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Abstract Identifying low-dimensional features that describe large-scale neural recordings is a

major challenge in neuroscience. Repeated temporal patterns (sequences) are thought to be a

salient feature of neural dynamics, but are not succinctly captured by traditional dimensionality

reduction techniques. Here, we describe a software toolbox—called seqNMF—with new methods

for extracting informative, non-redundant, sequences from high-dimensional neural data, testing

the significance of these extracted patterns, and assessing the prevalence of sequential structure in

data. We test these methods on simulated data under multiple noise conditions, and on several

real neural and behavioral data sets. In hippocampal data, seqNMF identifies neural sequences that

match those calculated manually by reference to behavioral events. In songbird data, seqNMF

discovers neural sequences in untutored birds that lack stereotyped songs. Thus, by identifying

temporal structure directly from neural data, seqNMF enables dissection of complex neural circuits

without relying on temporal references from stimuli or behavioral outputs.

DOI: https://doi.org/10.7554/eLife.38471.001

Introduction
The ability to detect and analyze temporal sequences embedded in a complex sensory stream is an

essential cognitive function, and as such is a necessary capability of neuronal circuits in the brain

(Clegg et al., 1998; Janata and Grafton, 2003; Bapi et al., 2005; Hawkins and Ahmad, 2016), as

well as artificial intelligence systems (Cui et al., 2016; Sutskever et al., 2014). The detection and

characterization of temporal structure in signals is also useful for the analysis of many forms of physi-

cal and biological data. In neuroscience, recent advances in technology for electrophysiological and

optical measurements of neural activity have enabled the simultaneous recording of hundreds or

thousands of neurons (Chen et al., 2013; Kim et al., 2016; Scholvin et al., 2016; Jun et al., 2017),

in which neuronal dynamics are often structured in sparse sequences (Hahnloser et al., 2002;

Harvey et al., 2012; MacDonald et al., 2011; Okubo et al., 2015; Fujisawa et al., 2008;

Pastalkova et al., 2008). Such sequences can be identified by averaging across multiple trials, but

only in cases where an animal receives a temporally precise sensory stimulus, or executes a suffi-

ciently stereotyped behavioral task.

Neural sequences have been hypothesized to play crucial roles over a much broader range of nat-

ural settings, including during learning, sleep, or diseased states (Mackevicius and Fee, 2018). In
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these applications, it may not be possible to use external timing references, either because behav-

iors are not stereotyped or are entirely absent. Thus, sequences must be extracted directly from the

neuronal data using unsupervised learning methods. Commonly used methods of this type, such as

principal component analysis (PCA) or clustering methods, do not efficiently extract sequences,

because they typically only model synchronous patterns of activity, rather than extended spatio-tem-

poral motifs of firing.

Existing approaches that search for repeating neural patterns require computationally intensive

or statistically challenging analyses (Brody, 1999; Mokeichev et al., 2007; Quaglio et al., 2018;

Brunton et al., 2016). While progress has been made in analyzing non-synchronous sequential pat-

terns using statistical models that capture cross-correlations between pairs of neurons (Russo and

Durstewitz, 2017; Gerstein et al., 2012; Schrader et al., 2008; Torre et al., 2016;

Grossberger et al., 2018; van der Meij and Voytek, 2018), such methods may not have statistical

power to scale to patterns that include many (more than a few dozen) neurons, may require long

periods (�105 timebins) of stationary data, and may have challenges in dealing with (non-sequential)

background activity. For a review highlighting features and limitations of these methods see

(Quaglio et al., 2018).

Here, we explore a complementary approach, which uses matrix factorization to reconstruct neu-

ral dynamics using a small set of exemplar sequences. In particular, we build on convolutional non-

negative matrix factorization (convNMF) (Smaragdis, 2004; Smaragdis, 2007) (Figure 1B), which

has been previously applied to identify recurring motifs in audio signals such as speech

(O’Grady and Pearlmutter, 2006; Smaragdis, 2007; Vaz et al., 2016), as well as neural

signals (Peter et al., 2017). ConvNMF identifies exemplar patterns (factors) in conjunction with the

times and amplitudes of pattern occurrences. This strategy eliminates the need to average activity

aligned to any external behavioral references.

