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Abstract

Genetic factors have long been recognized as important determinants of

interindividual variability in drug efficacy and toxicity. However, despite the

increasing number of established gene–drug associations, candidate

polymorphisms can only explain a fraction of the genetically encoded

functional variability in drug disposition. Advancements in genetic profiling

methods now allow to analyse the landscape of human pharmacogenetic

variations comprehensively, which opens new opportunities to identify novel

factors that could explain the “missing heritability.” Here, we provide an

updated overview of the landscape of pharmacogenomic variability based on

recent analyses of population-scale sequencing projects. We then summarize

the current state-of-the-art how the functional consequences of variants with

unknown effects can be quantitatively estimated while discussing challenges

and peculiarities that are specific to pharmacogenes. In the last sections, we dis-

cuss the importance of considering ethnogeographic diversity to provide equita-

ble benefits of pharmacogenomics and summarize current roadblocks for the

implementation of sequencing-based guidance of clinical decision-making.

Based on the current state of the field, we conclude that testing is likely to grad-

ually shift from the interrogation of selected candidate polymorphisms to com-

prehensive sequencing, which allows to consider the full spectrum of

pharmacogenomic variations for a true personalization of genomic prescribing.
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1 | INTRODUCTION

Pharmacogenetics is a scientific discipline with a long
history. The first description of interindividual

differences in adverse event risk after ingestion of fava
beans dates back to around 510 BC. However, it would
take more than two millennia until those differences
were linked to heritable factors. Since the beginning of
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the 20th century, progress in the field drastically acceler-
ated with important milestones including the concept
“inborn errors of metabolism,”1 coining the term “phar-
macogenetics”2 and the identification of an ever increas-
ing number of functionally relevant polymorphism in
drug-metabolizing enzymes, such as TPMT, CYP2D6,
CYP2C19 and NAT1/2. These findings were enabled
using forward genetics approaches, i.e., the identification
of patients with abnormal drug reactions followed by
their genetic interrogation.3,4 Later, the emergence of
genome-wide association study (GWAS) designs facili-
tated the further identification of significant pharmacoge-
netic biomarkers, including CYP2C9 rs1057910 for
phenytoin-related severe cutaneous adverse reactions,5

SLCO1B1 rs4363657 for statin-induced myopathy6 and
NUDT15 p.R139C for thiopurine-induced early
leukopenia.7

The increasing number of pharmacogenetic associa-
tions reported identified by diverse methodologies con-
ducted by a multiple of different labs entailed
considerable heterogeneity in variant nomenclature and
reporting, which hampered further progress. To
increase comparability between studies and increase
accessibility of report for non-experts, a systematic star
allele (*) nomenclature system was established with the
aim to simplify the names of these well-characterized
pharmacogenetic alleles. The first consolidated online
database for cytochrome P450 (CYP) star alleles was
established in 1999 hosted by Karolinska Institutet,
which provided a summary of alleles and their associ-
ated effects and facilitated rapid online dissemination of
new alleles.8 More recently, the resource was transi-
tioned into the Pharmacogene Variation Consortium
website.9

While it is estimated that 20% to 30% of interindivi-
dual variability in drug response results from genetic
factors,10 commonly interrogated polymorphisms could
explain around 70% to 80% of such variations.11,12 The
origin of the remaining so-called “missing heritability”
remains unclear. The increasing capability of sequenc-
ing methods revealed the tremendous complexity of
pharmacogenomic variation and identified a plethora of
rare variants with unknown functional effects. These
rare variations are plausible candidates to contribute at
least in part to this missing heritability.12 In this
review, we discuss experimental and computational
advances for pharmacogenomic variant identification
and interpretation. We furthermore highlight current
roadblocks and future opportunities for how these
might improve clinical decision to refine personalized
medicine.

