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Abstract

In vertebrates, primary sex determination refers to the decision within a bipotential organ precursor to differentiate as a
testis or ovary. Bifurcation of organ fate begins between embryonic day (E) 11.0–E12.0 in mice and likely involves a dynamic
transcription network that is poorly understood. To elucidate the first steps of sexual fate specification, we profiled the XX
and XY gonad transcriptomes at fine granularity during this period and resolved cascades of gene activation and repression.
C57BL/6J (B6) XY gonads showed a consistent ,5-hour delay in the activation of most male pathway genes and repression
of female pathway genes relative to 129S1/SvImJ, which likely explains the sensitivity of the B6 strain to male-to-female sex
reversal. Using this fine time course data, we predicted novel regulatory genes underlying expression QTLs (eQTLs) mapped
in a previous study. To test predictions, we developed an in vitro gonad primary cell assay and optimized a lentivirus-based
shRNA delivery method to silence candidate genes and quantify effects on putative targets. We provide strong evidence
that Lmo4 (Lim-domain only 4) is a novel regulator of sex determination upstream of SF1 (Nr5a1), Sox9, Fgf9, and Col9a3.
This approach can be readily applied to identify regulatory interactions in other systems.
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Introduction

Fate determination of the bipotential gonad results in differen-

tiation of a testis or ovary and is crucial to the sexual

differentiation of the embryo. This binary decision, known as

primary sex determination, takes place at mid-gestation in the

mouse. The initial pliable nature of the gonad and its rapid

progress into one of two divergent, opposing fates makes it a

particularly attractive model to investigate transcriptional network

dynamics during fate decisions in developmental systems.

The early sexual plasticity of the mammalian gonad appears to

result from a balanced, transient transcriptional network state [1].

Many genes associated later with a specific sexual fate are

expressed early and at similar levels in both XX and XY gonads, a

pattern indicative of lineage priming [2]. Sex determination

proceeds by first establishing a bias in the transcription network

toward the male (testicular) or female (ovarian) fate. In therian

mammals, the Y-chromosome transcription factor, Sry, is the

genetic trigger responsible for diverting the bipotential gonad to a

testicular fate. Sry is expressed in XY gonads beginning at E10.5

and plays an important role in the up-regulation of Sox9 and Fgf9

[3–5]. While several genes are known to be required for adult

ovarian fate [6–9], much less is known about the initiation of the

female pathway. Subsequent to the primary fate decision in both

differentiation pathways, feedback mechanisms are activated that

canalize the chosen sexual fate and repress genes associated with

the alternative fate. Failure to trigger or maintain one sexual fate

can result in trans-differentiation to the alternative fate (i.e., sex

reversal) [10–12].

Several lines of evidence suggest that many more important

players in mammalian sex determination await discovery. First,

approximately 1,500 genes are already expressed in a sexually-

dimorphic pattern at E11.5, when the gonad is morphologically

indistinct and still competent to sex-reverse [13–18]. Second, the

majority of cases of human sex reversal are yet to be explained by

any of the genes known to have an impact on sex determination

[19].

Some inbred strains appear to be better suited than others to

cope with perturbations in the sex determination pathway. For

example, C57BL/6J (B6) is sensitive to XY male-to-female sex
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reversal in response to multiple genetic perturbations (including

both Y-linked and autosomal variants), while other strains like

129S1/SvImJ (129S1) and DBA/2J (D2) are resistant to these

variants (i.e., develop normal testes) [20,21]. This differential

sensitivity to sex reversal was first exploited by Eicher and

colleagues in genetic studies to map regions of the B6 genome

correlated with sensitivity of the XY gonad to male-to-female sex

reversal [22]. More recently, using an expression QTL (eQTL)

mapping approach, we identified multiple genomic regions where

segregation between B6 and 129S1 markers was highly correlated

with the expression levels of multiple genes of known importance

to sex determination [1]. Most of these eQTL intervals harbored

no genes with known roles in sex determination, and thus, likely

contain novel genes in the network.

To improve our resolution of the transcriptional cascade

controlling sex determination, and choose attractive candidates

in eQTL intervals, we conducted a fine time course transcriptome

analysis of the gonad between E11.0–E12.0, when the bipotential

gonad approaches a decision point, initiates the testicular or

ovarian pathway, and begins to reinforce the sexual fate decision.

We profiled global gene expression at six equally-spaced intervals

in XX and XY gonads from the susceptible B6 and resistant 129S1

strains, developed and trained a Hidden Markov Model (HMM) to

discern the onset of sexually-dimorphic expression, and identified

gene cohorts activated or repressed specifically in the testis or

ovary during this brief 24-hour window of development. By

comparing the onset profiles of both strains, we found that

susceptibility to sex reversal in B6 XY gonads is likely due to the

delayed activation of many testis pathway genes and delayed

repression of many ovarian pathway genes. We exploited this

detailed view of the B6 and 129S1 gonad transcriptomes to

prioritize candidate regulatory genes underlying eQTLs mapped

in our previous study [1]. Finally, we developed a primary cell

validation assay and lentivirus-based shRNA delivery method to

artificially silence Lmo4 (Lim-domain only 4), a candidate

regulatory gene within an eQTL interval. We provide strong

evidence that Lmo4 is a novel regulator of sex determination

upstream of many sex-associated genes. This work provides a

systematic framework for predicting and testing regulatory genes

(eQTGs) underlying eQTLs that is applicable to other systems.

Results

A Complex, Highly Dynamic Transcription Network
Underlies Gonadal Sex Determination in Mammals

To elucidate the fine temporal dynamics of the gonad

transcriptome during the critical fate decision to develop as a

testis or ovary, we assayed total transcript abundance in XY and

XX gonads at six equally spaced intervals between E11.0–E12.0

(Figure 1A). This 24-hour window captures the gonad from the

time it is still bipotential to a point when it has shifted to a testis or

ovarian fate. To associate variation in the transcriptome with

phenotypic differences, we compared gene expression from gonads

of two common inbred strains, 129S1 and B6, that differ in their

susceptibility to XY sex reversal.

Total transcript abundance was measured by microarray for

individual pairs of gonads for each sex/strain/stage combination

(n = 74 total arrays, see Materials and Methods). A total of 9,254

genes (12,213 probes) exhibited significant expression above

background in at least two replicates of one sample type, and

were included in subsequent analyses (Figure 1B). Next, we fit a

linear model accounting for the effects of strain, sex, stage, and

two-way (e.g. sex*stage) and three-way (e.g. sex*stage*strain)

interactions among these factors (Figure S1). For more than half

(n = 4,752 (5,659 probes)) of the genes that passed our filtering

criteria, a significant proportion of the observed variation in

expression could be attributed to one or more experimental

variables (Figure 1B). The individual components of sex (n = 1,172

genes/1,343 probes), stage (n = 2,434 genes/2,805 probes), and

strain (n = 3,279 genes/3,879 probes), as well as the interaction

effect of sex by stage (n = 659 genes/733 probes), all had

significant effects on the expression of hundreds to thousands of

genes. For many of these genes, expression was influenced by the

additive effects of multiple components (probes in overlap regions

in Venn diagram, Figure 1C). Moreover, the sex by stage

interaction effect reflects the number of genes that have a

sexually-dimorphic pattern of expression that changes over time

in the E11.0–E12.0 window. Finally, the large number of genes

with a strain effect highlights the extent to which the transcription

programs vary in the B6 and 129S1 strains. These data illustrate

both the complexity and dynamic nature of the transcriptional

program driving sex determination during this brief but critical

developmental window.

Sexually Dimorphic Gene Expression in the Gonad Is
Established by Activation and Repression Programs

To obtain a global view of how dimorphism is achieved during

the sexual fate specification of the gonad, we calculated the fold

change in both XX and XY gonads for each gene between E11.0

and E12.0 in the robust 129S1 strain. We then graphed these sex-

specific fold changes for each gene on an X-Y scatter plot, with

fold changes in the XY gonad appearing on the Y-axis, and

changes in the XX gonad appearing on the X-axis (Figure 2,

Dataset S1). Complex refractory or oscillatory patterns were not

detected over this relatively short temporal window, and therefore

this two-stage comparison accurately characterized overall chang-

es in gene expression. We first note from the scatter plot that the

microarrays captured the expected expression patterns of several

genes with known roles in sex determination. Some of these

exhibiting male enrichment (Sox9, Dhh, and Cbln1 [23,24]), or

female enrichment (Irx3, Wnt4, and Msx1 [25,26]), are shown

adjacent to their locations in the scatter plot. In addition to genes

Author Summary

The commitment of a bipotential gonad to differentiate as
a testis or an ovary is governed by a dynamic transcription
network that remains to be elucidated. We profiled
genome-wide gene expression at ,5 hr resolution during
the critical one-day developmental window in XX and XY
mouse gonads from the 129S1/SvImJ and C57BL/6J strains.
We identified cascades of expression in both strains and
show that establishment of dimorphic expression is largely
due to activation and repression programs initiated by the
testis pathway. Strikingly, comparison of expression
differences between the two strains revealed a delay in
the male program in C57BL/6J gonads, suggesting an
explanation for the increased susceptibility to male-to-
female sex reversal exhibited by this strain. Finally, we
exploit the predictive power inherent in this temporal
dataset to identify a novel candidate gene, Lmo4,
underlying an expression QTL identified in a previous
study. Confirming our prediction, knockdown of this gene
in primary XY gonad cells resulted in the down-regulation
of several male program genes. Our results highlight the
importance of fine-scale resolution time-course measure-
ment of expression in developmental systems to identify
candidate regulatory genes and to understand general
properties of the system.

