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We analyzed the number of cumulative positive cases of COVID-19 as a function of time in
countries around the World. We tracked the increase in cases from the onset of the
pandemic in each region for up to 150 days. We found that in 81 out of 146 regions the
trajectory was described with a power-law function for up to 30 days. We also detected
scale-free properties in the majority of sub-regions in Australia, Canada, China, and the
United States (US). We developed an allometric model that was capable of fitting the initial
phase of the pandemic and was the best predictor for the propagation of the illness for up
to 100 days. We then determined that the power-law COVID-19 exponent correlated with
measurements of human mobility. The COVID-19 exponent correlated with the magnitude
of air passengers per country. This correlation persisted when we analyzed the number of
air passengers per US states, and even per US metropolitan areas. Furthermore, the COVID-
19 exponent correlated with the number of vehicle miles traveled in the US. Together, air
and vehicular travel explained 70% of the variability of the COVID-19 exponent. Taken
together, our results suggest that the scale-free propagation of the virus is present at
multiple geographical scales and is correlated with human mobility. We conclude that
models of disease transmission should integrate scale-free dynamics as part of the
modeling strategy and not only as an emergent phenomenological property.

© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Understanding how viruses propagate in the human population is of paramount importance in global health. The novel
coronavirus (SARS-COV2) that causes COVID-19 is a global pandemic which has not only taken an immense toll in human lives
lost but has also severe social and economic impacts (Alvarez-Risco et al., 2020, 2021; Zhang et al., 2021). As of September 14,
2021, 225,024,781 confirmed positive COVID-19 cases including 4,636,153 deaths have been reported toWHO (D-19 Dashboa,
2020).

There is an increasing number of studies showing that the number of positive cases of COVID-19 have power-law dynamics
(Blasius, 2020; Komarova et al., 2020; Manchein et al., 2020; Marsland & Mehta, 2020; Sher et al., 2020; Singer, 2020;
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Vasconcelos et al., 2021; Verma et al., 2020; Ziff& Ziff, 2020). If indeed, the propagation of the illness is governed by scale-free
processes and is not only an emergent dynamic from complex interactions that assume exponential growth then, modeling
strategies might have to be revised. However, these studies have focused on a few countries or regions. Thus, it is important to
understand how prevalent power-law propagation is around the World. It is also important to understand if a power-law
spread of the illness measured at a national level is reflected in its sub-regions. Furthermore, since policies on restricting
the spread of the virus have included reducing mobility, it is necessary to find how that affects the power-law properties of
the propagation of COVID-19 (Vazquez, 2020).

Traditional modeling approaches to illness propagations, such as COVID-19, assume an exponential growth (Chen et al.,
2020; Liang, 2020; Liu et al., 2020; Pinter et al., 2020; Santosh, 2020; Shinde et al., 2020). However, increasing evidence
shows that human dynamics have power-law properties (Barab�asi, 2007; Grabowski, 2007; Ma et al., 2011; Muchnik et al.,
2013). In fact, recent work has shown that multiple measurements of human activity follow allometric properties such as
w fNa, where N is the number of individuals and w a metric of activity (Bettencourt et al., 2010). Since most of the world
population now lives in urban areas (United Nations, 2018) it is important to consider how such urban human dynamics
affects the spread of illnesses. Furthermore, since asymptomatic transmission is a prevalent feature of SARS-Cov-2 (Gandhi
et al., 2020) then the virus will propagate in a population following the dynamics of the healthy population, as opposed to
illnesses in which the probability of infections is highest when individuals are symptomatic (Serhani & Labbardi, 2020).
Therefore, the spread of COVID-19 could be influenced by allometric properties observed in urban areas.

