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Abstract
Background Common vetch (Vicia sativa L.) is an annual legume with excellent suitability in cold and dry regions. Despite 
its great applied potential, the genomic information regarding common vetch currently remains unavailable.
Methods and results In the present study, the whole genome survey of common vetch was performed using the next-gen-
eration sequencing (NGS). A total of 79.84 Gbp high quality sequence data were obtained and assembled into 3,754,145 
scaffolds with an N50 length of 3556 bp. According to the K-mer analyses, the genome size, heterozygosity rate and GC 
content of common vetch genome were estimated to be 1568 Mbp, 0.4345 and 35%, respectively. In addition, a total of 
76,810 putative simple sequence repeats (SSRs) were identified. Among them, dinucleotide was the most abundant SSR type 
(44.94%), followed by Tri- (35.82%), Tetra- (13.22%), Penta- (4.47%) and Hexanucleotide (1.54%). Furthermore, a total of 
58,175 SSR primer pairs were designed and ten of them were validated in Chinese common vetch. Further analysis showed 
that Chinese common vetch harbored high genetic diversity and could be clustered into two main subgroups.
Conclusion This is the first report about the genome features of common vetch, and the information will help to design 
whole genome sequencing strategies. The newly identified SSRs in this study provide basic molecular markers for germplasm 
characterization, genetic diversity and QTL mapping studies for common vetch.
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Introduction

Common vetch (Vicia sativa L.) is one kind of self-pollinat-
ing annual legume with excellent suitability in cold and dry 
regions, such as western Asia and northern Africa [1]. As an 
inexpensive and rich source of protein, common vetch grows 
quickly and is normally used for feeding livestock on account 
of its high digestibility [2]. In addition, common vetch can 
also be used as a green manure crop on idle farmland due 
to its strong ability to fix nitrogen [3]. Moreover, follow-
ing with the increasing global population and plant-based 

protein demands, common vetch could be exploited as a 
future potential protein source due to its widely adaption 
in marginal cropping zones with severe drought and cold 
conditions [4].

However, the genetic information of common vetch 
remains largely unknown, although some studies have 
performed transcriptome analysis, genetic diversity analy-
sis with ESTs based on SSR markers, and EMS-induced 
mutation development [2, 5–7]. Nevertheless, the genomic 
information regarding common vetch currently remains una-
vailable, as well as the systematic analysis of Chinese com-
mon vetch germplasm. The lack of the reference genome 
sequence impedes the advances in functional genomics and 
molecular breeding of this species [8]. Therefore, it is neces-
sary to conduct the genome survey sequencing which would 
obtain basic knowledge on the genome structure of common 
vetch, providing a foundation for the further research of this 
specie.

Recently, the next-generation sequencing (NGS) has been 
employed as the cost-effective approach to conduct genome 
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survey sequencing [9–11]. Except the basic knowledge of 
genome structure, the genome survey sequencing will pro-
vide a large number of simple sequence repeats (SSRs), 
which could be developed into molecular markers [12–14]. 
As the versatile DNA-based markers one kind of markers, 
SSRs markers showed multiple advantages including co-
dominant, more informative and more economical, which 
were generally used in plant genetic researches, such as 
population diversity, genetic linkage mapping and evolu-
tionary studies [15, 16]. A larger number of SSR markers 
are essential for comprehensive genome-wide association 
studies (GWAS), as well as the quantitative trait locus map-
ping (QTL) and marker-assisted selection (MAS) [14, 17].

In the present research, we perform the de novo whole 
genome sequencing of common vetch through NGS, and 
then assembly to construct a reference genome database. The 
results showed that the genome of common vetch was esti-
mated to be 1568 Mbp with a heterozygosity of 0.4345%. A 
total of 76,810 putative SSRs were identified and 58,175 of 
them were designed as potential SSR markers. In addition, 
10 SSRs were validated in 68 Chinese common vetch acces-
sions and suggested the high genetic diversity of Chinese 
common vetch. Taken together, this study firstly reported 
the de novo whole genome sequencing of common vetch and 
firstly analyzed the genetic diversity of Chinese germplasm 
resources. The genome database and potential SSR markers 
would provide the foundation for further genomic functional 
and evolutionary analyses of common vetch, as well as accu-
mulating the development of its molecular breeding.