Expression Dynamics of Sex Determination
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Figure 1. Time course analysis of the gonad transcriptome during the 24-hour period encompassing sex determination. (A)
Experimental design. Total transcript abundance was profiled in XX and XY gonads at six equally spaced intervals between E11.0–E12.0 capturing the
critical transition in the gonad transcriptome from a bipotential to sexually-differentiated state. The analysis was conducted in two inbred strains,
C57Bl/6J (B6) and 129S1/SvImJ (129S1), with well-characterized differences in their sensitivity to sex reversal. By including XX gonads and multiple
time points in the analysis, the current study expands on an earlier strain comparison of B6 and 129S1 gonads at E11.5 [1]. (B) Analysis of Variance
(ANOVA) results. Nearly half of the probes on the array (n = 12,213), representing more than half of all genes (n = 9,254, shown in gray), were
expressed above background levels at one or more time points between E11.0–E12.0 in XY or XX gonad samples. For a large proportion of expressed
probes (n = 5,659), variation in gonad transcript abundance was significantly associated with additive effects from sex, developmental stage, and/or
strain. A sex-by-stage interaction effect accounted for a significant proportion of the expression variation in 733 probes. (C) For many probes,
variation in expression is driven by more than one experimental variable. A Venn diagram showing probes whose expression is affected by one or
more of the additive effects of sex, stage, and strain. Values within each circle correspond to the number of probes that are significantly affected by
that variable. Note that the overlaps in the Venn diagram do not capture interaction effects, but represent probes that are significantly affected by
two or all three factors. For example, the 469 probes in the center region all exhibit variation in expression that can be attributed to differences in sex,
stage, and strain independently, but not necessarily a sex*stage*strain effect (as occurs for 11 probes in the Anova analysis).
doi:10.1371/journal.pgen.1003630.g001

Expression Dynamics of Sex Determination
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with sexually dimorphic expression patterns, we also identified

genes that are identically-repressed or activated by both the male

and female programs (genes on the diagonal in Figure 2). We

hypothesize that pathways active early in both sexes are associated

with a plastic bipotential state. We would expect these genes (e.g.

Gfra3 or Hoxa7) to be down-regulated in both sexes as sexual

differentiation proceeds. In contrast, genes that are identically-

activated in both sexes between E11.0–E12.0 (e.g. Hoxd10 and

Hs3st3a1), may be associated with transition from a sexually-

primed but plastic transcriptional state to a ovarian or testicular

fate regardless of the nature of the fate commitment. A subset of

these genes (14, log2(fold change) .0.585 in both sexes) overlaps

with the ‘‘core adrenogonadal program’’ previously identified in

the related steroidogenic-factor-1-positive cell population [27].

This view of sexually dimorphic expression changes between

E11.0 and E12.0 also revealed that higher expression in one sex

can result from activation in one sex (e.g. Dhh in Figure 2),

repression in the other sex (e.g. Msx1), or a combination of both

mechanisms (e.g. Wnt4). From the scatter plot, it is evident that

dimorphic expression of most genes (205 genes, log2(fold change)

.0.585) expressed higher in the XY gonad occurred primarily

through activation, with a small outlier group of genes (25 genes,

log2(fold change) ,20.585) showing dimorphism as the result of

repression in the XX gonad. Among genes showing higher

expression in XX gonads, two principal gene clusters were evident:

members of one cluster (77 genes) achieved dimorphism primarily

through activation in the XX gonad, and members of the other

(148 genes), primarily through repression in the XY gonad. This

indicates that the dynamic expression changes observed during

gonad fate commitment are a result of the action of activation and

repression programs. We designed our following analysis to

thoroughly characterize these and other aspects of the male and

female transcriptional programs.

Cohorts of Genes Can Be Resolved Based on Their Onset
of Dimorphism in the Narrow Window between E11.0–
E12.0

To identify ordered cascades of expression and co-regulated

genes, we developed a Hidden Markov Model (HMM) (Figure 3).

HMMs are well-suited to the task of discerning patterns in time

series data [28,29] because they use correlations between adjacent

time points to overcome noise and increase sensitivity. Briefly, the

HMM was designed with 18 states, three per time point – a male

(i.e. testis-enriched) state, a female (i.e. ovary-enriched) state, and a

similar expression state (Figure 3, Figure S2). The fold difference

of a gene’s expression between XX and XY gonads at each time

point was used to train the HMM. After training the model, the

Viterbi state path of each gene reflected whether the gene was

expressed in a sexually dimorphic fashion, the sex in which it was

expressed more highly, and the times at which the gene exhibited

dimorphic expression. Importantly, only 22 of a possible 729 state

paths through the model were populated (Table S1, Dataset S2),

indicating that despite the highly dynamic changes in the

transcriptome, there are common expression trajectories by which

the expression patterns can be clustered. We note that while the

HMM classifies groups of genes as becoming dimorphically

expressed at specific times, this is due to the discrete sampling

during the window. In reality, expression changes likely occur in a

Figure 2. Changes in XX and XY gonads contribute to expression fold change between E11.0 and E12.0. Gene expression in XY and XX
gonads was compared at the beginning and end of the 24-hour developmental window. For probes that exhibited a 1.5-fold or greater change in
expression in either sex between E11.0 and E12.0, log of the Fold Change in the XY gonad is plotted on the Y-axis, and log of the Fold Change in the
XX gonad is plotted on the X-axis. Probes that are similarly up-regulated or down-regulated in both sexes appear in gray in the upper right and lower
left quadrants, respectively. Probes that become enriched in XY gonads relative to XX are shown in blue, while genes that become enriched in XX
gonads relative to XX are shown in red. Examples from each category are highlighted, and their expression patterns in XY (blue line) and XX (red line)
gonads are displayed. From this perspective, it is clear that enrichment in one sex is achieved by activation, repression, or both regulatory
mechanisms.
doi:10.1371/journal.pgen.1003630.g002

Expression Dynamics of Sex Determination
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continuum. Nonetheless, grouping the genes by their onset of

dimorphism reveals interesting details of the regulatory programs

involved.

Out of the 4,752 genes included in the analysis, 1,321 genes

exhibited dimorphic expression at one or more time points

between E11.0–12.0 in the 129S1 strain and similar numbers

(1,037 genes) were dimorphically expressed in the B6 strain (Table

S1). Interestingly, for both 129S1 and B6, once a gene established

a dimorphic expression pattern, most continued in a state of

sexually dimorphic expression until E12.0 (n = 1,254 genes for

129S1, n = 995 genes for B6). We refer to these genes as male- or

female-enriched depending on which sex exhibited higher

expression. Finally, only three genes (Lefty2, Mcm6, and

LOC233529) in 129S1 (and none in B6) switched from being

more highly expressed in one sex to the other during the duration

of our window.

We used the HMM to cluster male- and female-enriched genes

by the time of onset of dimorphic expression from E11.2 to E12.0

for the 129S1 strain (Figure 4A, B). This analysis revealed striking

cascades of sexually-dimorphic male and female enrichment with

the number of male- and female-enriched genes gradually

increasing across time points. For example, for male-enriched

genes, a single gene (Sox9) showed higher expression in males

starting at E11.2, followed by 30 genes at E11.4, and finally 202

genes that showed sexually dimorphic expression at E12.0 (Table

S1). To determine whether these cascades primarily reflected

changes in one gonadal cell type or several, we compared our

whole gonad data with cell type-specific gene expression data from

E11.5 and E12.5 isolated XX and XY supporting cells and germ

cells [2]. We found that the overlap with germ cells was low (5%)

(Figure S3). In contrast, 58% of genes that became male- or

female- enriched in our whole gonad transcriptome prior to E11.8

were specifically dimorphic at E11.5 or E12.5 in supporting cells.