2 | ADVANCES IN GENETIC AND
GENOMIC PROFILING METHODS
THAT ENABLE PGX

Genetic profiling technologies underwent impressive
developments over the last decades. Conceptually, phar-
macogenomic profiling methods can be divided into
(i) panel-based approaches that interrogate individual
candidate variations and (ii) sequencing-based
approaches that comprehensively interrogate predefined
genomic areas and can also identify novel variations.
Panel-based approaches are most commonly used in
clinical PGx. These methods either rely on PCR or mass
spectrometry to identify candidate variants and can vary
in scope between the interrogation of one or few vari-
ants up to multiple million variations. Mass spectromet-
ric methods are typically cost-effective for mid-
throughput applications, typically testing up to
36 markers in 384 individuals.13 In contrast, arrays are
highly variable in their gene coverage, inclusion of copy
number variations (CNVs) and mitochondrial mutations
between different models with current genome-wide
arrays differing between 240 000 variants and 4.1 mil-
lion.14,15 Furthermore, a growing number of
pharmacogene-specific arrays is available that comprise
“only” few hundred to thousand variants; however, as
these are focused exclusively on genes involved in phar-
macokinetics, pharmacodynamics and drug safety, their
coverage of clinically relevant pharmacogenetic varia-
tion is nevertheless more dense than in genome-wide
arrays. As such, the selection of genotyping array
should thus be done in coordination with the scope of
the research question at hand.

Irrespective of the choice of genotyping array, all
panel approaches have in common that they only cover
limited predefined sets of variants. Consequently, such
methods cannot identify variations in genomic positions
not covered by the array. This limits the utility of array-
based approaches to clinical genotyping of variants with
unknown functional consequences and to pharmacoge-
netic GWASs that aim to find genetic markers for drug-
related phenotypes. To comprehensively profile the phar-
macogenomic landscape, including rare and novel varia-
tions, sequencing of the relevant loci is required. In the
past three decades, sequencing methods have developed
from a low-throughput technology that could profile
around 1000 bases per day to massively parallelized next-
generation sequencing (NGS) or short-read platforms that
allow for the generation of around 1 Tb of sequence per
day on a single state-of-the-art instrument, which consti-
tutes a 109-fold increase.16,17

ZHOU ET AL. 453



While NGS has been a major catalyst for pharmacoge-
nomic research in recent years, short-read sequencing
methods cannot accurately profile complex or repetitive
genetic loci, which include multiple genes of high phar-
macogenomic relevance, such as CYP2B6, CYP2D6 and
HLAs.18 Long-read sequencing methods, also referred to
as “third generation sequencing,” aspire to overcome
these technological limitations. While short-read
sequencing is based on the release of pyrophosphate
upon extension of a nascent DNA strand, which typically
results in read lengths of 100–600 bp, long-read sequenc-
ing relies on the monitoring of polymerase activity on
single template molecules in real-time, resulting in reads
that commonly exceed 10 kb. For a detailed overview of
the technological basis of long-read sequencing, we refer
the interested reader to excellent reviews on this mat-
ter.19,20 Long-read sequencing facilitates the exact identi-
fication of CNVs and structural rearrangements and has
already demonstrated considerable advantages compared
to short-read methods for the profiling and phasing of
complex pharmacogenomic loci.21 Both short-read and
long-read sequencing have contributed to the identifica-
tion of pharmacogenomic variant and allele distributions
at the population scale.22,23 These projects have resulted
in the identification of tens of thousands of different
single-nucleotide variations (SNVs), indels and CNVs.
This pharmacogenomic landscape and current
approaches for its functional interpretation are discussed
in the following sections.

3 | ETHNOGEOGRAPHIC
PHARMACOGENOMIC DIVERSITY

Evaluation of pharmacogenomic variability between
human populations is receiving increasing interest. Over
the last two decades, studies have pinpointed numerous
clinically relevant single-nucleotide polymorphisms
(SNPs) and CNVs with distinct ethnogeographic fre-
quency profiles.24 Some well-studied population-specific
variations in CYP2D6, CYP2C19 and HLA-B are illus-
trated below.

Individuals of European descent are more likely to
carry loss-of-function variant CYP2D6*3 and *4, whereas
the decreased function allele CYP2D6*10 is the main
cause of decreased CYP2D6 activity in East Asia.25 In con-
trast, the gain-of-function variations CYP2D6*1xN and
*2xN are most abundant in Oceania, East Africa and the
Middle East.26 Increased CYP2C19 activity due to the
CYP2C19*17 allele is frequent in Europe (MAF = 23.1%),
the Middle East (MAF = 22.8%) and Africa
(MAF = 20.9%) but very rare in East Asia
(MAF = 0.7%).27 Interestingly, differences in CYP2D6 and

CYP2C19 allele frequencies not only differ between major
populations but can also be remarkably different between
relatively close ethnogeographic groups. For instance,
within Europe, frequencies of the inactive CYP2C19*2
allele differ between 8% in the Czech Republic and 21% in
Cyprus, while CYP2D6*4 varies between 10% in Finland
and 33.4% on the Faroe Islands.28 The resulting functional
differences at the population scale emphasize the poten-
tial utility of leveraging ancestry information for pharma-
cological treatment decisions.