While convNMF may produce excellent reconstructions of the data, it does not automatically pro-

duce the minimal number of factors required. Indeed, if the number of factors in the convNMF

model is greater than the true number of sequences, the algorithm returns overly complex and

redundant factorizations. Moreover, in these cases, the sequences extracted by convNMF will often

be inconsistent across optimization runs from different initial conditions, complicating scientific inter-

pretations of the results (Peter et al., 2017; Wu et al., 2016).

To address these concerns, we developed a toolbox of methods, called seqNMF, which includes

two different strategies to resolve the problem of redundant factorizations described above. In addi-

tion, the toolbox includes methods for promoting potentially desirable features such as orthogonal-

ity or sparsity of the spatial and temporal structure of extracted factors, and methods for analyzing

the statistical significance and prevalence of the identified sequential structure. To assess these

tools, we characterize their performance on synthetic data under a variety of noise conditions and

also show that they are able to find sequences in neural data collected from two different animal

species using different behavioral protocols and recording technologies. Applied to extracellular

recordings from rat hippocampus, seqNMF identifies neural sequences that were previously found

by trial-averaging. Applied to functional calcium imaging data recorded in vocal/motor cortex of

untutored songbirds, seqNMF robustly identifies neural sequences active in a biologically atypical

and overlapping fashion. This finding highlights the utility of our approach to extract sequences with-

out reference to external landmarks; untutored bird songs are so variable that aligning neural activity

to song syllables would be difficult and highly subjective.

Results

Matrix factorization framework for unsupervised discovery of features
in neural data
Matrix factorization underlies many well-known unsupervised learning algorithms, including PCA

(Pearson, 1901), non-negative matrix factorization (NMF) (Lee and Seung, 1999), dictionary learn-

ing, and k-means clustering (see Udell et al., 2016 for a review). We start with a data matrix, X, con-

taining the activity of N neurons at T timepoints. If the neurons exhibit a single repeated pattern of

synchronous activity, the entire data matrix can be reconstructed using a column vector w represent-

ing the neural pattern, and a row vector h representing the times and amplitudes at which that
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pattern occurs (temporal loadings). In this case, the data matrix X is mathematically reconstructed

as the outer product of w and h. If multiple component patterns are present in the data, then each

pattern can be reconstructed by a separate outer product, where the reconstructions are summed

to approximate the entire data matrix (Figure 1A) as follows:

Xnt »
eXnt ¼

XK

k¼1

WnkHkt ¼ ðWHÞnt (1)

where Xnt is the ðntÞth element of matrix X, that is, the activity of neuron n at time t. Here, in order

to store K different patterns, W is a N�K matrix containing the K exemplar patterns, and H is a

K�T matrix containing the K timecourses:

W¼

j j j

w1 w2 � � � wK

j j j

2
64

3
75 H¼

� h1 �

� h2 �

..

.

� hK �

2
66664

3
77775

(2)

Given a data matrix with unknown patterns, the goal of matrix factorization is to discover a small
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Figure 1. Convolutional NMF factorization. (A) NMF (non-negative matrix factorization) approximates a data

matrix describing the activity of N neurons at T timepoints as a sum of K rank-one matrices. Each matrix is

generated as the outer product of two nonnegative vectors: wk of length N, which stores a neural ensemble, and

hk of length T , which holds the times at which the neural ensemble is active, and the relative amplitudes of this

activity. (B) Convolutional NMF also approximates an N � T data matrix as a sum of K matrices. Each matrix is

generated as the convolution of two components: a non-negative matrix wk of dimension N � L that stores a

sequential pattern of the N neurons at L lags, and a vector of temporal loadings, hk , which holds the times at

which each factor pattern is active in the data, and the relative amplitudes of this activity. (C) Three types of

inefficiencies present in unregularized convNMF: Type 1, in which two factors are used to reconstruct the same

instance of a sequence; Type 2, in which two factors reconstruct a sequence in a piece-wise manner; and Type 3,

in which two factors are used to reconstruct different instances of the same sequence. For each case, the factors

(W and H) are shown, as well as the reconstruction (eX ¼W
� H ¼ w1

� h1 þw2


� h2 þ � � �).

DOI: https://doi.org/10.7554/eLife.38471.002

The following figure supplement is available for figure 1:

Figure supplement 1. Quantifying the effect of different penalties on convNMF.