In this project, our aimwas to understand the spread of the virus at the beginning of the pandemic. For this, we analyzed
the total positive cases of COVID-19 in all countries and regions in the World. We also analyzed sub-regional behavior in four
countries in three continents. Furthermore, we studied the spread of the virus in the United States (US) at the national, state,
and urban levels. We found that the majority of countries followed a power-law in the cumulative number of positive cases of
COVID-19 for at least 30 days. The majority of the sub-regions of the countries we studied, including 33 of the 50 US states,
followed power-law dynamics. We built an allometric growth model that was able to replicate the power-law increase in
COVID-19 cases. More interestingly, the model was also capable of capturing the dynamics of the initial days of the pandemic,
which did not follow power-law increases. We tested the model's predictive power by extrapolating its values up to 100 days
and compared to actual data.We show that the allometric growthmodel is better than a simple power-law or exponential fits.
We end the study by showing that the value of the COVID-19 power-law exponent is correlated with air travel at the world,
national, and metropolitan scales. For the US we show that 70% of the variance of the value of the power-law exponent is
explained by air and vehicular travel. Overall, our work shows that power-law behavior of the spread of COVID-19 is observed
across scales, it is related to human mobility, and that allometric models are a good strategy to increase the predictive power
of computational studies.

2. Results

2.1. Power-law propagation of COVID-19 at the global and regional scales

We studied the number of cumulative test positive cases of COVID-19 (CðtÞ) in 187 countries and territories from January
22, 2020 to August 23, 2020. We wanted to obtain a date that acted as reference for a period of sustained increase. For this
purpose, for each region, we started our analysis after CðtÞ � ðCTh ¼ 100Þ. We did this to avoid plateaus and sudden changes in
cases reported in the first days of the pandemic. Then, we calculated the ratio between 21 days (R2 ¼ Cðt þ 21Þ= CðtÞ) and we
selected the day (Co) when R2 � 2 for the first time. As a result, we obtained a list of 146 regions. The other 41 regions included
countries with small populations; regions that had a spread of the pandemic slower than R2; or that when they reached that
threshold did not have enough data points for analysis (at least 35 days). We then fitted the cumulative cases per day to a
power-law, CðtÞ ¼ ata þ b, where a is the COVID-19 exponent; or an exponential function, CðtÞ ¼ A expðt =tÞþ d, where t is
the time constant. In order to compare the fits, we fitted all the traces over a range that started Fs ¼ 5 days after Co and lasted
30 days (Frange), except for Australia (Frange ¼15) and China (Fs ¼ 3 and Frange ¼ 10) because of their early strict social mobility
policies. The mean value of cumulative cases on Co was 124.31 ± 5.44 SEM cases. We calculated the root mean square error
(RMSE) and the r-square values for each fit. We determined the goodness of fit by comparing the RMSE of the power-law and
exponential fits. The fit with the lowest RMSE had to have an r-square larger than 0.97. This analysis showed 81 regions were
better fit by a power-law, 31were better explained by an exponential fit, and 34 by neither (see SupplementaryMaterials). We
plotted the trajectories of all regions fitted by a power-law for 100 days after their respective Co (107 of the 146 areas had
enough data points). This showed that the propagation followed a similar trajectory (Fig. 1). The average value of the COVID-
19 exponent was aWorld ¼ 1.50 ± 0.08 SEMwith an inter-quantile range of 0.99. The propagation of COVID-19 seems to follow
a different trajectory than previous pandemics. For example, we analyzed the total positive cases during the Ebola epidemic in
West Africa and influenza deaths during the 1918 pandemic in Philadelphia and found that both follow exponential fits (Ma,
2020) (Supplementary Materials Figure S1). Thus, our analysis suggested that most of the regions in the world experienced a
power-law increase in the propagation of COVID-19.

Wewere interested in understanding if the propagation of COVID-19 followed power-law dynamics in sub-regions within
countries. For this, we chose Australia, Canada, China, and the Unites States (US). In the case of Australia, our algorithm
determined that the propagation of COVID-19 followed an exponential function. Nevertheless, we studied the propagation of
the pandemic in all Australian states. In order to detect the onset of activity in a smaller population we used an CTh ¼ 20
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Fig. 1. Power-law propagation of COVID-19 across the World. A) cumulative positive cases reported for 81 countries and regions over time. B) same data as in A
but the trajectories were referenced to their first value. The gray line is the fit to the mean of the trajectories resulting in Log10ðCÞ ¼ 1:27 * t þ 1:62. C is the
cumulative number of cases for each country. See text for details.
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(Fig. 2a). Our regional analysis shows that 5 of the 8 Australian states had a power-law propagationwith a mean of astatesAustralia ¼
1:47±0:26 SEM. The states that followed power-law dynamics includedmost of the Australian population. However, themost
populous state, New SouthWales, followed exponential growth. Another aspect that did not allow the power-law dynamics to
be reflected nationally was that the start of the epidemic in each state (day of first reported case) took place over 18 days.
Thus, while the propagation of the illness appeared exponential at the national level the majority of the country showed
power-law behavior.