Besides PK gene variability, specific variants in HLA
genes that constitute established risk factors of severe or
life-threatening drug hypersensitivity reactions, including
the Stevens–Johnson syndrome (SJS), the toxic epidermal
necrolysis (TEN), drug reaction with eosinophilia and
systemic symptoms (DRESS) and maculopapular erup-
tion (MPE) have pronounced ethnogeographic differ-
ences. The most clinically established case concerns the
associations of HLA-B*1502 with carbamazepine and
oxcarbazepine hypersensitivity. HLA-B*1502 is highly
prevalent in Asian populations with allele frequencies up
to 22%, whereas it is almost absent outside of Asia,29

resulting in population-stratified recommendations for
pre-emptive genotyping in the labels of these drugs. Simi-
larly, the frequency of the HLA-B*58:01 allele that is asso-
ciated with allopurinol-induced SJS/TEN/DRESS is
substantially higher across Asia and Africa, suggesting
that genotyping of HLA-B*58:01 in these populations
might be considered before initiating therapy for the
treatment of gout.29

Importantly, however, the ancestry information is not
sufficient to accurately guide pharmacological treatment.
As such, ethnicity can only serve as a weak-at-best proxy
of an individual’s genotype in the absence of additional
data and cannot depict the uniqueness of an individual’s
pharmacogenetic makeup.30 In this context, we find it
important to highlight the recent policy statement by the
American Academy of Pediatrics (AAP) for the “Elimina-
tions of Race-based medicine”.31 Specifically, the authors
of the white paper state that “race is a social, not a bio-
logic, construct, and the use of race as a proxy for factors
such as genetic ancestry is scientifically flawed”. It is
therein underlined that the inclusion of race as a guide
for therapeutic decision-making in many of the current
clinical algorithms or practice guidelines is rather
inferred, and not adequately supported by solid epidemi-
ologic evidence, which calls the notion of “equitable care
assertion” into question. In an effort to fix these inaccura-
cies, the medical guidance that incorporates race assign-
ment is under re-examination and reconsideration not
only by the AAP but also by pharmacogenetic expert
groups, such as the Clinical Pharmacogenetics Imple-
mentation Consortium (CPIC).
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In summary, it has become increasingly clear that
population studies cannot inform about an individual’s
genetic fingerprint with sufficient accuracy to guide the
selection of appropriate pharmacotherapy. From a scien-
tific perspective and abstracting from practical con-
straints, we argue that it is therefore time for population
pharmacogenomic advice to be complemented, if not
superseded, by genomic evaluations at the level of the
individual for an equitable and true personalization of
medicine.

4 | PHARMACOGENOMIC
VARIABILITY BEYOND WELL-
CHARACTERIZED
POLYMORPHISMS

Pharmacokinetic (PK) genes are involved in drug absorp-
tion, distribution, metabolism and excretion (ADME).
Notably, these genes are commonly under low evolution-
ary pressure at least in part due to the lack of endogenous
substrates and thus harbour a large repertoire of genetic
variants. Using large-scale pharmacogenomic sequencing
data of clinically relevant PK genes, we and others have
identified more than 69 000 variants, of which common
variants, including the well-characterized star alleles,
with minor allele frequencies (MAF) ≥ 1% accounted for
less than 2%.12,32–34 Across the 57 members of the human
CYP gene family, sequencing data from 6503 individuals

revealed 4025 SNVs that resulted in amino acid alter-
ations, of which 93% were rare with frequencies <1%.35,36

Furthermore, using more recent consolidated large-scale
sequencing data from 141 614 unrelated individuals iden-
tified 6016 exonic variants in the eight clinically most
important CYP genes alone, 98.8% and 96.8% of which
were rare with frequency below 1% and 0.1%, respec-
tively.27 Surprisingly, other important PK gene families,
such as ABC, SLC and SLCO transporters carried similar
numbers of rare genetic variations37–39 (Table 1). How-
ever, while CYP genes harbour >30 common decreased
and loss-of-function alleles, deleterious variations in drug
transporters were generally rare.