DOI: https://doi.org/10.7554/eLife.38471.003
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set of patterns, W, and a corresponding set of temporal loading vectors, H, that approximate the

data. In the case that the number of patterns, K, is sufficiently small (less than N and T), this corre-

sponds to a dimensionality reduction, whereby the data is expressed in more compact form. PCA

additionally requires that the columns of W and the rows of H are orthogonal. NMF instead requires

that the elements of W and H are nonnegative. The discovery of unknown factors is often accom-

plished by minimizing the following cost function, which measures the element-by-element sum of

all squared errors between a reconstruction eX¼WH and the original data matrix X using the Fro-

benius norm, kMkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ijM
2

ij

q
:

ðW�;H�Þ ¼
W;H

arg minkeX�Xk2F

(3)

(Note that other loss functions may be substituted if desired, for example to better reflect the

noise statistics; see (Udell et al., 2016) for a review). The factors W
� and H

� that minimize this cost

function produce an optimal reconstruction eX� ¼W
�
H
�. Iterative optimization methods such as gra-

dient descent can be used to search for global minima of the cost function; however, it is often pos-

sible for these methods to get caught in local minima. Thus, as described below, it is important to

run multiple rounds of optimization to assess the stability/consistency of each model.

While this general strategy works well for extracting synchronous activity, it is unsuitable for dis-

covering temporally extended patterns—first, because each element in a sequence must be repre-

sented by a different factor, and second, because NMF assumes that the columns of the data matrix

are independent ‘samples’ of the data, so permutations in time have no effect on the factorization of

a given data. It is therefore necessary to adopt a different strategy for temporally extended features.

Convolutional matrix factorization
Convolutional nonnegative matrix factorization (convNMF) (Smaragdis, 2004; Smaragdis, 2007)

extends NMF to provide a framework for extracting temporal patterns, including sequences, from

data. While in classical NMF each factor W is represented by a single vector (Figure 1A), the factors

W in convNMF represent patterns of neural activity over a brief period of time. Each pattern is

stored as an N � L matrix, wk, where each column (indexed by ‘ ¼ 1 to L) indicates the activity of

neurons at different timelags within the pattern (Figure 1B). The times at which this pattern/

sequence occurs are encoded in the row vector h1, as for NMF. The reconstruction is produced by

convolving the N � L pattern with the time series h1 (Figure 1B).

If the data contains multiple patterns, each pattern is captured by a different N � L matrix and a

different associated time series vector h. A collection of K different patterns can be compiled

together into an N � K � L array (also known as a tensor), W and a corresponding K � T time series

matrix H. Analogous to NMF, convNMF generates a reconstruction of the data as a sum of K convo-

lutions between each neural activity pattern (W), and its corresponding temporal loadings (H):

Xnt »
eXnt ¼

XK

k¼1

XL�1

‘¼0

Wnk‘Hkðt�‘Þ � ðW
� HÞnt (4)

The tensor/matrix convolution operator 
� (notation summary, Table 1) reduces to matrix multi-

plication in the L¼ 1 case, which is equivalent to standard NMF. The quality of this reconstruction

can be measured using the same cost function shown in Equation 3, and W and H may be found

iteratively using similar multiplicative gradient descent updates to standard NMF (Lee and Seung,

1999; Smaragdis, 2004; Smaragdis, 2007).

While convNMF can perform extremely well at reconstructing sequential structure, it can be chal-

lenging to use when the number of sequences in the data is not known (Peter et al., 2017). In this

case, a reasonable strategy would be to choose K at least as large as the number of sequences that

one might expect in the data. However, if K is greater than the actual number of sequences,

convNMF often identifies more significant factors than are minimally required. This is because each

sequence in the data may be approximated equally well by a single sequential pattern or by a linear

combination of multiple partial patterns. A related problem is that running convNMF from different

random initial conditions produces inconsistent results, finding different combinations of partial
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patterns on each run (Peter et al., 2017). These inconsistency errors fall into three main categories

(Figure 1C):

Table 1. Notation for convolutional matrix factorization

Shift operator

The operator ðHÞ
‘!

shifts a matrix H in the ! direction by ‘ timebins:

ðHÞ
‘!

�t ¼ H�ðt�lÞ and likewise ðHÞ
 ‘

�t ¼ H�ðtþ‘Þ

where � indicates all elements along the respective matrix dimension.