The same analysis in Canada showed that 8 out of 14 provinces and territories followed power-law propagation with an
average of astatesCanada ¼ 1:84±0:32 SEM. In this case, the national propagation of COVID-19 also followed a power-law increase
with a value of aCanada ¼ 2:57±0:08 CI95. In this case, the national result was influenced by the faster propagation of COVID-
19 inmore populous provinces, with British Columbia aBCCanada ¼ 3:20, aOntarioCanada ¼ 3:27, and aQuebecCanada ¼ 2:05 (Fig. 2B). In China, 19
of the 30 provinces were also described with a power-law. The average propagation of aProvincesChina ¼ 1:50 ± 0:10 SEM was again
slower than for the entire country (aChina ¼ 2:14 ± 0:17 CI95), which was dominated by Hubei, where the virus originated
(aHubeiChina ¼ 2:14 ± 0:17 CI95) (Fig. 2C). Finally, for the US, we used CTh ¼ 10, Fs ¼ 5, and FRange ¼ 20. This analysis showed that
33 of 50 states had power-law dynamics (aStatesUS ¼ 2:37± 0:12 SEM). Again, the analysis for the entire country shows a faster
propagation (aUS ¼ 3:98 ± 0:21 CI95) (Fig. 3). Overall, our regional analysis shows that COVID-19 propagated following
power-law dynamics in the early stages of the pandemic.

2.2. An allometric model predicts the spread of cases

The propagation of COVID-19 seems to have been driven by asymptomatic infected individuals. This is different from other
illnesses in which patients are infectious when showing symptoms. Thus, the modeling approach should be based on the
behavior of healthy populations. Increasing information shows that the metrics of metropolitan community activity have a
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Fig. 2. The sub-regions of Australia, Canada, and Chine follow power-law increase in cases of COVID-19. A) Regions in Australia that has power-law behavior. The
black dots indicate the first and last point used for the fitting, all ranges were the same for each sub-region. The gray straight line is the plot of the fit. B) and C)
same analysis for the provinces of Canada and China that followed power-law behavior.

125



Fig. 3. The propagation of COVID-19 in the US follows a power-law behavior in most states. The cumulative number of cases (C) were analyzed after surpassing
100 cases in each state. In all cases the power-law function was fitted 5 days after the reference date for 20 days. See text for details.
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power-law, or allometric, scaling with the size of the population (Bettencourt et al., 2010). We assumed that human activity,
for example travel, shows such behavior and thus the activity of the infected population could be described by:

WðtÞ ¼ aCðtÞb (1)
As postulated by others (see eq 4.65 and 4.67 in (West, 2017)), the state of resources used by a population can be described
by:

WðtÞ ¼ R CðtÞ þ E
dCðtÞ
dt

(2)
Where R and E are constants. Combining equations (1) and (2), re-arranging, and renaming variables we obtained:

dCðtÞ
dt

¼ gCðtÞb � bCðtÞ (3)
Where g is the classical rate of infections and, in our simplifiedmodel, b is the recovery rate. This model is equivalent to one in
which the rate of infection depends on time:
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Fig. 4. The allometric model predicts the behavior of the propagation COVID-19. A) Left: example of fitting a power-law and allometric function to the same date
of cumulative cases (C) of COVID-19 for Greece. Middle: Examples of cumulative cases and allometric predictions for up to 100 days after the date of the last point
used to fit the curves. Right: The mean percentage error for 20 countries over 100 days after the last point used to fit the exponential (black), power-law (red), and
allometric (green) functions. The lighter shade curves correspond to the 95% confidence intervals. B) same as in A applied to 33 states that follow power-law
dynamics in the United States.
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dCðtÞ
dt