While PK variations are predominantly studied in
the germline genome, variants in pharmacodynamic
(PD) genes are commonly interrogated in oncology
where treatments are available that specifically target
certain somatic mutations. As of the writing of this
review, 74 somatic pharmacogenetic biomarkers in onco-
logical drug targets are recognized by the U.S. Food and
Drug Administration (FDA), and we refer the interested
reader to recent reviews on the topic.43,44 Curiously,
with notable exceptions, PD germline variability has
received considerably less attention. Among the well-
characterized PD associations are links between variants
in VKORC1 and warfarin response, CFTR variants with
drug selection for the treatment of cystic fibrosis and
associations between variations in β-adrenergic receptors
and response to anti-asthmatics. The landscape of PD

TAB L E 1 Pharmacogenomic variation characterized by large-scale sequencing data

Gene category
Gene
number

Sequencing
method

Sequenced
individuals

Variants
identified

Rare variants
identified (in %) References

CYPs 8 WGS and WES 141 614 6016 variants in
exons

98.8 Zhou and
Lauschke27

SLC transporters 401 WGS and WES 141 456 204 287 variants in
exons

99.8 Schaller and
Lauschke37

SLCO transporters 7 WGS and WES 138 632 9966 variants in
exons

99.3 Zhang and
Lauschke38

ABC transporters 48 WGS and WES 138 632 62 793 variants in
exons

98.5 Xiao et al.39

GPCRs 108 WES 60 706 14 192 missense
variants

97.2 Hauser et al.40

Drug target genes 202 Target gene
sequencing

14 002 1 variant per 17 bp >95 Nelson et al.41

Drug target genes 606 WGS and WES 138 632 479 860 variants in
exons

98.1 Zhou et al.42

Pharmacogenes 208 WES 60 706 69 923 variants 98.5 Ingelman-Sundberg
et al.12

Pharmacogenes 146 WGS and WES >6500 12 152 variants in
exons

92.9 Kozyra et al.32

Abbreviations: WES, whole-exome sequencing; WGS, whole-genome sequencing.
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gene variability has only been recently analysed compre-
hensively. In G-protein coupled receptors (GPCRs),
which constitute the targets of 34% of approved drugs,
sequencing has identified 14 192 missense variants, cov-
ering approximately 25% of all nucleotide positions
across the entire GPCRome.40 Further drug target
sequencing projects showed that rare variants are pre-
dominant also in other PD genes with around 800 000
genetic variants being identified across all FDA-
approved drug targets (98.1% of which were rare with
MAF < 1%).41,42,45

5 | FUNCTIONAL
INTERPRETATION OF RARE
PHARMACOGENOMIC VARIANTS

Given these vast numbers of identified variations in both
PK and PD genes, their correct functional interpretation
is of high importance if those variants are supposed to be
used to improve clinical decision-making. Heterologous
variant expression in cell lines, such as HEK293 cells, fol-
lowed by functional assays using appropriate endpoints is
considered as the gold-standard method to evaluate phar-
macogenetic variant function. In addition, epidemiologi-
cal association studies can provide another layer of
evidence in determining variant impact on patients.
However, these approaches are not suitable for the com-
prehensive interrogation of the pharmacogenomic

variability landscape for multiple reasons. First, in vitro
assays are generally low throughput and testing hundreds
of thousands of rare variants using conventional assays
would require excessive financial resources. Second,
experimental assays are time-consuming and require
trained laboratory staff, which makes them unsuitable to
rapidly deliver variant function results at the point of
care. And third, epidemiological analyses require suffi-
ciently large sample sizes to yield statistically significant
results. However, obtaining sufficiently large numbers of
rare variant carriers is not feasible or even impossible for
rare variants as impractical numbers of individuals would
need to be screened.

