a description). It 
also briefly explains the visual features of the selected 
style.

Users can position and display their molecules in the 
“Molecular Viewer” panel (Fig. 3C). Structures are ini-
tially shown in “Preview” mode as fields of atomic spheres 
that can be easily rotated and scaled using the mouse, 
mouse wheel, or touch gestures. Once ready, the user 
clicks the “Prot2Prot” button to generate the correspond-
ing photorealistic image in the browser. The “Save” but-
ton allows users to save the viewer image. Users can also 
toggle the “Colorize Prot2Prot Render” setting to specify 
color, color-strength, and color-blending options (Fig. 3C, 
where green is selected). Finally, the app provides “View-
port” information that can be copied and pasted to restore 
the rotation/zoom settings (Fig. 3D).

Command‑line‑interface implementation

Aside from running Prot2Prot in a web browser, users can 
also access the model via a command-line interface (CLI) 
powered by the Node.js JavaScript runtime environment. 
CLI Prot2Prot is well-suited for rendering single images 
and image sequences, which can be combined into videos. 
CLI Prot2Prot provides several default animations, including 
“still,” “rock,” “turntable” (rotation about a user-specified 
axis), and “zoom.” If a PDB file contains multiple frames, 
CLI Prot2Prot will also render protein dynamics, allowing 
users to visualize molecular dynamics simulations or inter-
polated protein structures (Online Resource 1).

Results and discussion

The Prot2Prot machine-learning model effectively renders 
photorealistic molecular representations via image-to-image 
translation of much simpler, easy-to-generate, molecular-
surface “sketches.” Prot2Prot illustrations are well suited 
for scientific publication, outreach, and education. CLI 
Prot2Prot can also generate animations of protein motions 
(Online Resource 1 and 2).

Fig. 3   Browser-app user inter-
face. A The “Input PDB File” 
panel allows users to load and 
edit molecular structures. B 
The “Prot2Prot Renderer” panel 
allows users to specify the ren-
dering style and image size. C 
The “Molecular Viewer” panel 
shows the rendered structure. D 
Colorize options allow the user 
to adjust the protein color. E 
The Viewport information can 
be copied and pasted to restore 
the rotation/zoom settings
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Description of rendering styles

We trained Prot2Prot models to mimic three distinc-
tive rendering styles, which we call “Simple Surface,” 
“Chalky,” and “Chalky Shadow.”

Simple surface

In the “Simple Surface” rendering style, carbon, oxygen, 
nitrogen, sulfur, and hydrogen atoms are light silver, red, 
blue, yellow, and white. Color support for other elements 
is limited. When rendering the photorealistic Blender 
images used for training, we applied two effects to give 
the final images a better sense of depth. First, we used 
Blender’s mist pass to render more distant protein regions 
in lighter colors, producing a “fade-to-white” fog effect. 
Second, we used Blender’s depth-of-field effect to focus 
the virtual camera on the protein surface directly in front 
of it, such that regions distant from that focal point appear 
slightly blurred or out of focus.

We also used several advanced lighting techniques 
to enhance photorealism. First, we applied a slight sub-
surface-scattering effect to all surfaces using Blender’s 
Principled BSDF shader. When light hits many natural 
materials, it penetrates the surface and is scattered in the 
object’s interior. After a light ray makes its way back to the 
surface, it leaves the object at a random angle, not the pre-
dictable angle typical of a perfectly reflective (“glossy”) 
surface. Second, rather than light the scene with a single 
point or directional light, we used a public-domain, high 
dynamic range image (HDRI [27]) to surround and light 
the surfaces. High-dynamic-range (HDR) lighting pre-
vents the darkest and lightest regions of the image from 
being saturated as perfectly black or white, allowing the 
viewer to see full detail across the entire image. Third, we 
applied ambient occlusion to the scene. This non-physical 
rendering technique approximates global illumination by 
darkening surfaces that are only partially accessible to the 
broader environment (e.g., enclosed pockets). After ren-
dering the image using Blender’s Cycles path-tracing ren-
der engine, we adjusted the color level using ImageMagick 
to ensure the background was precisely white, as typically 
required for publication-quality images.