The shift operator inserts zeros when ðt � ‘Þ< 0 or ðt þ ‘Þ> T

Tensor convolution operator

Convolutive matrix factorization reconstructs a data matrix X

using a N � K � L tensor W and a K � T matrix H:

eX ¼W
�H ¼
P

‘ W��‘H
‘!

Note that each neuron n is reconstructed as the sum of k convolutions:

eXnt ¼
P

k

P
‘ Wnk‘Hkðt�‘Þ � ðW
�HÞnt

Transpose tensor convolution operator

The following quantity is useful in several contexts:

W
�
>
X ¼

P
‘ðW��‘Þ

>
X
 ‘

Note that each element ðW
�
>
XÞkt ¼

P
lðW�k‘Þ

>
X�ðtþ‘Þ ¼

P
l

P
n Wnk‘Xnðtþ‘Þ measures

the overlap (correlation) of factor k with the data at time t

convNMF reconstruction

X»

eX ¼Pk W�k�
� Hk� ¼W
� H

Note that NMF is a special case of convNMF, where L ¼ 1

L1 entrywise norm excluding diagonal elements

For any K � K matrix C, kCk
1;i 6¼j �

P
k

P
j6¼k Cjk

Special matrices

1 is a K � K matrix of ones

I is the K � K identity matrix

S is a T � T smoothing matrix: Sij ¼ 1 when ji� jj< L and otherwise Sij ¼ 0

DOI: https://doi.org/10.7554/eLife.38471.004
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. Type 1: Two or more factors are used to reconstruct the same instances of a sequence.

. Type 2: Two or more factors are used to reconstruct temporally different parts of the same
sequence, for instance the first half and the second half.

. Type 3: Duplicate factors are used to reconstruct different instances of the same sequence.

Together, these inconsistency errors manifest as strong correlations between different redundant

factors, as seen in the similarity of their temporal loadings (H) and/or their exemplar activity patterns

(W).

We next describe two strategies for overcoming the redundancy errors described above. Both

strategies build on previous work that reduces correlations between factors in NMF. The first strat-

egy is based on regularization, a common technique in optimization that allows the incorporation of

constraints or additional information with the goal of improving generalization performance or sim-

plifying solutions to resolve degeneracies (Hastie et al., 2009). A second strategy directly estimates

the number of underlying sequences by minimizing a measure of correlations between factors (stabil-

ity NMF; Wu et al., 2016).

Optimization penalties to reduce redundant factors
To reduce the occurrence of redundant factors (and inconsistent factorizations) in convNMF, we

sought a principled way of penalizing the correlations between factors by introducing a penalty

term, R, into the convNMF cost function:

ðW�;H�Þ ¼
W;H

arg min keX�Xk2F þR

� �
(5)

Regularization has previously been used in NMF to address the problem of duplicated factors,

which, similar to Type 1 errors above, present as correlations between the H’s (Choi, 2008;

Chen and Cichocki, 2004). Such correlations are measured by computing the correlation matrix

HH
>, which contains the correlations between the temporal loadings of every pair of factors. The

regularization may be implemented using the penalty term R¼ lkHH
>k

1;i 6¼j, where the seminorm

k � k
1;i 6¼j sums the absolute value of every matrix entry except those along the diagonal (notation sum-

mary, Table 1) so that correlations between different factors are penalized, while the correlation of

each factor with itself is not. Thus, during the minimization process, similar factors compete, and a

larger amplitude factor drives down the temporal loading of a correlated smaller factor. The param-

eter l controls the magnitude of the penalty term R.

In convNMF, a penalty term based on HH
> yields an effective method to prevent errors of Type

1, because it penalizes the associated zero lag correlations. However, it does not prevent errors of

the other types, which exhibit different types of correlations. For example, Type 2 errors result in

correlated temporal loadings that have a small temporal offset and thus are not detected by HH
>.

One simple way to address this problem is to smooth the H’s in the penalty term with a square win-

dow of length 2L� 1 using the smoothing matrix S (Sij ¼ 1 when ji� jj<L and otherwise Sij ¼ 0). The

resulting penalty, R ¼ lkHSH
>k, allows factors with small temporal offsets to compete, effectively

preventing errors of Types 1 and 2.

This penalty does not prevent errors of Type 3, in which redundant factors with highly similar pat-

terns in W are used to explain different instances of the same sequence. Such factors have temporal

loadings that are segregated in time, and thus have low correlations, to which the cost term

kHSH
>k is insensitive. One way to resolve errors of Type 3 might be to include an additional cost

term that penalizes the similarity of the factor patterns in W. This has the disadvantage of requiring

an extra parameter, namely the l associated with this cost.