Given this preamble, it is thus not surprising that
computational predictions have emerged as the most
commonly used go-to method to assess the function of
otherwise uncharacterized variants. Computational
methods are often specialized for different variant classes
(missense, synonymous, frameshift, etc.) or types of func-
tional impacts (structural alterations, splice effects,
effects on gene regulation, etc.) and consider a variety of
features and parameters, including sequencing conserva-
tion, structure stabilities and functional genomic data to
derive their classifications (Figure 1). The arguably most
commonly used prediction methods are SIFT,47

PolyPhen-248 and CADD.49 Readers are referred to recent
reviews for a detailed discussion of variant effect predic-
tion principles and a comprehensive overview of cur-
rently available computational tools.46,50

F I GURE 1 Computational

algorithms assess different

genetic and genomic features.

Predictions are commonly

performed on variants located in

coding sequences (CDS), introns,

untranslated regions (UTR) and

putatively regulatory sequences

and evaluate a multitude of

different evolutionary,

structural, biochemical and

functional genomic parameters.

ESE/ESS, exonic splicing

enhancer/silencer; ISE/ISS,

intronic splicing enhancer/

silencer; NMD, nonsense-

mediated decay; RBP, RNA-

binding protein. Figure modified

with permission from Zhou

et al.46
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Importantly, however, these computational methods
generally underperform on pharmacogenetic variant sets
(Figure 2). The main reason is related to the critical
dependency of machine learning-based methods on the
quality of training datasets. With very few notable excep-
tions discussed below, computational algorithms use
pathogenic, that is, disease-associated, variants as positive
training sets and common variants with frequencies >5%
to 10%, which are not likely to be pathogenic, as negative
sets. However, pathogenicity and variant deleteriousness
are different concepts. While they overlap in genes

associated with genetic disease, pharmacogenes are rarely
associated with diseases, and thus, deleterious pharmaco-
genetic variants are rarely pathogenic. As discussed
above, multiple deleterious pharmacogenomic variants,
including CYP2C19*2, CYP2D6*4 and CYP3A5*3, are very
common in the general population25 resulting in misclas-
sifications already during model training. Related to the
focus of computational methods on pathogenicity rather
than deleteriousness predictions and based on the
assumption that conserved genomic regions are more
important for organismal fitness, sequence conservation

F I GURE 2 The predictive performance of

computational methods on pharmacogenomic

variants remains overall limited. (A) Predictive

accuracy of commonly used functional

prediction, conservation and ensemble methods

when applied to pharmacogenomic variants

with experimentally characterized functions.

Dataset adapted from Zhou et al.51 and Russell

et al.52 (B) Quantitative functional prediction of

well-characterized pharmacogenomic star alleles

and their correlation (Pearson’s r) to in vitro

activity. Variants whose function could not be

predicted with the algorithm in question are

shown in grey. Figure modified with permission

from Zhou and Lauschke53
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constitutes the most commonly used key parameter for
variant effect predictions.54 However, many pharmacoge-
netic loci are only poorly conserved and even deletions of
the entire gene body of a pharmacogene is
relatively common (allele frequency of deletions of
CYP2D6 are 1% to 6%).

To overcome these limitations, computational
methods have been developed that were specifically
trained on pharmacogenes. Using 337 experimentally
characterized variants across 44 pharmacogenes as train-
ing dataset, we optimized the performance of 18 partly
orthogonal machine learning algorithms and integrated
the best performing tools into an ensemble score termed
ADME Prediction Framework (APF).55 Notably, APF
achieved 93% accuracy when predicting loss-of-function
and neutral pharmacogenomic variants and outperformed
conventional variant predictors based on five-fold cross-
validations. Furthermore, unlike most other methods that
provide only binary classifications or risk propensities,
APF provided scores that are significantly correlated with
enzyme activity (R2 = 0.9, p = 2.9 � 10�5), opening pos-
sibilities for quantitative assessments of variant impact.
Notably, APF also performed well on predictions for
DPYD despite the fact that no DPYD variations were uti-
lized for model training.51 In contrast, APF performance
on the disease-associated drug transporter SLC10A1
(NTCP) was not higher than other algorithms.52 Similar
to APF, another machine learning-based model was
recently developed with good performance in prioritizing
NGS-derived pharmacogenomic variants.56

Besides those prediction methods applicable to the
entire pharmacogenome, several gene-specific predictors
have been developed. The DPYD-specific variant classifier
DPYD-Varifier was trained using in vitro functional data
of 156 missense DPYD variants and achieved 85% of pre-
dictive accuracy.57 Recently, a convolutional neural net-
work approach has been used to build prediction tools
for CYP2D6.58 By leveraging CYP2D6 long-read sequenc-
ing data, the model predicted CYP2D6 function in a con-
tinuous scale and demonstrated its performance superior
to conventional predictions that are based on diplotype/
phenotype categories or gene activity scores.59