We successfully trained our Prot2Prot models to mimic 
these Blender-rendered output images given a correspond-
ing input “sketch image.” When converted to the Tensor-
Flow.js graph-model format, the final model takes up 
roughly 40 MB. Figure 4A, B show how the model has 
learned to mimic the fade-to-white-fog (*), depth-of-field 
(†), and ambient-occlusion (‡) effects of the Blender-ren-
dered training images.

Chalky

The “Chalky” rendering style also has fade-to-white fog, 
ambient occlusion, and depth-of-field blur. Unlike Simple 
Surface, Chalky shows all atoms in the same white material, 
without subsurface scattering. Instead, we set the “Rough-
ness” and “Clearcoat Roughness” settings on the Principled 
BSDF shader to their maximum values to give the surface 
a highly diffuse appearance. Chalky uses a public-domain 
studio lighting setup obtained from blendswap.com [28] to 
light the proteins rather than an HDRI. After rendering the 
training images, we again adjusted the color levels using 
ImageMagick.

Trained Prot2Prot models successfully mimic these 
Blender-rendered output images as well. The Chalky models 
also take up ~40 MB, with similar run times in the browser. 
Figure 4C shows how Chalky images are particularly well 
suited to the custom colorization procedure (in this case, 
with a green tint) described in the Materials and Methods.

Chalky shadow

The “Chalky Shadow” rendering style is the same as the 
“Chalky” style, except the virtual studio lights are allowed 
to cast a shadow onto a pure-white floor below. The trained 
Prot2Prot models successfully mimic the shadows computed 
using advanced path tracing in Blender (Fig. 4D). Online 

Fig. 4   An atomic resolution model of the human apoptosome 
obtained via electron microscopy (70,189 atoms; PDB ID 3J2T), 
visualized using Prot2Prot. A, B Simple Surface rendering style. C 
Chalky rendering style, colorized with a green tint. D Chalky Shadow 
rendering style. Examples of fade-to-white fog, depth of field, and 
ambient occlusion are marked with *, †, and ‡, respectively
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Resource 2 (bottom row) illustrates how these shadows even 
convincingly change according to the protein orientation. 
These models are also roughly 40 MB.

Video rendering via the command line interface

Command-line-interface (CLI) Prot2Prot also accepts multi-
frame PDB files as input, allowing users to create animations 
of molecular dynamics simulations, conformational transi-
tions, etc. Prot2Prot provides four different animation styles 
via its CLI (Online Resource 1). A “still” animation captures 
only the frame-by-frame motions of individual atoms with-
out imparting any large-scale rotations to the entire protein. 
Alternatively, three whole-scene rotation animations can 
further facilitate visualization: “rock,” “turn table,” and 
“zoom.”

To demonstrate these animation styles, we first used 
UCSF Chimera [2] to generate a multi-frame PDB file 
of S. cerevisiae hexokinase 2 (ScHxk2). Specifically, we 
used Chimera’s “Morph Conformations” tool to capture 
the transition between open and closed ScHxk2 structures 
extracted from a recent molecular dynamics simulation 
[29]. We created video animations of this transition from 
image sequences of 48 Prot2Prot-rendered trajectory frames 
(Online Resource 1).

These animations convincingly capture the ScHxk2 
open-to-close transition, but the protein surfaces appear to 
“flicker.” This subtle artifact arises because Prot2Prot ren-
ders each frame without regard for adjacent frames (i.e., the 
resulting animations lack temporal coherence). To address 
this issue, we used Prot2Prot to re-render the ScHxk2 

trajectory to only twelve images. We then used the Real-
time Intermediate Flow Estimation (RIFE) 3.1 algorithm 
[30], as implemented in the Flowframes software package 
[31], to interpolate between these twelve images. The result-
ing animations capture the same open-to-close transition 
but without the flicker (Online Resource 2). We had similar 
success using the commercial frame interpolation algorithm 
implemented in Adobe After Effects.

Compatibility and run times

We have tested the Prot2Prot Web App on all major operat-
ing systems and web browsers (Table 1), including some 
mobile devices. The Prot2Prot model is memory intensive, 
and the web app will crash if run on a device with a less 
capable graphical processing unit (GPU). Where possible, 
the app detects any crash and asks the user to (1) select a 
smaller output-image size or (2) use the central processing 
unit (CPU) rather than the GPU. Rendering on the CPU is 
slower but also less memory restrained.