Instead we chose an alternative approach to resolve errors of Type 3 that simultaneously detects

correlations in W and H using a single cross-orthogonality cost term. We note that, for Type 3

errors, redundant W patterns have a high degree of overlap with the data at the same times, even

though their temporal loadings are segregated at different times. To introduce competition between

these factors, we first compute, for each pattern in W, its overlap with the data at time t. This quan-

tity is captured in symbolic form by W
�
>
X (see Table 1). We then compute the pairwise correlation

between the temporal loading of each factor and the overlap of every other factor with the data.

Mackevicius et al. eLife 2019;8:e38471. DOI: https://doi.org/10.7554/eLife.38471 6 of 42

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.38471


This cross-orthogonality penalty term, which we refer to as ’x-ortho’, sums up these correlations

across all pairs of factors, implemented as follows:

R¼ lkðW
�
>
XÞSH>k

1;i 6¼j (6)

When incorporated into the update rules, this causes any factor that has a high overlap with the

data to suppress the temporal loadings (H) of any other factors that have high overlap with the data

at that time (Further analysis, Appendix 2). Thus, factors compete to explain each feature of the

Table 2. Regularized NMF and convNMF: cost functions and algorithms

NMF

L ¼ 1

2
jjeX�Xjj2

2
þR

eX ¼WH

W W� XH
>

eXH
>þ qR

qW

H H� W
>
X

W
>eXþqR

qH

convNMF

L ¼ 1

2
jjeX�Xjj2

2
þR

eX ¼W
� H

W��‘  W��‘ �
X H

‘!>

eX H
‘!>

þ qR

qW��‘

H H� W
�
>

X

W
�
> eXþqR

qH

L1 regularization for H ( L1 for W is analogous)

R ¼ ljjHjj
1

qR

qW��‘
¼ 0

qR

qH
¼ l1

Orthogonality cost for H

R ¼ l
2
jjHH

>jj
1;i 6¼j

qR

qW��‘
¼ 0

qR

qH
¼ lð1� IÞH

Smoothed orthogonality cost for H (favors ‘events-based’)

R ¼ l
2
jjHSH

>jj
1;i 6¼j

qR

qW��‘
¼ 0

qR

qH
¼ lð1� IÞHS

Smoothed orthogonality cost for W (favors ‘parts-based’)

R ¼ l
2
jjW>

flatWflat jj1;i6¼j

where
ðWflatÞnk ¼

P
‘ Wnk‘

qR

qW��‘
¼ lWflatð1� IÞ

qR

qH
¼ 0

Smoothed cross-factor orthogonality (x-ortho penalty)

R ¼ ljjðW
�
>
XÞSH>jj

1;i6¼j
qR

qW��‘
¼ lX

 ‘

SH
>ð1� IÞ

qR

qH
¼ lð1� IÞW
�

>
XS

DOI: https://doi.org/10.7554/eLife.38471.005
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data, favoring solutions that use a minimal set of factors to give a good reconstruction. The resulting

global cost function is:

ðW�;H�Þ ¼
W;H

arg min keX�Xk2F þlkðW
�
>
XÞSH>k

1;i 6¼j

� �
(7)

The update rules for W and H are based on the derivatives of this global cost function, leading

to a simple modification of the standard multiplicative update rules used for NMF and convNMF

(Lee and Seung, 1999; Smaragdis, 2004; Smaragdis, 2007) (Table 2). Note that the addition of

this cross-orthogonality term does not formally constitute regularization, because it also includes a

contribution from the data matrix X, rather than just the model variables W and H. However, at

least for the case that the data is well reconstructed by the sum of all factors, the x-ortho penalty

can be shown to be approximated by a formal regularization (Appendix 2). This formal regularization

contains both a term corresponding to a weighted smoothed orthogonality penalty on W and a

term corresponding to a weighted smoothed) orthogonality penalty on H, consistent with the obser-

vation that the x-ortho penalty simultaneously punishes factor correlations in W and H.