Materials and methods

Plant materials and growth condition

The common vetch (Vicia sativa) cv. ‘Lanjian No.1’ from 
Lanzhou University (Lanzhou, Gansu, China) was chosen 
for the genome survey. The seeds were planted in 10 cm 
pots and grown in the greenhouse at 24/22 °C (day/night) 
temperature with 16 h light (380–400 μE/m2/s). After grow-
ing for three weeks, fresh leaves from one individual plant 
were collected and quickly frozen in liquid nitrogen for DNA 
isolation.

A total of 68 common vetch accessions originating from 
China were used for genetic diversity analysis (Table S1). 
In addition, 20 common vetch accessions originating from 
worldwide were used for SSR polymorphism selection 
(Table S2). The seeds were sterilized in 75% ethanol for 
5 min and rinsed with sterile water five times. They were 
placed on filter paper in dishes and then subsequently cul-
tured in a growth chamber at 25 °C. The eight-day-old seed-
lings were prepared for DNA extraction.

DNA extraction and genome sequencing

Total genomic DNA was isolated by using the CTAB method 
with modifications [18]. DNA concentrations were measured 
on a Nanodrop (Thermo Fisher Scientific, Waltham, MA). 
DNA quality was detected on a Qubit (Thermo Fisher Sci-
entific, Waltham, MA). The genomic paired-end library with 
300–400 bp short-inserts was constructed and sequenced on 
an Illumina NovaSeq 6000 (Illumina Inc. San Diego, CA, 
USA) with PE 150 sequencing methods.

K‑mer analyses and genome size estimation

All of the clean data were used for K-mer analysis using Jel-
lyfish software [19]. Based on the results of K-mer frequency 
distributions (K-mer = 17), the characteristics of the genome, 
including genome size, repeat content and heterozygosity 
rate, were estimated by using GenomeScope [20].

Genome assembling and guanine plus cytosine (GC) 
content analysis

SOAPdenovo software was used for genome assembly [21]. 
In brief, a de Bruijn graph was constructed based on the 
overlapping relationship reads from SOAPdenovo software, 
and contigs were output after simplifying the de Bruijn 
graph. Scaffolds were constructed based on the contigs, and 
gaps inside the scaffolds were filled by employing GAP-
Closer. Here, 10-kb nonoverlapping sliding windows along 
the assembled sequence were hired to calculate the average 
GC sequencing depth [22].

Genomic microsatellite identification

The MIcroSAtellite (MISA) software (http:// pgrc. ipk- gater 
sleben. de/ misa/ misa. html) was employed to detect the 
genomic SSRs. The search parameters were respectively 
set for identifying various types of SSRs, including Di-, 
Tri-, Tetra-, Penta- and Hexa-nucleotide SSR motifs with 
a minimum of 6, 5, 4, 4 and 4 repeats, respectively. Primer 
3 software were used for primers designing for each SSR 
locus, with the following parameters: 18–25 primer size, 
90–250 bp product size, 70% GC content, and annealing 
temperature of 55–65 °C.

SSR genotyping

For SSR polymorphism selection, a total of 20 common 
vetch accessions were used (Table S2). Firstly, sixty pairs 
of putative SSR primers were randomly selected to test 
whether they harbored polymorphisms among 20 common 
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vetch varieties with multiply phenotypes by the methods 
of non-denaturing polyacrylamide gel electrophoresis 
(PAGE). Then ten SSR were selected for further study.

The selected 10 pairs SSR primers with additional dif-
ferent fluorescent probes on forward primers were used for 
polymorphism screening of 68 common vetch accessions 
in China (Table S3). The PCR was conducted in a 20 μL 
reaction system containing 20 ng genomic DNA, 10 μL 
2 × Taq Master Mix (Genestar, Beijing, China) and 0.5 μL 
each of the forward and reverse primers. The PCR param-
eters were as follows: 94 °C for 5 min; 35 cycles: 94 °C 
for 30 s, 58 °C for 30 s, 72 °C for 45 s; the final extension 
at 72 °C for 7 min. The PCR products were diluted five 
times and then resolved in an ABI3130xl Genetic Analyzer 
(Applied Biosystems, CA, USA). Fragments size and data 
analysis were determined by using mapmaker 5.0 software.