Prot2Prot currently runs fastest on Chromium-based 
browsers (e.g., Google Chrome, Microsoft Edge, etc.) 
because these browsers support OffscreenCanvas. On other 
browsers (e.g., Firefox), TensorFlow.js must use the CPU to 
run inference rather than the GPU. Users can already enable 
OffscreenCanvas in Firefox via the advanced configuration 
preferences, suggesting future versions will enable it by 
default.

We tested CLI Prot2Prot on Ubuntu Linux running 
Node.js 16.13.2. The Node.js runtime environment is 

Table 1   Prot2Prot compatibility

We tested Prot2Prot on multiple operating systems, browsers, and Node.js versions

Prot2Prot web app

Operating system Browser

macOS MONTEREY 12.1 Chrome 100.0.4896.30
macOS Monterey 12.1 Firefox 98.0
macOS Monterey 12.1 Safari 15.2
Microsoft Windows 10 Enterprise 10.0.19042 Chrome 99.0.4844.51
Microsoft Windows 10 Enterprise 10.0.19042 Edge 99.0.1150.39
Microsoft Windows 10 Enterprise 10.0.19042 Firefox 98.0
Ubuntu Linux 20.04.4 LTS Chrome 99.0.4844.51
Ubuntu Linux 20.04.4 LTS Firefox 98.0
Android 12 Chrome 99.0.4844.58
Android 12 Firefox 98.1.1
iOS 15.3.1 Safari 15

Command-line-interface (CLI) Prot2Prot

Operating System Node.js

Ubuntu 20.04.3 LTS Node 16.13.2
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available on all major desktop operating systems, so we 
expect CLI Prot2Prot to be broadly compatible as well.

Aside from benefiting from broad compatibility, Prot-
2Prot also produces high-quality images much faster than 
dedicated 3D modeling programs such as Blender. Prot-
2Prot does not require users to set up lights, cameras, 
materials, etc.—setup activities that typically take much 
longer than rendering the image itself. But beyond elimi-
nating the need for this laborious setup, Prot2Prot also 
has improved render times. To demonstrate, we rendered 
a test scene using Blender 3.2.0 on a MacBook Pro with 
an Apple X chip. The Blender Cycles path-tracing engine 
took roughly one minute to generate a 1024 × 1024 image 
using the GPU Compute device (Apple M1 Max GPU). 
In contrast, the Prot2Prot web app running on the same 
machine (Chrome browser) generated a similar image in 
only 1.2 s once the WebGL shaders had compiled (~6 s). 
Rendering times vary substantially depending on the 
available software and hardware (e.g., GPU vs. CPU). 
For example, older versions of Blender (e.g., 3.0.0) do not 
support GPU rendering on Apple hardware, and Prot2Prot 
does not run as quickly when using the CPU version of 
TensorFlow.js (as required, for example, in Firefox and 
Safari). But this comparison nevertheless demonstrates 
that Prot2Prot can dramatically accelerate photorealistic 
molecular visualization without requiring expertise in 3D 
modeling.

Visual comparison with other software packages

Figure 5 compares a Prot2Prot rendering to renderings pro-
duced by other popular molecular-visualization packages. 
Prot2Prot has learned advanced rendering techniques such as 
lighting and subsurface scattering, so users need not under-
take the laborious process of setting these techniques up 
themselves. Rendering a Prot2Prot image is thus as simple 
as loading the protein, rotating and zooming, and pressing 
the “Prot2Prot” render button. In contrast, other molecular-
visualization programs have many settings that users must 
adjust to modify the presentation. To normalize the effort 
invested in producing each image, we sought the path of 
least resistance when creating comparable renderings using 
other programs. We changed only those settings needed to 
set the protein representation to surface, to match atom col-
oring to the extent possible, and to set the background color 
to white. Figure 5A shows a Prot2Prot image rendered using 
the Simple Surface style. Figure 5B, D show renderings gen-
erated using the popular desktop molecular-visualization 
programs PyMOL [5], UCSF Chimera [2], and VMD [1], 
respectively. Figure 5E, F show renderings generated using 
two popular web-based visualization programs, Mol* [6] 
and 3Dmol.js [9].