After E11.8, the overlap with the supporting cell precursors

dropped to 45%. Thus, consistent with previous results, the

supporting cell lineage, known to be critical for initiating the sex

determination decision, is responsible for a large proportion of the

sexually-dimorphic gene expression that arises in the gonad

between E11.0–E12.0 [2].

To determine whether activation, repression, or a combination

of both was involved in primary establishment of dimorphism for

each gene, we compared gene expression in each sex before the

initiation of differential expression and the E12.0 stage (Figure 4C).

Note that this analysis is more sensitive than the scatter plot

(Figure 2) in identifying the cause of dimorphism as it examines the

trajectory of expression following the onset of dimorphism as

opposed to the starting point of the analysis (E11.0).

For all genes that showed higher expression in the XY gonad by

E11.8, 73% of genes (256 genes) were strongly activated (log2(fold

change) .0.32, p,0.05) in XY gonads, whereas only 9.5% (34

genes) were repressed in the XX gonad (log2(fold change)

,20.32, p,0.05). In addition 5.6% (20 genes) become dimorphic

through a combination of activation in the XY and repression in

the XX gonad. This indicates a strong activation program in XY

gonads with a much lower contribution from repression of male

pathway genes in XX gonads. In striking contrast, enrichment of

genes in XX gonads results not from activation in the ovary, but

primarily through repression in the testis (Figure 4C, lower panel).

Only 16% of probes (61 genes) that are female-enriched by E11.8

are activated in the XX gonad, while 61% (217 genes) are

repressed in the XY gonad, with 7.5% (27 genes) becoming

dimorphic due to a combination of activation in the XX and

repression in the XY gonad. In fact, in several cases, Msx1 for

example (Figure 2), female enrichment stems exclusively from

Figure 3. A Hidden Markov Model (HMM) to identify patterns
of dimorphic expression in the gonad transcriptome. Fold
differences between XY and XX gonads at each time point in both
strains were calculated for all probes passing the ANOVA filtering step.
This data was then used to initialize and train the Hidden Markov Model
(HMM) (see Materials and Methods). The most probable (Viterbi) state
path reflects possible dimorphic expression patterns between XX and
XY gonads and was used to cluster genes. Heatmaps illustrate 3 clusters
with state paths indicated by circles at the top of each heatmap.
doi:10.1371/journal.pgen.1003630.g003
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repression taking place in the testis. This indicates that in addition

to the activation program, a strong repressive program is also

present in the testis. While male repression of specific female

pathway genes (Wnt4) has been known, the extent of this repressive

signature is surprising.

The HMM classified Sox9 as the earliest male-enriched

autosomal gene (E11.2), reflecting its position directly downstream

of Sry in the testis pathway [5] and affirming the fine temporal

resolution of our dataset. As in previous microarray experiments

using whole gonad samples [14], Sry was not detected above

background levels in the current study. Following the up-

regulation of Sox9, several other known crucial downstream genes

such as Fgf9, Amh, and Dhh showed increased expression in XY

gonads (Figure 4A, top panel). In the female-enriched group,

Wnt4, one of the earliest autosomal genes known to act in ovary

differentiation [6,12], was sexually-dimorphic no earlier than

E11.4. Other known female pathway genes such as Fst and Axin2

became differentially expressed at the same stage or immediately

following the dimorphic expression of Wnt4. All the male-enriched

genes that were activated prior to Sox9 and female-enriched genes

enriched prior to Wnt4 are Y- and X-linked genes, respectively

(Figure S4 and S5). Particularly interesting are the 7 X-linked

genes that exhibited higher expression in XX gonads starting at

E11.2 (Figure S5). The cell-type specific data indicate that these

genes are all highly expressed in germ cells and likely reflect the

reactivation of the inactive X chromosome in XX germ cells at this

stage [30].

Activation of the Male and Repression of the Female
Differentiation Pathways in the XY Gonad Are Delayed in
the Sensitive B6 Strain

After characterizing the temporal dynamics of XY and XX

gonad transcriptomes from the 129S1 strain that is resistant to XY

sex reversal, we determined how the transcriptome varied in B6, a

strain that is sensitive to XY sex reversal in response to multiple

genetic perturbations [20,31,32]. While previous studies showed

that male-enriched genes were expressed at a higher level and

female-enriched genes at a lower level in 129S1 compared to B6

E11.5 XY gonads [1], it was not clear whether this strain

difference was a result of the difference in expression levels, time of

onset, or a combination of both. To address these questions, we

profiled global gene expression in XY and XX gonads from B6 at

the same six time points spanning the critical 24-hour window

(E11.0–E12.0).

We used the HMM to identify male- and female-enriched genes

in B6 mice (Figure S6). In good agreement with the data from

129S1 mice, these genes showed activation and repressive

programs in XY gonads, and were strongly biased toward

dimorphic expression in supporting cells. We then compared the

timing of onset of sexually dimorphic gene expression between

129S1 and B6 (Figure 5). We observed a clear, consistent temporal

shift in the onset of sexually-dimorphic expression in many genes

in the susceptible B6 strain (Figure 5A, B). Specifically, for male-

enriched genes, a comparison of strain onset distribution profiles

revealed a statistically significant ,5-hour delay in B6 relative to

129S1 (Figure 5C, upper panel). For example, 208 probes became

enriched in 129S1 XY gonads relative to XX starting at E11.6

(Figure 5B). When the same probes were examined in the sensitive

B6 strain, only 37 became dimorphic at the same stage, while a

majority (n = 107) became male-enriched ,5 hours later at E11.8.

Another 20 from this set did not become dimorphic in B6 until

E12.0, and 35 probes that were male-enriched in 129S1 at E11.6

failed to become sexually-dimorphic in B6 by E12.0. Even in the

case of genes that became male-enriched at the same time point in

B6 and 129S1, a comparison of XY v. XX fold difference at the

onset of dimorphism indicated that a majority of these genes

(65.6%) show a higher male v. female fold difference in 129S1

than in B6 (Figure S7A, Binomial test p-value,0.005). This

difference may reflect a more robust activation mechanism driving

the male differentiation pathway in 129S1, or it could reflect a

delay in expression onset in B6 that is less than ,5 hours and

therefore smaller than the minimum resolution threshold of this

analysis.

Importantly, this delayed onset pattern of male-activated genes

in B6 does not appear to stem from a difference at the top of the

cascade in Sry expression level during this critical window.

Although Sry was not detected above background in these arrays,

there was no significant difference in expression levels between

129S1 and B6 between E11.2–E12.0 by qRT-PCR (Figure S8A).

It should be pointed out that the high variability in Sry abundance

observed among individual pairs of XY gonads could mask a small

but real strain effect for Sry expression levels. In contrast, Sox9 is

more robustly up-regulated in 129S1 relative to B6 (Figure S7B),

an observation we confirmed by qRT-PCR (Figure S8B). By E11.8

expression of Sox9 in B6 XY gonads has caught up with expression

in 129S1. Some of the delay in onset of male-enriched genes at

later stages in B6 may be due to this initial deficiency in the

robustness of Sox9 activation.

Note that the delayed onset pattern was not observed for every

gene that became male-enriched over this 24-hour period. For

example, of the 208 probes that were male-enriched starting at

E11.6 in 129S1, a few (Gstm2, Etv5, Gas7, and Mybphl) became

sexually-dimorphic earlier in B6. Similarly, of the 75 genes that

showed male-enrichment in B6 at E11.6, 11% (n = 8, including

Schip1, Lpl, Socs2) become male-enriched later in 129S1 or not at

all before E12.0. This indicates that although much of the male

differentiation pathway is delayed in B6, this pattern is unlikely to

be due to a more general delay in gonad differentiation.

Female-enriched genes exhibited a similar significant ,5 hour

delay in B6. However, this strain delay stems from the later

repression of female genes in XY gonads (Figure 5B lower panel).

As a consequence, B6 XY gonads are exposed to higher levels of

female pathway genes for a longer period relative to 129S1 XY

gonads. For example, of the 166 probes that become female-

enriched in 129S1 starting at E11.6, only six exhibit a similar

expression pattern in B6, while 70 become female-enriched

,5 hours later, another 43 probes become dimorphic at E12.0,

and 47 fail to reach a sexually-dimorphic state by E12.0

(Figure 5C, lower panel). Similar to the male-enriched genes,

62.4% of female-enriched genes that become dimorphic at the

same time in both strains show a higher fold difference in 129S1

than in B6 (Figure S7C, p,0.005).

In summary, our evidence argues against a general develop-

mental delay in B6 and suggests that the increased sensitivity of B6

XY gonads to sex reversal stems from a delay in the activation of

male pathway genes downstream of Sox9, combined with a

consequent delay in the repression of female pathway genes.