Genetic diversity analysis

The allelic diversity and genetic variation parameters 
including the number of different alleles (Na) and effec-
tive alleles (Ne), the index of observed heterozygosity 
(Ho), expected heterozygosity (He), Shannon’s informa-
tion index (I) and the polymorphism information content 
(PIC) were calculated by fragment size in GenAlEx 6.5 
software [23]. The genetic diversity among the 68 acces-
sions was determined by using dissimilarity analysis and 
representation for windows (DARwin) software. The den-
drogram was generated by using the UPGMA phylogenetic 
cluster analysis [24].

Results

Genome sequencing and sequence assembly

To avoiding the influence the potential heterozygous, we 
extracted DNA from the single plant leaves of common vetch 
for libraries constructing (Fig. 1). After filtering the low 
quality data, we obtained approximately 79.84 Gbp of high-
quality data from the sequencing library, which were approx-
imately 51 times of the estimated genome size. The Q20 and 
Q30 of the obtained data were greater than 97% and 92%, 
indicating the reliable of the genome survey sequencing. We 
then de novo assembled (K-mer = 75) all of the high qual-
ity data by using the de Bruijn graph-based SOAPdenovo 
software. A total of 4,227,942 raw contigs were obtained, 
and the total length of raw contigs was 1,475,990,986 bp 
and the contig N50 length of 1245 bp (Table 1). Finally, the 
assembled common vetch genome consisted of 3,754,145 
scaffolds which had a total length of 1,516,858,186 bp, and 
the scaffold N50 length of 3556 bp (Table 1).

Genomic characteristics

The peak K-mer depth and the number of K-mers were 
calculated as 45 and 70, 575, 281,718, respectively, based 
on the K-mer analysis (K-mer = 17). The genome size of 
common vetch was estimated at 1568 Mbp, while the het-
erozygosity rate of this genome was 0.4345%, indicating 
that common vetch was a self-pollinating species (Fig. 2a).

In order to investigate the guanine plus cytosine (GC) 
content of the common vetch genome, we built a scatterplot 

Fig. 1  The morphological characteristics of common vetch cv “Lanjian No.1”. a The plant. b The leaves. c The flowers. d The seeds. e The 
seedpods
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graph by using scaffolds larger than 500 bp, elucidating the 
information on sequencing data bias (Fig. 2a). The results 
showed that the GC content of the common vetch genome 
was 35%, which was consistent with the main peak in the 
scatterplot graph. Moreover, we also noticed that the confi-
dence area (shown in red) was around the peak at 35, sug-
gesting that the DNA sample for genome survey sequencing 
was not polluted by DNA from other species.

Genomic SSR markers development

The assembled scaffolds were employed for genomic SSR 
search via the MISA software (http:// pgrc. ipk- gater sleben. 

de/ misa/ misa. html). A total of 76,810 putative SSRs were 
identified from 58,373 isoforms and 12,050 isoforms con-
tained more than one SSR. Among the identified putative 
SSRs, 4932 SSRs were present in compound formation. We 
found that the most abundant SSR type was Dinucleotide, 
accounting for 44.94% of the total SSRs, followed by Tri- 
(35.82%), Tetra- (13.22%), Penta- (4.47%) and hexa nucleo-
tide (1.54%) SSRs (Fig. S1). The density of SSRs identified 
in the assembled common vetch genome was one SSR per 
20.41 kb.

The SSRs were categorized by their repeat motifs. The 
most abundant repeats were AG/CT (17.29%) and AC/
GT (15.54%), followed by AT/AT (12.02%), AAC/GTT 
(10.07%), AAT/ATT (9.93%) and AAG/CTT (9.37%), and 
AAAT/ATTT (4.95%). The most abundant pentanucleotide 
repeats were AAAAT/ATTTT (1.27%) and AAACC/CGTTT 
(0.79%) (Fig. S2). Furthermore, we designed primers for 
58,175 SSRs by using Primer 3.0 software. The detailed 
primers are shown in Table S4.