Limitations

Prot2Prot is a powerful, easy-to-use tool for photoreal-
istic protein rendering, but it has several notable limita-
tions. First, it is generally useful only for rendering protein 

Fig. 5   Renderings produced by 
select molecular-visualization 
software packages. A Prot2Prot 
using the Simple Surface style. 
B PyMOL, a desktop program. 
C UCSF Chimera, a desktop 
program. D VMD, a desktop 
program. E Mol*, a web-based 
program. F 3Dmol.js, a web-
based program. In all cases, 
we changed only those settings 
required to set the protein rep-
resentation to surface, to match 
atom coloring to the extent pos-
sible, and to set the background 
color to white
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surfaces. We attempted to train a Prot2Prot model to gen-
erate a cartoon-like image of protein tertiary structure 
given a sketch of the protein backbone atoms (Fig. 6A–C). 
Prot2Prot often correctly identified alpha helices and beta 
sheets, but misclassifications were frequent. Furthermore, 
it depicted alpha helices as elongated blobs rather than 
perfect cylinders.

The shadows rendered when using the Chalky Shadow 
style are generally impressive. Still, occasionally they appear 
to be more wavy than appropriate given the actual contours 
of the protein’s profile (Fig. 6D, marked with †). Prot2Prot 
also sometimes renders a shadow “blob” in the lower-left-
hand corner of its Chalky-Shadow output images (Fig. 6D, 
marked with ‡). Fortunately, image cropping can easily 
remove this small artifact.

Prot2Prot also often struggles to correctly render protein 
surfaces with positioning that differs substantially from that 
depicted in the training images. Artifacts typically occur 
when proteins are very close to the virtual camera (Fig. 6E, 
marked with *) or very distant (Fig. 6F). In the case of dis-
tant proteins, Prot2Prot appears to overemphasize the con-
tribution of carbon atoms (Fig. 6F, colored in light silver). 
Finally, subtle checkered (“waffle”) patterns occasionally 
appear when rendering proteins even at intermediate dis-
tances (Fig. 6G, marked with §). Rotating or scaling the 
molecule slightly generally eliminates these patterns.

Finally, Prot2Prot is trained to render protein surfaces, 
which are comprised primarily of carbon, oxygen, nitrogen, 
sulfur, and hydrogen atoms. The model is not trained to 
render macromolecules containing atoms of other elements 
(e.g., nucleic acids, which contain phosphorus). In practice, 
Prot2Prot can successfully render non-proteins when run 
using the Chalky and Chalky Shadow styles, which depend 
more on atomic positions that atom types. But running Prot-
2Prot using the Simple Surface style, which colors atoms 
by element, is sometimes problematic. Fortunately, in many 
cases the offending atom is obscured by other less prob-
lematic atoms (e.g., oxygen atoms, which often obscure an 
offending phosphorus).

Conclusion

The literature describes several other applications of image-
to-image translation in medicine and biology. Examples 
include enhancing medical [32] and histopathological [33] 
images to facilitate diagnosis. Others have applied similar 
approaches to images obtained from electron [34] and flu-
orescence [35–37] microscopy with the goal of detecting 
gold nanoparticles or subcellular components. Still others 
have experimented with translating amorphous shapes to 3D 
representations [38]. But to the best of our knowledge, these 

Fig. 6   Examples of Prot2Prot 
shortcomings. A–C Prot2Prot is 
best suited for rendering protein 
surfaces. It cannot accurately 
render a cartoon representa-
tion given a sketch of the 
protein backbone atoms. D The 
Chalky Shadow rendering style 
sometimes generates shadows 
that are excessively wavy (†). 
An artifactual shadow “blob” 
sometimes appears in the lower-
left-hand corner (‡). E Viewing 
protein surfaces up close can 
produce artifacts (*). F View-
ing protein surfaces at great 
distances tends to overrepresent 
carbon atoms (white). G On 
rare occasions protein surfaces 
may be subtly checkered even at 
intermediate distances (§)
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approaches have never been applied to macromolecular visu-
alization with the goal of producing photorealistic images 
for publication, outreach, and education.

Though the present work focuses on molecular visualiza-
tion, it also suggests how machine learning algorithms can 
rapidly and effectively enhance scientific visualization gen-
erally. Blender specifically has been used to visualize many 
scientific phenomena, ranging from quantum wave functions 
[39] to tsunami hydrodynamics [40] to astrophysical data 
[41, 42]. A similar approach—generating simple represen-
tations of scientific data and converting those representa-
tions to higher-quality images—could be fruitfully applied 
in these other domains as well.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10822-​022-​00471-4.
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