¼ gCðtÞb�1CðtÞ � bCðtÞ ¼ g*ðtÞCðtÞ � bCðtÞ (4)
In the Methods section, we show that the solution to equation (3) has a temporal regime in which the model has power-
law behavior, Cfta, and the relation of b with a is:

a ¼ 1
1� b

(5)
With b<1.
We fitted the solution of our allometric model using the same parameters used to fit the power-law function. We used the

value of a that we calculated before and allowed the fitting algorithm to get values for g and b. While fitting the data from the
start of the spread was not our objective, we compared the values predicted by the fits to the number of cases at C0. This
shows that in the allometric fit deviated�52%, the power-law�73% and the exponential 181% (see examples in Fig. 4A and B).
These results suggested that the allometric model could better fit the behavior of cases in the initial days of the pandemic. In
order to compare the predictive power of the power-law, exponential, and allometric fits we calculated the percentage
difference between the models and real data for up to 100 days after the last day used for the fit (only 20 regions had enough
data points for this analysis). This analysis shows that the allometric fit is the best model to predict the propagation of COVID-
19 (Fig. 4A, right). The same analysis for US states also shows that the allometric model provides reliable predictions of the
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Fig. 5. The power-law COVID-19 exponent (a) correlates with human travel. A) scatter plot of the value of a against the scale of total number of passengers
enplaned in 2017. B) and C) same as in A but for total passengers per state in the US (B) and for metropolitan areas served by the major airports in the US. D-F) as
in A-C for the average miles traveled by vehicle in urban (D), suburban (E), and rural (F) areas. Lines were plotted when the correlations were significant. See text
for details.
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evolution of the spread (Fig. 4B). Overall, our allometric model is a parsimonious framework to model the initial spread of the
pandemic and provides strong predictive power.

2.3. Human travel is correlated with propagation of COVID-19 from countries to cities

Lockdown measures enacted to reduce the spread of COVID-19 included the reduction of human mobility. In this context,
we wanted to understand how travel affects the value of a. As such, we analyzed the relationship between the number of air
passengers per country against the value of a. We found that the magnitude (Log10) of the number of passengers strongly
correlated to the value of a, with rWorld

air ¼ 0:71; p≪0:05 (Fig. 5A).We repeated this analysis for the number of air passengers in
the 33 US states that were described with a power-law. Here again we found a strong correlation, rUSair ¼ 0:66; p≪0:05
(Fig. 5B). We also analyzed the countries and US states that were better described by an exponential fit. In this case, we again
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Fig. 6. The value of the COVID-19 exponent is not correlated with population density. The scatter plot shows the value of the COVID-19 exponent for 54
metropolitan areas and cities. The hollow symbols (o) correspond to cities with major airports analyzed in Fig. 5.
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found a significant correlation between the value of the calculated time constant and the magnitude of air travel
(Supplementary Figure S2). This suggested that the processes represented by a time constant could be also part of a slower
power-law process. Furthermore, we analyzed the spread of COVID-19 in 30 metropolitan areas that corresponded to the
largest airports by number of passengers in the US. From these, 23 metropolitan regions serviced by those airports showed a
power-law increase and there was a correlation coefficient of rcitiesair ¼ 0:53; p ¼ 0:01 (Fig. 5C).

The previous analysis suggest that air travel affects the dynamics of the propagation of the virus. However, this could be
due to long-distancemovement and not directly related to air travel. In order to compare the propagation of the virus to other
forms of travel we studied vehicle miles traveled in the US. We obtained the data for urban, suburban, and rural travel per
state. Our results show that there is no correlation between the value of a per state against the corresponding average urban
miles (rUrbanmiles US ¼ � 0:21; p ¼ 0:23) and suburbanmiles traveled (rSuburbanmiles US ¼ 0:16; p ¼ 0:38, Fig. 5D and E). However, there is
a positive correlation with rural miles traveled (rRuralmiles US ¼ 0:43; p ¼ 0:01, Fig. 5F). There was no correlation between the
number of air passengers per state and any of the three measurements of miles traveled per state (although the urban miles
were almost significant, see Table S1 Supplementary Materials), suggesting that the two modes of transport contribute
independently to the propagation of the virus.