Strain Differences in Temporal Gene Expression Can
Predict Candidate Genes that Underlie Expression
Quantitative Trait Loci

In addition to providing a more comprehensive view of the

global transcription dynamics driving male and female sex

determination in the robust 129S1 and sensitive B6 strain

backgrounds, this fine temporal expression data provided a means

for narrowing eQTLs to identify novel regulators of sex

determination. In previously published work, we mapped 19

regions of the genome in an F2 intercross population where

Expression Dynamics of Sex Determination
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genetic variation between B6 and 129S1 was correlated with

differences in gene expression for one or more genes associated

with sex determination [1]. Eight of these regions were correlated

with the expression of multiple genes, yet none of these prominent

‘‘trans-band eQTLs’’ harbored an obvious candidate gene with a

known role in the sex determination process. Unfortunately, most

of the eQTL regions identified in this initial coarse mapping were

too large to functionally test every gene in the interval.

Figure 4. Cascades of dimorphic expression involving both activation and repression in XY gonads. (A) Examples of genes showing
higher expression in XY (male-enriched genes, top panel) and XX gonads (female-enriched genes, bottom panel) from 129S1 mice. Blue and red
vertical lines show the time point when dimorphic expression is significant. (B) Cascades of dimorphic gene expression identified by the HMM in XY
(top panel) and XX gonads (bottom panel). Colors indicate the log fold change between XY and XX gonads at a specific time point for the 129S1
strain. The genes are arranged in order of time of onset of dimorphic expression. (C) Contribution to changes in expression between E12.0 and the
time point before the onset of dimorphism are shown for each gene in (B) in XY (column 1) and XX (column 2) gonads. Top panel: male-enriched
genes. Bottom panel: female-enriched genes. This analysis shows that male-enriched genes are mostly up-regulated in XY gonads while female-
enriched genes are mostly down-regulated in XY gonads.
doi:10.1371/journal.pgen.1003630.g004
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We established filtering criteria based on temporal strain

expression and genomic data to prioritize candidate genes within

the eight trans-band eQTLs (Table 1). Briefly, protein-coding

genes in the interval were considered as candidates if they were

expressed at one or more time points between E11.0–E12.0 in XY

samples (eQTLs were mapped only in XY samples; therefore, the

causative gene underlying an eQTL should be expressed in the

XY gonad). Based on this list, we analyzed each candidate within

the interval for strain differences in expression levels or time of

onset, and prioritized genes with strain-dimorphic patterns. We

investigated whether each gene harbored one or more polymor-

phisms (SNPs, insertion/deletions) that differed between B6 and

129S1 and might affect its expression or function. Only those

genes with characterized variation within 10 kb up- and down-

stream of the transcription start site (TSS) were prioritized for

further analysis. Finally, we interrogated the Mammalian Pheno-

type (MP) browser to identify any genes in the region with a

characterized knockout phenotype affecting sex determination

(MP:0002210, abnormal sex determination), or a known relation-

ship with any of the target genes it was predicted to regulate. We

tailored our candidate search strategy to each individual eQTL,

and exploited prior information about the expression or function

of the target genes for that region. Thus, we expected that genes

involved in regulating early gonadogenesis genes would be

expressed in both sexes at an early stage, whereas those regulating

the male or female pathway would be more likely to exhibit

sexually dimorphic gene expression.

In total, for the eight prominent trans-band eQTLs mapped in

our previous study [1], of which the average interval contains

,300 genes (range = 60–526 genes), we narrowed each down to,

at most, eight promising candidates. Of particular interest, the

distal Chr 3 region was strongly associated with the expression of

nearly one-third of all the genes in our previous mapping study [1],

including known regulators of early gonadogenesis (Fog2/Zfpm2,

SF1/Nr5a1, Gata4, Wt1, and Ctnnb1) and both the female (Ctnnb1,

Rspo1) and male (Fgf9) differentiation pathways. A total of six genes

were identified as candidates based on their strain-dimorphic

expression patterns, but only the transcription cofactor Lmo4 (lim

domain only 4) exhibited a dynamic pattern consistent with a role

early in both pathways and an additional male-specific role

downstream of the sexual fate decision. Lmo4 is expressed at

similarly high levels in both sexes until E11.4 (Figure 6A), and

becomes male-enriched as early as E11.6. Importantly, while Lmo4

was up-regulated in B6 XY gonads at the same time as in 129S1,

there was a significant strain effect with expression in 129S1 being

higher. This observation is consistent with the observed allelic

Figure 5. Dimorphic expression of multiple male- and female-enriched genes in B6 is delayed compared to 129S1 mice. (A)
Expression of male- (top panel) and female-enriched (bottom panel) genes. Dimorphic expression for these genes is delayed by ,5 hours in B6
compared to 129S1. (B) Heatmap showing dimorphic expression at E11.6 in 129S1 and comparison of same genes in B6. While a few genes show
earlier dimorphic expression in B6 mice compared to 129S1, the dominant pattern shows a ,5 hr delay between B6 and 129S1 mice. (C) Matrix
showing the time of onset of dimorphism in 129S1 and B6 mice for male-enriched (top panel) and female-enriched (bottom panel) genes. For
example, out of the 32 male-enriched probes that became dimorphically expressed at E11.4 in 129S1, 9 probes were also dimorphically expressed
starting at E11.4 in B6 while 18 showed dimorphic expression starting at E11.6 in B6 mice. However, 4 genes are dimorphic in B6 XY gonads at E11.4,
but not in 129S1 until E11.6. * indicates significant overlap with p,0.001 evaluated by a hypergeometric test. The highlighted diagonals show the
number of genes showing similar onset of dimorphism in 129S1 and B6 mice. Note that some genes that are male- or female-enriched in one strain
do not show dimorphism in the other strain.
doi:10.1371/journal.pgen.1003630.g005
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effect for the eQTL (B6129SF2 gonads that were homozygous for

the 129S1 allele exhibited higher expression of target genes).

Finally, there is a significant amount of genetic variation in Lmo4

between 129S1 and B6, including an insertion in the 39 UTR in

129S1 as well as multiple intronic SNPs and indels [33]. Based on

these selection criteria, we elected to focus on developing a

functional assay for Lmo4.

Validation of Lmo4 as the Causative Gene Underlying the
Trans-band eQTL on Distal Chromosome 3

Historically, moving from a list of candidate genes to a validated

quantitative trait gene (QTG) has represented the largest hurdle

(in both resources and time) to success in complex trait mapping

studies in the mouse. To address this problem, we optimized a

lentivirus-mediated shRNA delivery method to artificially silence

candidate regulatory genes with high efficiency in dissociated

gonad primary cells from E12.5 XY gonads (Figure 6B). As a

positive control, we utilized pre-designed and validated shRNA

clones (Sigma MISSION) packaged in lentiviral vectors to silence

Sox9 expression in primary gonadal cell culture, and quantified the

expression of known downstream targets (Figure S9). Lentiviral-

mediated knockdown resulted in a nearly 80% reduction in Sox9

expression relative to a nontargeting control sample. Two of the

three known targets (direct or indirect) of SOX9, Amh [34] and

Fgf9 [4], were down-regulated significantly following Sox9 knock-

down. Ptgds, the third known target of SOX9 [35], is not expressed

at high levels in cultured gonad primary cells, and we could not

detect a change in Ptgds expression following Sox9 knockdown.

However, a marker of the female pathway, Fst [36], showed a

significant and greater than 2-fold up-regulation in this assay

(p,0.016). Thus, this in vitro assay recapitulates well-characterized

genetic interactions that occur in the gonad in vivo.

We extended our analysis to test Lmo4 as a candidate regulator

underlying the Chr 3 eQTL. We silenced Lmo4 expression to 36%

of a nontargeted control (p,0.001) (Figure 6C). Although the

degree of knockdown was relatively modest, it was observed

consistently in three independent trials and with two shRNA

clones. Importantly, silencing Lmo4 expression by two-thirds

resulted in the consistent, significant down-regulation (p,0.05)

of three of the four putative eQTL targets measured by qRT-

PCR. Fgf9, Col9a3, and SF1/Nr5a1 were significantly down-

regulated by both shRNAs (Figure 6C). Down-regulation of a

fourth target of the Chr 3 eQTL, Wt1, was not statistically

significant (p,0.13). Interestingly, although it was not identified as

a Chr 3 eQTL target in our original mapping study, Sox9

expression is significantly down-regulated following Lmo4 knock-

down by both shRNA clones (p,0.001). Note that the predicted

targets (Fgf9, Col9a3, and SF1/Nr5a1) of the Chr 3 eQTL region

are those that are affected by the different alleles in B6 and 129S1.

Even though Sox9 did not map as a target of the Chr 3 eQTL in

our study, it might not be differentially regulated by Lmo4 between

B6 and 129S1, yet could still be a target of Lmo4. In total, these

experiments provide strong support for Lmo4 as the transcriptional

regulator underlying the Chr 3 trans-band eQTL and may reveal

additional regulatory interactions that were undetected in the

eQTL mapping study.