Genetic diversity and cluster analysis of Chinese 
common vetch

Ten SSR markers with polymorphisms were selected ran-
domly to investigate genetic diversity of 68 Chinese common 
vetch accessions. In total, we obtained 76 alleles from the 10 
SSR loci (Table 2). For each SSR loci, the number of differ-
ent alleles (Na) and the effective number of alleles (Ne) were 
ranged from 3 (SSR-12) to 16 (SSR-13) and 1.2786 (SSR-5) 
to 6.1286 (SSR-13), respectively. The mean Na and Ne were 
7.6 and 3.4905. The index of observed heterozygosity (Ho) 

Table 1  Information of the assembled genome sequences of common 
vetch

Contigs

Number of sequences 4,227,942
Total length (bp) 1,475,990,986
Max length (bp) 38,860
N50 length (bp) 1245
N90 length (bp) 115

Scaffolds

Number of sequences 3,754,145
Total length (bp) 1,516,858,186
Max length (bp) 89,299
N50 length (bp) 3556
N90 length (bp) 116
GC content 35.94%

Fig. 2  K-mer frequency distribution at K-mer = 17 depth and GC 
content and depth correction analysis. a The estimated genome size 
of common vetch was determined based on the following formula: 
genome size = K-mer depth. The x-axis is depth and y-axis represents 

the frequency at the particular depth divided by the total frequency of 
all depths. b The x-axis represents the GC content and the y-axis is 
the sequence depth. The distribution of the sequence depth is on the 
right side, while the distribution of the GC content is at the top
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and expected heterozygosity (He) ranged from 0 (SSR-12) 
to 0.1765 (SSR-10) and 0.3195 (SSR-5) to 0.8430 (SSR-
13), with the average of 0.0632 and 0.6438, respectively. 
The polymorphism information content (PIC) ranged from 
0.217802 (SSR-5) to 0.836845 (SSR-13) with an average of 
0.639076. Other parameter, such as Shannon’s information 
index (I), ranged from 0.5341(SSR-5) to 2.1759 (SSR-5) 
with an average of 1.3387. Together, we noticed that SSR-13 
harbored the highest polymorphism, followed by SSR-14, 
and the polymorphism of SSR-5 was the lowest (Table 2). 
These results suggested that the 68 common vetch acces-
sions from China harbored high genetic diversity.

In addition, we also constructed the hierarchical tree 
of the Chinese common vetch accessions based on dis-
similarity data, to infer phylogenetic relationships among 
these 68 accessions. Unweighted neighbor-joining analysis 
resulted in a dendrogram with two main subgroups (A and 
B) with 6 and 10 clusters, respectively (Fig. 3). In detail, 
subgroup A consisted of 33 accessions and most of them 
were wild accessions or landraces; in contrast, subgroup B 
was composed of 35 accessions but only 17 of them were 
wild accessions (4) and landraces (13). In addition, we 
hardly connected the clusters with their original places, 
suggesting that more markers should be hired in further 
population structure analysis.

Discussion

With the increasing global population, global protein 
demand is predicted to notably increase by 50% by 2050 
[25]. The extreme climate changes resulting from global 
warming and the urgent demand for protein have led to the 
search for suitable species which provide sustainable pro-
tein resources [26]. Common vetch (Vicia sativa L.), with 

excellent drought and cold tolerance, could be exploited 
to cope with the requirements of humans and livestock [5, 
8]. However, the high r-glutamyl-b-cyano-alanine (GBCA) 
content in common vetch seeds has restricted its appli-
cation in agriculture, and the traditional strategies have 
failed to breed common vetch with no GBCA [4].

Modern biotechnology-based high quality references 
have shown promise in accelerating crop improvement 
[27]. With the development of functional genomics 
research, we can obtain the toxin-free common vetch with 
the use of through modern biotechnology, including over-
expression or RNA interference of the candidate genes, 

Table 2  Diversity statistic 
from 10 SSR tested in Chinese 
common vetch accessions 
(n = 68)

Na observed number of alleles, Ne effective number of alleles, I Shannon’s information index, Ho observed 
heterozygosity, He expected heterozygosity