The metropolitan areas we studied are also areas of high population density. We calculated the value of a for 54
metropolitan areas, including those that contain the largest airports. This analysis showed that there was a barely significant
correlation with the value of a with the metropolitan areas with large airports (r ¼ 0:42; p ¼ 0:05). However, when
compared to other metropolitan areas with similar population densities this correlation is not significant (r ¼ 0:34; p ¼
0:10). Thus, air transportation is more highly correlated to the value of a than population density (Fig. 6). Together, our
analysis suggests a strong effect of air travel magnitude in the power-law propagation of COVID-19.

Finally, we constructed linear models for all the combinations of air passenger and miles traveled by state against their
respective value of a. This showed that air passengers accounted for 43% of the observed variance of a but when combined
with the three measurements of miles traveled by vehicle the model accounts for 70% of the variance observed in the value of
a (Fig. 7).
3. Discussion

The power-law propagation of COVID-19 was reported recent in the pandemic (Li et al., 2020; Ziff & Ziff, 2020). In our
current work, we found that the total positive cases of COVID -19 infection follows a power-law increase in themajority of the
regions of the World as well as at the regional level in Australia, Canada, China, and the US.

The emergence of a power-law propagation of the virus could be due to different time constants. The time constants of
propagation could be caused by population densities. When adding together exponential propagation curves with different
time constants corresponding to different sub-regions and metropolitan areas this could appear as a power-law propagation.
Another possibility for power-law propagation could be due to lockdown measures (Vazquez, 2020). However, our analyses
show that the propagation of the virus is not explained by population density of metropolitan areas, but instead, by the
presence of large transportation hubs. At the state level, we also showed that the propagation of infections correlated to rural
miles, which in average are longer distances than for urban and sub-urban travel. Consistently with these results, our analysis
of sub-regions in multiple countries with awide range of populations and land area suggest that the propagation of COVID-19
129



Fig. 7. The variance observed in the power-law COVID-19 exponent (a) in the US is explained by air and vehicle travel. A) Rendering of the values of a versus
number of air passengers and rural miles traveled per US state. The linear model (grid) explains 57% of the variance. A model including urban and suburban miles
explains 70%. B) a different view angle of the same data. See text for details.
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does not strongly depend on population density. This multi-scale property suggests that the propagation of the virus is
following scale-free human dynamics properties (Brockmann, 2008).

The power-law infection dynamics could also be comparable to the experimentally observed power-law dispersal of bank
note trajectories (Brockmann, 2008) which was used as a proxy for human travel on all geographical length scales. Other
previous work (Brockmann et al., 2005, pp. 81e91; Hufnagel et al., 2004) showed that the spread of SARS 2003 can be
reproduced by amodel that considers nearly the entire civil aviation network; however, this model could only describe global
trends but not local spatial scales. Other work has found an association betweenmobility patterns and COVID-19 transmission
in the US (Badr et al., 2020). Their analysis showed that mobility patterns were strongly correlated with decreased COVID-19
case growth rates for the most affected counties in the US. An early analysis of COVID-19 propagation show the importance of
air travel in the propagation of the virus (Wu et al., 2020).

The traditional SIR (Shakarian et al., 2015) (susceptible, infected, recovered) model can be recovered from our allometric
equation by setting b¼ 1. An area of further study is to understand how some illnesses are better described by the classical SIR
approach. In order to formulate the allometric model we hypothesized that the behavior of healthy populations follows scale-
free dynamics. This allometric property could arise from small world networks (Amaral et al., 2000) in human society. Since
COVID-19 seems to have a significant component of asymptomatic transmission, the propagation of the virus has access to the
two important features of small world networks: a clustering coefficient larger than in random networks, and a logarith-
mically increasing diameter that depends on the number of interactions. In this context, when a virus propagates symp-
tomatically, then we assume that individuals reduce their interactions, particularly those that go across clusters, thus not
allowing the virus to propagate across the network and only interacting with their nearest connections. However, further
modeling and analytical work is required to test these ideas.
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Our analysis confirms that the power-law dynamics of COVID-19 is correlated to human dynamics. In fact, a is correlated to
air travel passengers per country. In the US, a is also correlated to air passengers per state and metropolitan area. Further-
more, a is correlated with some types of vehicle travel. Our simplified allometric model was able to predict the evolution of
the illness several weeks in advance. These observations let us to conclude that currentmodels of disease transmission should
integrate power-law dynamics as part of the modeling strategy and not only as an emergent phenomenological property.