Discussion

The transcriptional cascades that control development of

multicellular organisms are a central focus in modern biology

[37]. It is now evident that transcriptional regulation involves the

coordinated action of a cohort of players including transcription

factors, chromatin remodelers, non-coding RNAs, and epigenetic

modifications. An important step in identifying the specific players

in this network and deconvolving their effects on the transcrip-

tional program is a detailed characterization of the transcriptome

during the developmental process. Our efforts in this paper were

focused on the critical 24-hour window when the gonad begins to

transition from a bipotential primordium to a testis or ovarian fate.

To that end, we sampled global transcript abundance at 36 finer

granularity than previous studies, and in the process discovered

multiple temporal cohorts of sexually-dimorphic genes in this brief

window. Importantly, we found that sexually-dimorphic gene

expression patterns during this period are primarily driven by

activation and repression cascades in the XY gonad. Most male-

enriched genes are activated in the XY gonad but remain

unexpressed or unchanged in the XX gonad. In contrast, female–

enriched genes acquire that pattern mostly by a combination of

repression in the XY gonad and continued activation in the XX

gonad. A ,5-hour delay in both the activation of the testis

pathway and repression of the ovarian pathway likely underlies the

sensitivity of the B6 strain to XY sex reversal. We applied this new

temporal expression resource to prioritize eQTL intervals mapped

in our previous study. Finally, we developed a primary cell-based

RNAi assay, and used it to validate a candidate new regulator of

sex determination.

Gonadal Sex Determination Is Orchestrated by a Highly
Dynamic Transcriptome

Previous microarray studies profiled transcript abundance in

whole gonads or isolated cell populations at two or more time

points before and after the sex determination decision [2,13–

15]. These datasets served as important resources for the field.

However, the temporal resolution around the critical stage of

sex determination was limited in all but one study to 24-hour

intervals (Nef sampled at E10.5, E11.0, and E11.5). It was

evident from these earlier studies that the gonad transcriptome

changed very little between E10.5–E11.0, that the difference

between E11.0–E11.5 was significant, and between E11.5–

E12.5 the testis and ovarian transcriptomes are highly sexually

dimorphic. We predicted that information about the sequential

order of gene activation/repression during the E11.0–E12.0

window would be valuable. Using data from the fine time

course, we designed an HMM to precisely separate genes based

on their position in the transcriptional cascade. As opposed to

other clustering methods such as k-means clustering [38],

HMMs are able to both account for the time dependence in the

data and exploit this layer of information to identify patterns

often obscured by noise prevalent in microarray data. We note

that this HMM can be readily extended to time course

expression analyses in other systems.

Our analysis identified waves of sexually-dimorphic gene

expression in the 24-hour window following the onset of Sry

expression, which suggest regulatory cascades. We note that while

the HMM identifies dimorphically expressed genes as being

dimorphically expressed at distinct time points, this is a result of

the sampling times of our transcriptome analysis. Finer sampling

in this window is likely to reveal that genes grouped together at a

time point show minor differences in timing of the onset of

dimorphism. Previous work indicated that the supporting cell

lineage is the first lineage in the gonad to show sexually dimorphic

expression followed by other gonadal cell lineages after E11.5 [2].

Consistent with this, over half (58%) of the genes we identified that

became sexually dimorphic prior to E11.8 could be specifically

assigned to the supporting cell lineage prior to E11.8 with 5%

showing dimorphism in germ cells. The discrepancies in the

overlap are likely due to the increased sensitivity of the HMM to
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identify dimorphically expressed genes and the conservative

measure of dimorphic expression used in the cell-type specific

expression study.

As expected, we observed a strong signature of gene activation

associated with up-regulation of the testis pathway in XY gonads.

However, we were surprised by the extent of the repressive

program that silences female pathway-associated genes in the XY

gonad following activation of the male pathway. Testing of

candidates from our study will be an important step towards

identifying the factors responsible for these patterns of expression

in the male and female program. Based on their early onset of

sexually-dimorphic expression, several genes are promising

candidates to play an early regulatory role in the male and

female pathways (Table S2, Text S1). Sox13 is a member of the

SOX protein family that lacks an activation domain but can

repress Wnt signaling by forming a complex with the b-catenin

cofactor, TCF1 [39,40]. Mef2c is activated in the XY gonad at

E11.6 and has been shown to interact with Sox9 in chondrocytes

[41]. Among genes that showed female-enrichment, Gtf2a1, a

general transcription factor that is part of the initiation complex

for PolII recruitment [42], became dimorphic at E11.4 in the XX

supporting cell lineage and Tcea3, a known PolII elongation

Figure 6. Validation of Lmo4 as a novel regulator of gene expression in the fetal gonad. (A) Lmo4 exhibits an expression pattern indicative
of a role in sex determination and consistent with expectations for a gene underlying a strain eQTL regulating early sex determination and male
pathway genes. It is expressed at similar levels in XY and XX gonads before E11.6, becomes enriched in XY gonads as early as E11.6 in both strains,
and shows reduced expression levels in B6 (dashed lines), consistent with the observed allelic effects of the Chromosome 3 eQTL. (B) E12.5 XY gonads
were dissected free of the mesonephroi, pooled by sex, dissociated into single cell suspensions, plated on tissue culture plates at t = 0 with lentiviral
particles containing shRNA targeted to the candidate gene of interest, and cultured for 72 hours. Quantitative RT-PCR was conducted to assay
expression of predicted targets. (C) Lentiviral shRNA-mediated knockdown of Lmo4 in cultured XY primary gonadal cells resulted in the consistent
down-regulation of multiple Chromosome 3 eQTL target genes relative to the nontargeting control (gray bar) using two different shRNA hairpins
targeting Lmo4 (light/medium blue bars in graph). Expression was normalized to the housekeeping gene Gapdh. Both male pathway genes, Fgf9 and
Col9a3, were significantly down-regulated following Lmo4 knockdown with both clones. Similarly, one of the putative targets with a role in early
gonadogenesis, SF1/Nr5a1, was significantly reduced, however expression of the other gene involved in early gonadogenesis, Wt1, was not
significantly affected by Lmo4 knockdown. The important male pathway regulator Sox9 was found to be significantly down-regulated as a result of
Lmo4 knockdown. Canx (a second normalization gene not predicted to be a target of LMO4) showed no difference in expression compared to the
control. Error bars show minimum and maximum expression. Significance was calculated by comparing control and data across all independent runs.
doi:10.1371/journal.pgen.1003630.g006
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factor became dimorphic at E11.6. Interestingly, female-enriched

TFs such as Zfp277, Runx1, Lef1, Lhx9 and Msx1 were strongly

down-regulated in XY gonads. Conversely, Irx3 showed strong

activation in XX gonads, and has been predicted to have a

function during ovarian differentiation independent of Foxl2 and

Wnt4 [43].

Sensitivity to Sex Reversal in B6 Stems from the Delayed
Onset of the Male Pathway Downstream of Sox9

Strain differences in resistance to sex reversal upon perturbation

of the sex determination network have been the focus of several

studies. The importance of the timing of the antagonistic testis and

ovarian programs to B6-associated sex reversal was first proposed

by Eicher in 1983 [44], based on the finding that introduction of a

Mus domesticus Y chromosome (YDom, or YPOS) onto a B6 genetic

background led to sex reversal [20]. Sex reversal in this case was

later shown to be associated with the delayed onset of Sry [45].

However, this work did not explain why the B6 strain is more

susceptible to sex reversal in cases where a weak allele of Sry is not

involved [37].

Here we showed that the onset of sexually dimorphic gene

expression was delayed by approximately five hours in the

‘‘unperturbed’’ (i.e. wildtype) B6 strain compared to 129S1. This

delay is consistent across the cascade starting from E11.4 with

genes that are both up- and down-regulated in XY gonads.

Interestingly, we detected no significant difference by qRT-PCR in

the level of Sry expression between the strains; however we cannot

rule out a difference in the onset of Sry expression prior to the

window of our analysis. Nonetheless, Sox9 is up-regulated at the

same stage (E11.2) in B6 and 129S1. Despite this agreement, the

activation of many downstream genes in the male pathway is

delayed in B6. In our previous microarray comparison of B6 and

129S1 testes at E11.5 [1], Sox9 was found to be enriched in B6

relative to 129S1 XY gonads at E11.5, in contrast to the current

study, where Sox9 levels are lower in B6 until E11.8–E12.0 (Figure

S7B). This discrepancy may stem from small developmental

staging differences in the pooled gonads used in the previous study,

as Sox9 levels are changing very rapidly at E11.5. However, as this

and other recent studies [32,46] illustrate, the system may be

sensitive to minor fluctuations in gene expression between E11.0–

E11.5. Thus, the slightly lower level of Sox9 expression that we

detected in B6 relative to 129S1 XY gonads might contribute to

the delayed onset timing of downstream genes in B6. In addition,

our fine time course data here helps explain the previously

observed higher expression of female-enriched genes in B6

compared to 129S1. Specifically, the observed difference at

E11.5 is a consequence of the delayed repression of female-

enriched genes in B6 XY gonads.