Overall, computational tools constitute versatile and
effective means to rapidly evaluate the function of
uncharacterized or novel pharmacogenomic variants.
However, while their performance improved consider-
ably in recent years, it remains questionable whether
their accuracy is currently sufficient to warrant their use
for clinical applications. With increasing available experi-
mental data for model training and advances in machine
learning, computational approaches hold promise to fur-
ther improve, thereby paving the way for the clinical
implementation of sequencing-based PGx.

6 | IMPLEMENTATION AND
PRECISION MEDICINE

It is evident that NGS technologies can offer much
broader information on pharmacogenetic variability com-
pared to a panel of selected variants with established
functional impact. In the clinics, the usage of such
genetic information aspires to introduce a paradigm shift
from traditional prescribing to genome-considerate preci-
sion drug prescription (Figure 3). Utilizing variations for
which actionable information is available can provide a
first step, while further inclusion of uncharacterized or
private variations based on NGS aspires to provide fur-
ther possibilities for treatment individualization. It is crit-
ical to consider though that the clinical implementation
of NGS can only add value if there are rules and frame-
works in place regarding how to handle novel or even
unique variants for which the function is only predicted
based on computational models rather than experimen-
tally established using PK in vivo data. As such, extensive
clinical validations are required that carefully scrutinize
whether NGS can add value to the patient and the
healthcare system. This is particularly true if NGS data is
intended to alter the therapeutic regimen for a given
patient. We thus do not envision that novel uncharacter-
ized variations can directly guide prescribing in the near
future. However, we believe that lower intensity inter-
ventions, such as increasing monitoring frequency and
surveillance for carriers of rare, putatively deleterious but
otherwise uncharacterized variations might be a viable
way forward that could allow to add value to patients
already in the short-term without leaving the boundaries
of established prescribing practices. Importantly though,
already today, PGx-based dosing is subject to cautious
interpretations in clinical practice, as the overall relation-
ship between diplotypes and concrete dose advice is
dependent on parallel clearance pathways, concomitant
drug treatment with possible drug–drug interactions and
intolerability issues arising from PD variability.

From an immediate clinical perspective, we discuss
in the following multiple important considerations.
Issues that need to be addressed include considerations
of (1) which patients will qualify for a broader phar-
macogenomic investigation, (2) how will these patients
best be informed about the underlying purpose of the
PGx investigation and its corresponding implications,
(3) how will secondary findings be managed, (4) who
will be responsible for data management and interpre-
tation of the results within healthcare, (5) how should
PGx data be presented in a clinically useful format,
(6) can we achieve the necessary turnaround times to
achieve effective decision support, (7) how can we
ensure that important findings are utilized at the point
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of care and (8) how to deal with novel or even
patient-unique genetic variants without any functional
correlate. For the discussion of further issues related to
reimbursement, privacy and PGx education, we refer
the interested reader to previous reviews.60–62 While
many of these items are general, we do acknowledge
that some aspects are country- and healthcare system-
specific and discussion of those is provided from a
Swedish perspective.

1. Patient selection for NGS. This complex question
involves both organization of patient care in different
therapeutic areas, medical needs and the priority of
PGx with regard to different treatment regimens in
the frame of the allocation of limited healthcare
resources. At present, precision medicine and the
broader use of genomics has focused primarily on can-
cer treatment and the ambition to include all or at
least the majority of cancer patients has been
expressed in several countries, including Sweden.63

Utilizing these data for pharmacogenetic interpreta-
tions would be justified for the simple reason that the
data are already available and that these patients are
likely to benefit from the respective results during the
years to come within highly specialized care. How-
ever, it is currently difficult to integrate sequencing

into established routines outside of oncology due to
the lack of downstream analytics. Notably, in geriat-
rics or psychiatry, the potential value of PGx charac-
terization may be even higher due to increased
frequency of polypharmacy.64–66

2. Understanding the purpose of the PGx investigation.
Patient education and empowerment constitute
important issues of pharmacogenetic testing. It will
not be possible to carry out laboratory analyses that
the patient never approved or understood the purpose
of. As such, selection of specific genetic variants for
pharmacogenetic panel testing will be inappropriate
as neither the physician nor the patient can be
expected to understand the details and limitations of
the conducted tests as well as the relevance of gener-
ated results. Thus, a more paedagogic way might be to
perform pharmacogenetic testing using predefined
strategies for specific umbrella terms, such as “meta-
bolic drug elimination capacity” with regard to drug-
metabolizing enzymes or “drug hypersensitivity pro-
file” with regard to immune-mediated events and cor-
responding HLA markers.