4. Methods

4.1. Data

The data for the number of cases of COVID-19 across the World was obtained from the GitHub repository of the Johns
Hopkins Center for Systems Science and Engineering (JHU CSSE COVID-19 Data, 2020). The data file contained information for
sub-regions in Australia, Canada, and China (Dong et al., 2020).

The data for US states (us-states.csv) and counties (us-counties.csv) were obtained from the New York Times database
(Times-19 cases, 2021).

The data for World air travel was obtained from the World Bank (BankWorld Air Travel, 2021). We used the data reported
for 2019. The data for Norway and Swedenwas obtained fromwww.statista.com (Statista. Air passengers, 2021a; Statista. Air
passengers, 2021b).

The data for the number of air travel passengers for the US was obtained from the 2019 airport ranking by the Bureau of
Transportation Statistics (Statistics BoS airpor, 2021). From the location of each airport, we computed the total number of
passengers for each state. In the case of New York, we incorporated the numbers of La Guardia (located in New Jersey). The
data for population densities was obtained from https://worldpopulationreview.com/us-cities (World Population Review.,
2021).

To calculate the spread of COVID-19 in the metropolitan areas served by major airports we used the US county database.
We created custom software that extracted the number of cases for the counties that corresponded to a given metropolitan
area. The cumulative number of COVID-19 in each metropolitan area was fitted as in all the other cases.

The data on number of vehicles miles traveled for each US state in urban, suburban, and rural areas was also obtained from
the Bureau of Transportation statistics that corresponded to 2017 (BOT Statistics, 2021).

The data on the 1918 pandemic in Philadelphia and the Ebola pandemic in West Africa were obtained from Figs. 1 and 2 of
(Ma, 2020) by data extraction using the software ‘WebPlot Digitizer’ (Drevon et al., 2017).

4.2. Model

We solved the allometric growth equation (Eq. (3)) where b<1 and g and b are constants. If g is much larger than b, then
the growth of IðtÞ saturates to reach the equilibrium value:

Ceq ¼
�
g

b

� 1
1�b

(6)
If we make a change of variables in Eq. (3):

CðtÞ ¼ uðtÞr (7)

we obtain,
_u ¼ 1
r

n
gu1�ð1�bÞr � bu

o
(8)
We set r ¼ 1
1�b which turns Eq. (8) into:

_u ¼ �g0uþ b0 (9)

with
g0 ¼ ð1� bÞb (10)

and
b0 ¼ ð1� bÞg (11)
Thus, we get
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CðtÞ ¼
�
g

b

�
1� e�ð1�bÞbt

�
þ e�ð1�bÞbtCð0Þ1�b

� 1
1�b

(12)

where Cð0Þ is the number of cumulative cases at t ¼ 0. In the case for a very extended time < 1 1 , the intermediate time
1�b b
regime is described by:

CðtÞfta (13)

with
a ¼ 1
1� b

(14)
We used Eq. (12) to fit the cumulative positive cases of COVID-19 throughout this study.
We used a Log-Log transformation of the data to fit the power-law function, and a Log-Linear, for the exponential. In this

way, we fitted a line for the power-law and exponential cases. For the allometric function, we did not perform any modifi-
cations. In all instances we used the fit() function in MATLAB with a non-linear least square algorithm. Individual fits are
reported with their 95% confidence intervals (CI95). Pooled data is reported with standard error of the mean (SEM). All scripts
and data files are available at www.github.com/Santamarialab.

Author contributions

Rohisha Tuladhar: Methodology, Formal analysis, Software, Writing- Review and Editing. Paolo Grigolini: Conceptual-
ization, Methodology. Fidel Santamaria: Conceptualization, Methodology, Software, Formal analysis, Writing- Original Draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.idm.2021.12.003.