Prediction and Validation of Lmo4 as a Novel Regulator
of Sex Determination

Previous transcriptome and genetic mapping studies produced

gene lists or large intervals with candidate regulators of sex

determination [1,13–16,18,22,47]. The bottleneck in applying the

results of these studies has been the inability to prioritize between

several dozen candidates and then test these candidates in a

manner that is inexpensive and efficient. We have addressed both

these deficiencies in the current study. We used our fine time

course dataset in conjunction with a previous eQTL study and

cell-type expression data to identify candidate regulators of sex

determination.

To overcome the hurdle of testing candidate regulators, we

developed an RNAi assay to silence the expression of candidate

genes, and then monitored the expression of putative downstream

target genes after knockdown. As predicted, shRNA-mediated

silencing of the transcription cofactor Lmo4 resulted in the down-

regulation of known important regulators of early gonadogenesis

(SF1/Nr5a1) and the male pathway (Sox9 and Fgf9). This provides

strong evidence that in addition to previously characterized roles

during development in the neural tube [48–50], neural crest [51],

cortex [52], and thymus [53], Lmo4 is also a regulator of sex

determination in the gonad. However, this does not preclude the

possibility that other genes on distal Chr 3 have roles during sex

determination and control the expression of one or more of the 16

eQTL target genes. To point, four of the other candidate

regulators identified in this region (Gbp1/2/3, and Ccbl2) are

expressed at similar high levels in both sexes before E11.4, and

then become down-regulated specifically in XY gonads at or after

E11.6. This pattern predicts a role for these genes in the female

differentiation pathway. Future assays to overexpress these

candidates in XY primary cells or silence them in XX primary

cells will assess their potential as regulators for one or more of the

Chr 3 eQTL target genes.

In closing, our fine temporal analysis of the gonad transcrip-

tome revealed multiple cascades of sexually-dimorphic gene

activation and repression during the critical first 24 hours of sex

determination. This information provides a valuable resource for

future experiments to identify novel genes, pathways, and network

motifs associated with sex determination in particular, but also

organ differentiation in general. We replicated this analysis in a

strain that exhibits a unique sensitivity to sex reversal, and showed

that the compromised capacity to buffer genetic perturbation in

B6 is most likely due to a consistent ,5-hour delay in the

activation of a large portion of the male pathway and subsequent

down-regulation of much of the female pathway. We integrated

the temporal strain expression data with genetic mapping data that

identified regions associated with gene expression in the gonad at

E11.5, and in so doing were able to narrow down large intervals to

a small set of the best candidate genes. Finally, we optimized

lentivirus-mediated RNAi knockdown in cultured gonad primary

cells, and used this assay to validate Lmo4 as a novel sex

determination gene. Importantly, this validation strategy is easily

scalable, and we expect that this assay will be a valuable first step

to test potential regulators and in assembling a transcriptional

network of sex determination.

Materials and Methods

Ethics
All animals were maintained and experiments were conducted

according to the Institutional Animal Care and Use Committee of

the Duke University Medical Center and NIH guidelines (Permit

Number: A168-11-07).

Mice, Dissection, Developmental Staging, and
Genotyping

For the time course microarray study, C57BL/6J (stock

no. 000664) and 129S1/SvImJ (stock no. 002448) mice were

obtained from The Jackson Laboratory. CD-1 outbred mice were

used (strain code 022, Charles River) in the gonad primary cell

assays.

Timed matings were established for B6 and 129S1, and

embryos were collected from dams between embryonic day (E)

11.0–12.0. Embryos were individually staged by counting tail

somites (ts) distal to the hindlimbs: E11.0, E11.2, E11.4, E11.6,

E11.8, and E12.0 corresponds to 13, 15, 17, 19, 21, and 23 ts,

respectively [1,54]. For each strain at each time point, three
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individual pairs of XX and XY gonads from at least two separate

litters were collected. The chromosomal sex of each embryo was

determined by PCR on head DNA using primers to detect Kdm5c/

Kdm5d (59-TGAAGCTTTTGGCTTTGAG-39 and 59-

CCGCTGCCAAATTCTTTGG-39). Gonads were dissected

away from mesonephroi in sterile PBS (Gibco/Invitrogen, cat

no. 1490-144) and stored in RNAlater RNA stabilization solution

(Ambion, cat no. AM7024) at 220C until all samples were

collected. To minimize contamination and RNA degradation, all

surgical instruments and surfaces were treated with RNaseZAP

RNase decontamination fluid (Ambion, cat no. AM9780), fol-

lowed by 70% EtOH in DEPC-treated water, before and during

the dissection procedure.

Microarray Processing - RNA Isolation, Labeling, and
Hybridization

For the microarray analyses, at least three biological replicate

samples were profiled for each strain/stage/sex (n = 74 total

arrays), with one exception (n = 2 replicates for 129S1 E12.0 XY).

Total RNA was first extracted from individual pairs of E11.0–

E12.0 XX and XY gonads (separated from mesonephroi) with the

RNeasy Micro kit with on-column DNase digestion (QIAGEN, cat

no. 74004) following the manufacturer’s protocol. Total RNA was

eluted in 14 ul RNase-free water (not DEPC- treated), and 2 ul

were used to quantify RNA concentration on a NanoDrop ND-

2000 (Thermo Scientific). Only samples with .100 ng of total

RNA and an A280:A260 ratio of .1.6 were included in the

expression analyses.

From each total RNA sample, mRNA was selectively reverse

transcribed with oligo(dT) primers to T7-labelled cDNA, and then

amplified by in vitro transcription (IVT) to produce biotinylated

cRNA using the Illumina TotalPrep Amplification Kit (Ambion/

Life Technologies, cat no. AMIL1791) according to manufactur-

er’s instructions. cRNA concentration was quantitated on the

NanoDrop ND-2000, and as necessary, individual samples were

concentrated in a vacuum centrifuge. 750 ng of biotinylated

cRNA (in ,10 ul volume) were hybridized to Illumina MouseRef-

8 v2.0 BeadChips (Illumina, cat no. BD-202-0202) according to

Illumina protocols, and array intensity was measured on an iScan

scanner (Illumina). To minimize potential for batch effects to

confound analysis, individual samples were assigned to 8-sample

BeadChips using a balanced design.

Microarray Data Processing and Temporal Coexpression
Analysis

Microarray data files were imported into GenomeStudio

software (Illumina, V2010.1), and raw expression values for each

sample extracted. Expression values were quantile normalized and

log2 transformed using the R package Beadarray [55]. Probes that

had a detection p,0.005 in at least two replicates for any sample

type were used for analysis. Data are publicly accessible in GEO

(accession number GSE41948).

ANOVA Analysis
The ANOVA analysis was conducted using the R package

Limma [56]. A sex by strain by stage factorial analysis was

conducted as outlined in [57]. The model included the sex, strain,

and stage variables, the sex*strain, sex*stage and strain*stage two-

way interaction terms, and a three-way interaction term sex*-

strain*stage. The model was fit for all the probes that had reliable

expression (detection p,0.005) in at least two replicates of any one

sample using the lmFit function in the Limma package. The

statistical significance of each of the terms was evaluated using the

eBayes function in Limma. Probes that did not have a significant

difference (Benjamini-Hochberg adjusted p,0.05) for at least one

of the variables were excluded from further analysis.

HMM to Identify Dimorphic Expression
Hidden Markov Models (HMMs) are generative probabilistic

models that explicitly model the observed data as being emitted by

a ‘hidden’ biological state (here, male or female enrichment).

Further, transition probabilities between states capture the time

dependencies in data between adjacent time points. Inference

algorithms allow for computing the most probable state paths that

give rise to the observed data, and accounts for noise inherent in

observed data. The modeling of time dependencies between

biological states, and accounting for noisy observations, makes

HMMs particularly well suited to analyze time course microarray

data [28,29].