3. Incidental or secondary findings. The issue of how to
handle incidental genetic findings of potential rele-
vance to disease or disease prognosis is always impor-
tant when it comes to broader genetic investigations,

F I GURE 3 Schematic depiction of

different strategies for genome-

considerate prescribing. The standard of

care does not consider the genetic

information of a given patient in the vast

majority of cases. Leveraging

information of annotated, mostly

common variations for which actionable

pharmacogenomic guidelines are

available can help to refine treatment

and improve patient outcomes.

Eventually, next-generation sequencing

(NGS) coupled to computational

predictions of unannotated rare or novel

variations might allow for full

personalization based on the entire

pharmacogenomic signature of the

individual patient. ADR: adverse drug

reaction
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and we refer to more detailed discussions elsewhere.67

In principle, two classes of incidental findings can be
distinguished. The first class is related to the pleiotro-
pic effects of some pharmacogenes. Examples are test-
ing of UGT1A1 to predict irinotecan response, which
can reveal carrier status of variants causing Crigler–
Najjar syndrome, or tests of VKORC1 variability to
guide warfarin dosing, which can return secondary
findings regarding the risks of familiar coagulopa-
thies.68 While the second is a consequence of testing
strategies that evaluate not only a given locus of inter-
est, but might evaluate the entire pharmacogenome,
exome or genome. While targeted pharmacogenomic
sequencing rarely overlaps with analyses of strong
markers of disease risk or prognosis, the likelihood of
incidental findings increases if WES or WGS are
employed. As such, there need to be clear guidelines
in place as to how to manage secondary findings with
consideration of patient preference.

4. Data management. Based on regulatory and ethical
arguments, patients are expected to have full access to
their personal healthcare data. However, with an
increasing use of advanced diagnostics and data rich
analyses, this might turn out to be practically difficult.
The analytical results of such tests will only be rele-
vant for the individual patient after extensive proces-
sing and translation into functional consequence, the
latter being a suitable task for the discipline of clinical
pharmacology. Nevertheless, it needs to be clearly
defined who owns the data in the individual case.

5. PGx result reporting. For the clinical implementation
of pharmacogenetic tests, it is imperative that results
are integrated into electronic medical records in a for-
mat that is transparent and easily understandable for
clinical staff who might not be PGx experts. It is
important that test reports follow established guide-
lines for nomenclature and result reporting.69 This
should include a list of the investigated genes and alle-
lic variants as well as the translation of the genetic
findings into predicted phenotypes and corresponding
clinical interpretations for the individual patient. A
table summarizing the investigated genes, the
detected variants and the predicted individual activity
of different metabolic pathways, as compared to the
general population or average patient, should help the
responsible physician to understand whether the
patient might be at an increased risk of non-response
or toxicity using standard doses. In this respect, inter-
national work on consensus guidelines on how to
interpret and quantify the impact of different variants
is important.70,71 Given the life-long relevance of PGx
results, we recommend that the PGx profile of a given
patient is kept separate in a specific folder of the

patient records rather than in a single post as part of a
consecutive list of laboratory results, which is unfortu-
nately common practice today, at least in the leading
medical centres of Sweden.

6. Turnaround times. Sample preparation, sequencing
and data analysis typically entail turnaround times of
a few weeks.72 As a consequence, the use of NGS for
the pre-emptive guidance of personalized prescribing
is not realistic for acute cases. Notably however, sub-
stantially faster turnaround times down to three busi-
ness days have recently been reported for NGS-based
testing of molecular panels in a community hospital
setting,73 raising hopes that application for sub-acute
cases might become realistic in the near future. It is
important to emphasize that once a pharmacoge-
nomic profile is generated for a given patient, this
information will be rapidly available for future occa-
sions, meaning potential access even on an acute
basis. For example, for a patient initially subjected to
pharmacogenomic profiling for oncological treatment,
genotype data should be at hand later in life that on
an acute basis helps to guide treatment with antiplate-
lets after the placement of coronary artery stents.