Locus Na Ne I Ho He PIC

SSR-1 4 3.0552 1.1539 0.0294 0.6777 0.672682
SSR-2 5 2.874 1.0305 0.0735 0.5670 0.562873
SSR-3 6 2.7956 1.1717 0.0735 0.6471 0.642264
SSR-5 6 1.2786 0.5341 0.0294 0.3195 0.217802
SSR-9 10 3.6918 1.7656 0.0147 0.7345 0.729144
SSR-10 5 2.3289 0.9759 0.1765 0.5748 0.570627
SSR-11 11 5.318 1.9084 0.0441 0.8180 0.811961
SSR-12 3 2.0588 0.7595 0.0000 0.5180 0.514268
SSR-13 16 6.1286 2.1759 0.0735 0.8430 0.836845
SSR-14 10 5.9626 1.9111 0.1176 0.8385 0.83229
MEAN 7.6 3.4905 1.3387 0.0632 0.6438 0.639076
SD 4.0332 1.7276 0.5584 0.0528 0.1897 0.188304

Fig. 3  Cluster diagram for 68 individuals of Chinese common vetch 
by UPGMA method
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or editing the genome by CRISPR-Cas (clustered regu-
larly interspaced short palindromic repeats—Cas protein). 
These biotechnology methods have already been success-
fully applied in other major crops, such as rice, wheat, 
maize and barley [28].

In the present study, we performed a genome survey 
of common vetch through NGS and obtained the genome 
information, including genome size, heterozygosity and 
GC content (Table 1, Fig. 1). This approach has been used 
to analyses a number of plant genomes, such as pistachio 
[14], Acer truncatum Bunge [29], Akebia trifoliata [30] 
and yellow horn [31]. The depth distribution (K-mer = 17) 
indicated that the genome size of common vetch was 1568 
Mbp and the heterozygosity rate was 0.4345% (Fig. 2). 
The GC content of the common vetch genome was calcu-
lated to be 35%. To our knowledge, this report of genomic 
information of common vetch is the first of its kind, and 
lays the foundation for future genome assembly and sub-
sequent functional genome research.

The total number of common vetch populations is quite 
difficult to estimate, as this specie was distributed world-
wide. More than 20,000 accessions were kept in the plant 
genetic resources (PGR) [2]. It is difficult for farmers to 
directly use or incorporate into breeding programmes 
due to the large number of germplasm resources. A core 
collection for common vetch, which consists of 5% total 
accessions and represents 95% of the genetic diversity, 
needed to be constructed through evaluating the genetic 
relationships between accessions [32]. SSRs with signifi-
cant dominance were used in evaluating genetic diversity 
in populations, and the genome survey can also provide 
extremely useful sources for SSR identification [33].

In this study, we identified 76,810 putative SSRs and 
58,175 of them were designed as potential SSR markers. Ten 
of validated SSRs were selected to investigate the genetic 
diversity of 68 Chinese common vetch accessions with an 
average PIC was 0.639076 (Table 2). The results showed that 
the Chinese common vetch accessions harbored high genetic 
diversity, as well as the efficacy of the SSR markers devel-
oped in the present study. The hierarchical tree of 68 Chi-
nese common vetch accessions indicated that these acces-
sions could be clustered into two main subgroups. Further 
analysis showed that the subgroup A represented the wild 
and landraces accessions, wherease subgroup B represented 
the cultivars and commercial variety (Fig. 3). However, 10 
SSR markers were largely insufficient for common vetch 
molecular fingerprint construction and further population 
structure analysis. Combined with the further research in 
genome assembly in chromosomal level, the larger number 
of SSRs identified in this study shows high potential appli-
cation in construction of the common vetch core collection. 
Genome-wide association studies (GWAS) in core collec-
tion is an effective way for candidate gene identification in 

functional genome research [2]. Moreover, the larger num-
ber of SSR markers are essential for high density linkage 
map construction in quantitative trait locus (QTL) mapping 
[34]. The further selection and verification of more SSRs 
and their corresponding markers should be developed for 
functional genome research, as well as the molecular marker 
assisted breeding in the further. Although the study provides 
the genome features of common vetch, and the information 
will help to design whole genome sequencing strategies. 
A further research including chromosomal assembly, gene 
annotation, SSR mapping, etc. still remains to be analyzed 
since the complete genomic information is extremely useful.

Conclusion

In this study, we obtained the first insight into the genome 
features of common vetch, and the information will help 
to design whole genome sequencing strategies. The newly 
identified SSRs were verified in the genetic diversity 
analysis of Chinese common vetch germplasm resources. 
This study provides the valuable information for functional 
genome research in common vetch, as well as the molecu-
lar marker assisted breeding in the further.
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