We designed a left-to-right HMM with three states per time

point (Figure 3). The three states correspond to male state (with

higher expression in males), female state (with higher expression in

females) and similar expression state (with no difference in

expression between the two sexes). The observed data on which

the model was trained and clustered was the quantized Fold

Difference (FD) of the log2 normalized values between XX and

XY gonads at each time point. Note that a fold change of

expression of 1.25 corresponds to an FD of 0.3219, fold change of

1.5 to an FD of 0.585 and a fold change of 2 to an FD of 1. Limma

was used to calculate FD between XX and XY gonads at each

time point for each strain. If a specific comparison did not have a

p-value,0.05, or |FD|.0.3219 then the FD for that comparison

was set to 0. The FD was then quantized into symbols as follows:

Symbol s - Similar expression in XX and XY gonads [20.3219

, FD , 0.3219].

Symbol m1 - Higher expression in XY gonads [0.3219 , FD ,

0.5850].

Symbol m2 - Higher expression in XY gonads [0.5850 , FD ,

1].

Symbol m3 - Higher expression in XY gonads [1 , FD]

Symbol f1 - Higher expression in XX gonads [0.3219 . FD .

20.5850].

Symbol f2 - Higher expression in XX gonads [0.5850 . FD .

21].

Symbol f3 - Higher expression in XX gonads [1 . FD].

The symbols m1, m2, m3, and f1, f2, f3 indicate varying levels of

confidence in the differential expression between XX and XY

gonads.

For each gene, for each strain there were 6 symbols indicating

the FD between XX and XY gonads across the time window. For

example, for Sox9 in the 129S1 strain, the following FDs were

observed at the 6 time points – 0, 0.77, 1.41, 2.41, 2.30, and 1.97.

Following the rules listed above, this was quantized as s, m2, m3, m3,

m3, m3.

The emission probabilities of the HMM were initialized as

shown in Figure S2B to reflect the intuitive meaning of the states

and the possible observed symbols from each state. Note that all

probabilities were initialized as being non-zero. After training was

completed, emission probabilities still reflected the intuitive

meaning of the states (Figure S2B).

The transition probabilities between states were initialized as

follows (Figure S2A). Observed symbols were first classified into

male, female and similarly expressed – symbols m1, m2, m3 into

state M, symbols f1, f2, f3 into state F, symbol s to state S.

Transitions between all combinations of states in adjacent time

points were counted and normalized to make transition probabil-

ities from each node sum to 1. A pseudocount of 1 was added to all
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possible transitions (transition between states in adjacent time

points) to initialize all probabilities as non-zero.

The HMM was trained using the Baum-Welch algorithm for

200 iterations with data from both strains for all the probes that

passed the filtering criteria and were shown to have a significant

effect for at least one variable in the ANOVA analysis. The state

path for the observed FDs for each of the probes was computed

using the Viterbi algorithm. Probes with the same state paths were

clustered together.

shRNA Clones and Lentivirus Production
Pre-validated gene-specific MISSION shRNA clones (Sigma

Aldrich; Sox9 pLKO.1 clones: TRCN0000086165,

TRCN0000086167; Lmo4 pLKO.1 clones: TRCN0000084373,

TRCN0000084375; Nontargeting Controls – TurboGFP shRNA

SHC004, eGFP shRNA SHC005) and lentiviral packaging and

envelope plasmids (Addgene; pCMV-dR8.2 dvpr ID# 8455,

pMD2.G ID# 12259) were purchased as bacterial stocks, and

high quality plasmid DNA was isolated from overnight liquid LB

cultures with a Maxiprep kit (QIAGEN, cat no. 12162) following

manufacturer’s instructions and quantitated on a NanoDrop ND-

2000.

Lentivirus production followed the Addgene 4-day protocol

with slight modifications (www.addgene.org/tools/protocols/

pLKO/) [58]. All work with lentiviruses was performed in a

BSL2+ hood following approved biosafety procedures. On Day 1,

for each sample, 56106 HEK-293T/17 cells (ATCC cat

no. CRL-11268) were suspended in 10 ml of Dulbecco’s Modified

Eagle Medium (DMEM, Gibco cat no. 11995) +10% Fetal Bovine

Serum (FBS) without antibiotics, plated to 10 cm cell culture

plates, and incubated at 37uC, 5% CO2 overnight. Late in the

afternoon of Day 2, 10 ug of pLKO.1 shRNA plasmid, 7.5 ug of

pCMV-dR8.74 dvpr packaging plasmid, and 2.5 ug of pMD2.G

envelope plasmid DNA were suspended in Opti-mem serum-free

medium with 60 ul X-tremeGENE HP DNA transfection reagent

(Roche, cat no. 06 366 236 001) in a 3:1 ratio to a total volume of

600 ul, incubated at 25uC for 20 minutes, then applied drop-wise

to the 10 cm plate containing HEK-293T/17 cells at 60–80%

confluency, swirled gently to disperse evenly but not dislodge cells

from the plate, and incubated at 37uC, 5% CO2 overnight (12–

18 hours). On day 3, media containing the transfection reagent

was removed carefully and decontaminated in .10% bleach.

Next, 5.5 ml of fresh viral growth medium (vGM, containing

Neurobasal medium (Gibco, cat no. 21103-049) supplemented

with 10% FBS, 0.5 mM L-glutamine (Gibco, cat no. 25030-149),

and 16 Antibiotic-Antimycotic (Gibco cat no. 15240-062)) was

added carefully to the side of the plate so as not to disturb the

transfected virus-producing cells, and incubated at 37uC, 5% CO2

overnight. Late in the afternoon of day 4, the virus-containing

vGM was harvested with a 10 ml syringe, and filtered through a

0.45 um PES syringe filter (Whatman, cat no. 6780-2504) into

sterile 2.0 ml polypropylene cryo-vials. Viral media was stored at

4uC for use within 5 days, or at 280uC for long-term storage. All

laboratory materials that came into contact with viral particles

were treated as biohazardous waste and autoclaved according to

BSL2+ safety practices.

Gonad Primary Cell Assays
The effect of silencing candidate regulatory genes was assayed in

dissociated gonad primary cell cultures. Timed matings were

established for CD-1 mice, and embryos were collected from dams

at E12.5. Gonads were dissected away from the attached

mesonephroi, sexed by visual inspection for testis cords, and XY

gonads from a litter were counted and pooled. Pooled XY gonads

were then dissociated in 0.25% Trypsin-EDTA (16, Gibco cat

no. 25200-056) for 15 minutes at 37uC with slight agitation,

followed by centrifugation at 4000 rpm for 5 minutes, washed

once with DMEM (Gibco cat no. 11965) followed by centrifuga-

tion, and suspended in Opti-Mem (Gibco cat no. 11058-021)

supplemented with 1% FBS. Cells from one pair of XY gonads

were determined to be sufficient for one well of a 24-well culture

plate, and the amount of suspension liquid was calculated by

multiplying 250 ul by the number of pairs of XY gonads in the

pooled sample.

Following the dissociation and wash steps, 250 ul gonad

primary cells were immediately added to individual wells of a

24-well cell culture plate, and 250 ul of the appropriate lentivirus-

containing vGM was added to each well in a BSL2+ hood. In

addition to wells designated to assay target gene shRNA-mediated

knockdown, separate wells containing XY gonad primary cells

from the same litter were infected with the non-targeting eGFP

shRNA (SHC005) and/or TurboGFP shRNA (SHC004) controls.

Plates were incubated at 37uC 5% CO2 for 68–72 hours and cell

viability was monitored daily with a light microscope. Virus

production could be monitored visually for the TurboGFP control

infected cells using a fluorescence microscope.

qRT-PCR
Following 68–72 hours incubation, total RNA was isolated from

shRNA lentivirus-infected gonad primary cells using Trizol

reagent (Life Technologies, cat no. 15596-018). Briefly, lentivi-

rus-containing culture media was first removed from each well and

disposed in bleach. Next, 400 ul of Trizol was added to the

adherent cells in each well, allowed to sit at room temperature for

3–5 minutes, after which the lysate was transferred to 1.5 ml

microcentrifuge tubes. Subsequent RNA isolation steps follow

Munger et al. [1]. Total RNA was quantified on a NanoDrop ND-

2000, treated with DNaseI (Life Technologies, cat no. 18068-015),

and converted to cDNA using the iScript cDNA synthesis kit (Bio-

Rad, cat no. 170-8891) following manufacturer’s instructions.

Gene expression was quantified by quantitative RT-PCR (qRT-

PCR) on a StepOnePlus Real-time PCR System (Life Technol-

ogies). For qRT-PCR, each analysis was performed in technical

triplicate in a total volume of 20 ul reaction mix containing 2 ul

cDNA template, 4 ul 1 uM gene-specific forward and reverse

primers, 10 ul 26 Quantace SensiMix SYBR (Bioline, cat

no. QT615-02), and 4 ul RNase-free water. The list of qRT-

PCR primers can be found in Table S3; most have been previously

published [1,12]. All primer sets were tested for efficiency and

found to work optimally with the DCt method [59]. Within a

sample, target gene Ct thresholds value were determined and

normalized to Gapdh. Differences between target gene shRNA and

non-targeting control shRNA samples were compared using the

DDCt method as described previously [59]. Significance of

expression differences between samples was assessed using a t-test.