References

Alvarez-Risco, A., Del-Aguila-Arcentales, S., Rosen, M. A., García-Ibarra, V., Maycotte-Felkel, S., & Martínez-Toro, G. M. (2021). Expectations and interests of
university students in COVID-19 times about sustainable development goals: Evidence from Colombia, Ecuador, Mexico, and Peru. Sustainability, 13(6),
3306.

Alvarez-Risco, A., Mejia, C. R., Delgado-Zegarra, J., Del-Aguila-Arcentales, S., Arce-Esquivel, A. A., Valladares-Garrido, M. J., et al. (2020). The Peru approach
against the COVID-19 infodemic: Insights and strategies. The American Journal of Tropical Medicine and Hygiene, 103(2), 583e586.

Amaral, L. A. N., Scala, A., Barth�el�emy, M., & Stanley, H. E. (2000). Classes of small-world networks. Proceedings of the National Academy of Sciences, 97(21),
11149e11152.

Badr, H. S., Du, H., Marshall, M., Dong, E., Squire, M. M., & Gardner, L. M. (2020). Association between mobility patterns and COVID-19 transmission in the
USA: A mathematical modelling study. The Lancet Infectious Diseases, 20(11), 1247e1254.

Bank TW. (2021). World air travel. Available from: https://data.worldbank.org/indicator/IS.AIR.PSGR.
Barab�asi, A.-L. (2007). The architecture of complexity. IEEE Control Systems Magazine, 27(4), 33e42.
Bettencourt, L. M., Lobo, J., Strumsky, D., & West, G. B. (2010). Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime

across cities. PLoS One, 5(11), Article e13541.
Blasius, B. (2020). Power-law distribution in the number of confirmed COVID-19 cases. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(9), Article

093123.
BOT Statistics. (2021a). Vehicle miles traveled. Available from: https://www.bts.gov/statistical-products/surveys/vehicle-miles-traveled-and-vehicle-trips-

state.
Brockmann, D. (2008). Anomalous diffusion and the structure of human transportation networks. The European Physical Journal - Special Topics, 157(1),

173e189.
Brockmann, D., Hufnagel, L., & Geisel, T. (2005). Dynamics of modern epidemics. SARS: A case study in emerging infections.
Chen, Y.-C., Lu, P.-E., Chang, C.-S., & Liu, T.-H. (2020). A time-dependent SIR model for COVID-19 with undetectable infected persons. IEEE Transactions on

Network Science and Engineering, 7(4), 3279e3294.
Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases, 20(5), 533e534.
Drevon, D., Fursa, S. R., & Malcolm, A. L. (2017). Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behavior Modification,

41(2), 323e339.
Gandhi, M., Yokoe, D. S., & Havlir, D. V. (2020). Asymptomatic transmission, the Achilles' heel of current strategies to control Covid-19. Mass Medical Soc.
Grabowski, A. (2007). Interpersonal interactions and human dynamics in a large social network. Physica A: Statistical Mechanics and Its Applications, 385(1),

363e369.
Hufnagel, L., Brockmann, D., & Geisel, T. (2004). Forecast and control of epidemics in a globalized world. Proceedings of the National Academy of Sciences,

101(42), 15124e15129.
JHU CSSE COVID-19 Data. COVID-19 cases database 2020 [Available from: https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/

csse_covid_19_time_series.
132

http://www.github.com/Santamarialab
https://doi.org/10.1016/j.idm.2021.12.003
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref1
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref1
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref1
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref2
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref2
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref2
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref3
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref3
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref3
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref3
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref3
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref4
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref4
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref4
https://data.worldbank.org/indicator/IS.AIR.PSGR
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref6
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref6
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref6
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref7
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref7
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref8
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref8
https://www.bts.gov/statistical-products/surveys/vehicle-miles-traveled-and-vehicle-trips-state
https://www.bts.gov/statistical-products/surveys/vehicle-miles-traveled-and-vehicle-trips-state
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref9
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref9
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref9
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref10
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref11
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref11
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref11
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref12
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref12
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref13
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref13
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref13
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref15
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref16
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref16
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref16
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref17
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref17
http://refhub.elsevier.com/S2468-0427(21)00084-1/sref17
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series


R. Tuladhar, P. Grigolini and F. Santamaria Infectious Disease Modelling 7 (2022) 122e133
Komarova, N. L., Schang, L. M., & Wodarz, D. (2020). Patterns of the COVID-19 pandemic spread around the world: Exponential versus power laws. Journal of
The Royal Society Interface, 17(170), 20200518.