7. Clinical decision support systems. No single professional
can learn to manage and practice the differential
impact of many PGx variants on numerous prescrip-
tion drugs. Analogous to the situation with drug–drug
interactions,74 drug-gene interactions would be ideal
for database-driven, clinical decision support tools to
be used at the point of care. The system should provide
warnings if drugs or dosages are prescribed to a given
patient that are contrary to current pharmacogenomic
guidelines. In this context it is critical to note that
guidelines between regulatory agencies feature notable
discrepancies and achieving evidence-based consensus
is important to enable their efficient use in the
clinics.75,76 Importantly, decision support should not
only utilize genetic information, but should integrate
such information with other patient-specific data of
relevance for drug treatment, such as PK drug–drug
interactions, body weight and kidney function.

8. Novel genetic variants. As described in detail in previ-
ous sections, NGS can be expected to uncover pharma-
cogenetic variations for which no functional data based
on epidemiological or experimental evaluations exist.
Computational models that predict the functional cor-
relate may be the principal way forward by allowing to
flag carriers of variations with putative deleterious
impacts for intensified follow-up and, if applicable, a
recommendation for therapeutic drug monitoring.

In addition to these direct clinical considerations, it is
of paramount importance to determine whether

460 ZHOU ET AL.



sequencing for pharmacogenetic applications constitutes
an efficient allocation of healthcare resources. In such
health economic evaluations, the costs and patient effects
of sequencing-guided therapy is compared to the standard
of care. These analyses can be conducted assuming two
different perspectives. First, it can be evaluated whether
sequencing is cost-effective for guiding the treatment of a
condition the respective patient was diagnosed with.
Alternatively, the frame of evaluation of cost-effectiveness
of sequencing can be extended to include the entire life-
time of the patient. However, while more accurate, the
latter drastically increases the complexity of the evalua-
tion due to the added uncertainty. While most studies
that evaluated the economics of pharmacogenomic inter-
ventions concluded that testing was cost-effective,77 it is
important to note that these studies focused exclusively
on the genotyping of candidate variations. Furthermore,
economic calculations are highly sensitive to healthcare
system-specific parameters and, thus, require resource-
intensive modelling efforts for each country separately.
However, recently developed generic models hold prom-
ise to facilitate such analyses.78 To date, no trials have
been published that evaluate the cost-effectiveness of
pharmacogenomic sequencing outside of oncology. Pro-
spective clinical trials that evaluate the cost-effectiveness
of NGS coupled to computational variant predictions are
thus of critical importance to provide patient benefits
without overburdening the healthcare system.

7 | CONCLUSION

The development of sequencing methods in the past
20 years has facilitated the discovery of tens of thousands
of rare pharmacogenomic variants. Consideration of this
complexity beyond well-characterized polymorphisms
promises to eventually improve the personalization of
pharmacogenetic recommendations. However, to lever-
age its added value, routines and workflows are required
that establish if, when and how such data can be utilized
to guide clinical decisions. In this context, computational
methods provide versatile and rapid means to interpret
the functional impact of previously uncharacterized phar-
macogenomic variations. However, before NGS can be
meaningfully used for clinical applications, rigorous trials
are required that evaluate whether current tools are suffi-
ciently accurate to cost-effectively improve patient care.

Even after extensive clinical trials, the pre-emptive
generation of NGS data for clinical applications appears
at present unrealistic outside of life-threatening diseases
that are associated with high healthcare costs. This
includes various cancers but could also include certain
genetic diseases for which genetic information can guide

therapy. However, the more widespread availability of
NGS data, for example, via business-to-consumer
sequencing outside of direct medical indications or gener-
ated in the context of oncological therapy entails that
such data can be increasingly repurposed or applied to
less costly diseases or applications where pharmacoge-
nomic information can add value, such as the guidance
of prescribing of psychiatric medications. While multiple
hurdles need to be overcome, it thus seems realistic to
envision a future clinical context where broad PGx data
will be easily accessible and incorporated into clinical
decision-making, especially regarding the determination
of starting doses for drugs with clear pharmacogenetic
associations, as well as for the identification of patients
that require more intense monitoring.
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