Supporting Information

Dataset S1 Scatter plot gene lists. This excel file contains

the genes and their fold changes that were used to construct the

scatter plot in Figure 2. The fold changes are in log2 scale and are

for each sex between the initial (E11.0) and final (E12.0) time

points. Fold differences were computed using limma.

(XLSX)

Dataset S2 HMM state paths for each probe included in
HMM analysis. This table contains the genes included in the

HMM analysis and their state path through the trained HMM for

both strains of mice. Each state path consists of 6 symbols,
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referring to in order their state at the 6 time points between E11.0

and E12.0. A 0 state refers to similar expression, M to male-

enriched expression, and F to female-enriched expression. For

example, genes expressed higher in males starting at E11.2 and

continuing through the end of the window will have the state path

0MMMMM.

(XLSX)

Figure S1 Examples showing significant difference in
expression for each of the variables in the ANOVA
analysis. (A) Sex effect (Ddx3y): XY gonads show higher

expression than XX gonads. (B) Stage effect (Ltbp4): Expression

is higher at later time points across strains and sex. (C) Strain effect

(Myo6): 129S1 mice show higher expression regardless of sex and

stage. (D) Sex-by-stage effect (Gstm1): XY gonads show higher

expression starting at E11.6. (E) Sex-by-strain effect (Xist): B6 XX

gonads show higher expression compared to 129S1 XX gonads.

(F) Stage-by-strain effect (Ptpro): B6 gonads show higher expression

at later stages. (G) Sex-by-stage-strain (Hapln3): 129S1 XY gonads

starting at E11.8 show significantly different expression compared

to all other sample types.

(JPG)

Figure S2 State transition and emission probabilities of
the Hidden Markov Model (HMM). (A) State transition

probabilities for the HMM (Fig. 3) after (before) training with the

Baum-Welch algorithm. Numbers in the E11.0 column show

probability of a gene’s expression starting in the male, female or

similar expression state after (before) training. Transition proba-

bilities are shown for each pair of transitions from one time point

to the next for E11.2–E12.0. Colors of the cells indicate the state at

that time point. First three rows in each column show transition

from a male state at the previous time point, the middle three show

transition from a similar expression state and the last three rows

show transition from a female state at the previous time point. For

example, after training, the probability of transitioning from a

similar expression state at E11.6 to a male expression state at

E11.8 is 0.06. (B) State emission probabilities for the three states

before (left panels) and after training (right panels). Emission

probabilities for discretized fold changes were initialized by hand.

After training, emission probabilities still reflect the intuitive

meaning of the states. For example, higher expression in XY

gonads is likely to be observed in emissions from the male state.

Emission probabilities for the states were tied across time points.

(JPG)

Figure S3 Genes male- or female-enriched in whole
gonads between E11.0 and E12.0 are primarily dimor-
phic in the supporting cell lineage of the gonad in 129S1
mice. The cascade of genes that become dimorphically expressed

between E11.2 and E12.0 (same data as in Figure 4) was cross-

referenced with cell-type specific expression datasets analyzed at

E11.5 and E12.5 [2]. Column 1 shows overlap with genes

expressed dimorphically in supporting cells while column 2 shows

overlap with genes expressed dimorphically in germ cells. Rows

are colored blue or red where the probe was dimorphically

expressed and higher in XY cells or higher in XX cells,

respectively. The highest overlap is seen with the supporting cells

for both male- and female-enriched genes.

(JPG)

Figure S4 X-linked and Y-linked genes that are dimor-
phically expressed across the E11.0 – E12.0 window. (A)

Expression of Ddx3y, Eif2s3y, and Jarid1d in 129S1 gonads (blue –

expression in XY gonads, red – expression in XX gonads). All

three genes are Y-linked and are expressed higher in XY gonads

across the E11.0 – E12.0 window. (B) Expression of Xist, Utx, and

Eif2s3x in 129S1 gonads. All three genes are X-linked and are

expressed higher in XX gonads across the E11.0 – E12.0 window.

(JPG)

Figure S5 X-linked genes showing higher expression
starting at E11.2 are germ-cell enriched. (A–G, left column)

7 genes showing higher expression in XX gonads in 129S1 mice,

likely due to the higher number of germ cells in 129S1 mice [S15].

(A–G, right column) Corresponding expression in male (solid line)

and female (broken line) in germ cells (green) and supporting cells

(purple) from cell-type specific expression data. Note that

4932441K18Rik expression was not captured in the cell-type

specific expression dataset. All genes show enriched expression in

germ cells.

(JPG)

Figure S6 Detailed characterization of dimorphic ex-
pression in B6 gonads reveals properties similar to
129S1 gonads. (A) Examples of genes showing higher expression

in XY (male-enriched genes, top panel) and XX gonads (female-

enriched genes, bottom panel) from B6 mice. Blue and red vertical

lines show the time of onset of dimorphic expression. (B) Cascades

of dimorphic gene expression identified by the HMM in XY (top

panel) and XX gonads (bottom panel). Colors indicate the fold

difference between B6 XY and XX gonads at a specific time point.

The genes are arranged in order of increasing time of onset of

dimorphic expression. (C) Contribution to changes in expression

between E12.0 and the time point before the onset of dimorphism

are shown for each gene in (B) in XY (column 1) and XX (column

2) gonads. Top panel: male-enriched genes. Bottom panel: female-

enriched genes. This analysis shows that male-enriched genes are

mostly up-regulated in XY gonads while female-enriched genes

are mostly down-regulated in XY gonads. (D) The cascade of

genes dimorphically expressed was cross-referenced with cell-type

specific expression datasets analyzed at E11.5 and E12.5 [2].

Column 1 shows overlap with genes expressed dimorphically in

supporting cells while column 2 shows overlap with genes

expressed dimorphically in germ cells. Rows are colored blue or

red where the probe was dimorphically expressed and higher in

XY cells or higher in XX cells, respectively. As with 129S1 gonads,

the highest overlap is seen with the supporting cells for both male-

and female-enriched genes in B6 gonads.

(JPG)

Figure S7 Robust onset of dimorphism in 129S1 mice
compared to B6 mice. (A, C) Scatterplot showing XY vs. XX

fold difference (A) and XX vs. XY fold difference (C) at the onset

of dimorphism for male- and female-enriched genes that are

activated at the same stage. Fold difference between 129S1 XY

and XX gonads at the onset of dimorphism are plotted on the y-

axis and the fold difference between B6 XY and XX gonads at the

onset of dimorphism on the x-axis. Onset of dimorphism is more

robust in the 129S1 strain for both male- and female-enriched

genes. (B) Sox9 becomes dimorphic at E11.2 in 129S1 and B6

gonads. However, the fold difference between XY and XX gonads

is higher at E11.2 in 129S1 mice.

(JPG)

Figure S8 129S1 and B6 XY gonads show no significant
difference in Sry expression but a small difference in
Sox9 expression as assayed by qRT-PCR. (A) Sry expression

levels are similar in 129S1 and B6 XY gonads between E11.2–

E12.0. No statistically significant (p,0.1) differences are detected

at any time point in this analysis, however high variability among

individuals may mask a small but biologically meaningful strain
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effect for Sry transcript abundance in this window. (B) Sox9

expression shows significantly different expression (p,0.1 (*) and

p,0.05 (**)) at the 17 and 18 tail somite stage.

(JPG)

Figure S9 Lentiviral mediated knockdown of Sox9 in
gonad primary cell culture results in down-regulation of
male-enriched genes. Knockdown of Sox9 resulted in down-

regulation of known male-enriched genes such as Amh and Fgf9

and up-regulation of female-enriched gene Fst. However, Ptgds, a

known male-enriched gene [35], does not show down-regulation.

(JPG)

Table S1 Numbers of genes (probes) in each Viterbi
state path identified by the HMM for both 129S1 and B6
mice. Each state path has six states, one for each time point, and

genes having the same state path are clustered together. Only 3

genes switch from showing higher expression in one sex to higher

expression in the other. Most genes that become dimorphic

continue showing dimorphism throughout the E11.0–E12.0

window.

(JPG)

Table S2 Transcription Factors (TFs) and cofactors that
are either male- or female- enriched genes and show
dimorphic expression by E11.6 in supporting cells in

129S1 mice. Genes showing delayed onset of dimorphism in B6

are shown in grey boxes. Known interactions of the TFs that are

relevant to sex determination are also shown.

(JPG)

Table S3 List of primers used for qRT-PCR.

(JPG)

Text S1 List of references from Supplemental Material.

(DOCX)
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