Liang, K. (2020). Mathematical model of infection kinetics and its analysis for COVID-19, SARS and MERS. Infection, Genetics and Evolution, 82, 104306.
Li, M., Chen, J., & Deng, Y. (2020). Scaling features in the spreading of COVID-19. arXiv preprint arXiv:200209199.
Liu, M., Thomadsen, R., & Yao, S. (2020). Forecasting the spread of COVID-19 under different reopening strategies. Scientific Reports, 10(1), 20367.
Ma, J. (2020). Estimating epidemic exponential growth rate and basic reproduction number. Infectious Disease Modelling, 5, 129e141.
Manchein, C., Brugnago, E. L., da Silva, R. M., Mendes, C. F., & Beims, M. W. (2020). Strong correlations between power-law growth of COVID-19 in four

continents and the inefficiency of soft quarantine strategies. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(4), Article 041102.
Marsland, R., & Mehta, P. (2020). Data-driven modeling reveals a universal dynamic underlying the COVID-19 pandemic under social distancing. medRxiv.
Ma, K., Wang, Z., Jiang, J., Zhu, G., & Li, W. (2011). Power law and small world properties in a comparison of traffic city networks. Chinese Science Bulletin,

56(34), 3731e3735.
Muchnik, L., Pei, S., Parra, L. C., Reis, S. D., Andrade, J. S., Jr., Havlin, S., et al. (2013). Origins of power-law degree distribution in the heterogeneity of human

activity in social networks. Scientific Reports, 3(1), 1e8.
Pinter, G., Felde, I., Mosavi, A., Ghamisi, P., & Gloaguen, R. (2020). COVID-19 pandemic prediction for Hungary; a hybrid machine learning approach.

Mathematics, 8(6), 890.
Santosh, K. (2020). COVID-19 prediction models and unexploited data. Journal of Medical Systems, 44(9), 1e4.
Serhani, M., & Labbardi, H. (2020). Mathematical modeling of COVID-19 spreading with asymptomatic infected and interacting peoples. Journal of Applied

Mathematics and Computing, 1e20.
Shakarian, P., Bhatnagar, A., Aleali, A., Shaabani, E., & Guo, R. (2015). The SIR model and identification of spreaders. In P. Shakarian, A. Bhatnagar, A. Aleali, E.

Shaabani, & R. Guo (Eds.), Diffusion in social networks (pp. 3e18). Cham: Springer International Publishing.
Sher, M., Shah, K., Khan, Z. A., Khan, H., & Khan, A. (2020). Computational and theoretical modeling of the transmission dynamics of novel COVID-19 under

Mittag-Leffler power law. Alexandria Engineering Journal, 59(5), 3133e3147.
Shinde, G. R., Kalamkar, A. B., Mahalle, P. N., Dey, N., Chaki, J., & Hassanien, A. E. (2020). Forecasting models for coronavirus disease (COVID-19): A survey of

the state-of-the-art. SN Computer Science, 1(4), 1e15.
Singer, H. M. (2020). The COVID-19 pandemic: Growth patterns, power law scaling, and saturation. Physical Biology, 17(5), Article 055001.
Statista. (2021a). Air passengers Norway. Available from: https://www.statista.com/statistics/716952/number-of-passengers-at-airports-in-norway/.
Statista. (2021b). Air passengers Sweden. Available from: https://www.statista.com/statistics/797084/monthly-number-of-passengers-at-airports-in-

sweden/.
Statistics BoT. (2021). US airport rankings. Available from: https://cms7.bts.dot.gov/airport-rankings-2019.
Times TNY. (2021). COVID-19 cases for the US [Available from: https://github.com/nytimes/covid-19-data.
United Nations. (2018). World urbanization: United Nations [Available from: https://www.un.org/development/desa/en/news/population/2018-revision-of-

world-urbanization-prospects.html.
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