There is an interesting relation between our method for penalizing correlations and other meth-

ods for constraining optimization, namely sparsity. Because of the non-negativity constraint imposed

in NMF, correlations can also be reduced by increasing the sparsity of the representation. Previous

efforts have been made to minimize redundant factors using sparsity constraints; however, this

approach may require penalties on both W and H, necessitating the selection of two hyper-parame-

ters (lw and lh) (Peter et al., 2017). Since the use of multiple penalty terms increases the complexity

of model fitting and selection of parameters, one goal of our work was to design a simple, single

penalty function that could regularize both W and H simultaneously. The x-ortho penalty described

above serves this purpose (Equation 6). As we will describe below, the application of sparsity penal-

ties can be very useful for shaping the factors produced by convNMF, and our code includes options

for applying sparsity penalties on both W and H.

Extracting ground-truth sequences with the x-ortho penalty when the
number of sequences is not known
We next examined the effect of the x-ortho penalty on factorizations of sequences in simulated

data, with a focus on convergence, consistency of factorizations, the ability of the algorithm to dis-

cover the correct number of sequences in the data, and robustness to noise (Figure 2A). We first

assessed the model’s ability to extract three ground-truth sequences lasting 30 timesteps and con-

taining 10 neurons in the absence of noise (Figure 2A). The resulting data matrix had a total dura-

tion of 15,000 timesteps and contained on average 60±6 instances of each sequence. Neural

activation events were represented with an exponential kernel to simulate calcium imaging data. The

algorithm was run with the x-ortho penalty for 1000 iterations andit reliably converged to a root-

mean-squared-error (RMSE) close to zero (Figure 2B). RMSE reached a level within 10% of the

asymptotic value in approximately 100 iterations.

While similar RMSE values were achieved using convNMF with and without the x-ortho penalty;

the addition of this penalty allowed three ground-truth sequences to be robustly extracted into

three separate factors (w1, w2, and w3 in Figure 2A) so long as K was chosen to be larger than the

true number of sequences. In contrast, convNMF with no penalty converged to inconsistent factori-

zations from different random initializations when K was chosen to be too large, due to the ambigui-

ties described in Figure 1. We quantified the consistency of each model (see

Materials and methods), and found that factorizations using the x-ortho penalty demonstrated near

perfect consistency across different optimization runs (Figure 2C).

We next evaluated the performance of convNMF with and without the x-ortho penalty on data-

sets with a larger number of sequences. In particular, we set out to observe the effect of the x-ortho

penalty on the number of statistically significant factors extracted. Statistical significance was deter-

mined based on the overlap of each extracted factor with held out data (see Materials and methods

and code package). With the penalty term, the number of significant sequences closely matched the

number of ground-truth sequences. Without the penalty, all 20 extracted sequences were significant

by our test (Figure 2D).
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Figure 2. Effect of the x-ortho penalty on the factorization of sequences. (A) A simulated dataset with three sequences. Also shown is a factorization

with x-ortho penalty (K ¼ 20, L ¼ 50, l ¼ 0:003). Each significant factor is shown in a different color. At left are the exemplar patterns (W) and on top

are the timecourses (H). (B) Reconstruction error as a function of iteration number. Factorizations were run on a simulated dataset with three sequences

and 15,000 timebins ( » 60 instances of each sequence). Twenty independent runs are shown. Here, the algorithm converges to within 10% of the

asymptotic error value within » 100 iterations. (C) The x-ortho penalty produces more consistent factorizations than unregularized convNMF across 400

independent fits (K ¼ 20, L ¼ 50, l ¼ 0:003). (D) The number of statistically significant factors (Figure 2—figure supplement 1) vs. the number of

ground-truth sequences for factorizations with and without the x-ortho penalty. Shown for each condition is a vertical histogram representing the

number of significant factors over 20 runs (K ¼ 20, L ¼ 50, l ¼ 0:003). (E) Factorization with x-ortho penalty of two simulated neural sequences with

shared neurons that participate at the same latency. (F) Same as E but for two simulated neural sequences with shared neurons that participate at

different latencies.

DOI: https://doi.org/10.7554/eLife.38471.006

The following figure supplements are available for figure 2:

Figure supplement 1. Outline of the procedure used to assess factor significance.

DOI: https://doi.org/10.7554/eLife.38471.007

Figure supplement 2. Number of significant factors as a function of l for datasets containing between 1 and 10 sequences.

DOI: https://doi.org/10.7554/eLife.38471.008
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We next considered how the x-ortho penalty performs on sequences with more complex structure

than the sparse uniform sequences of activity ediscussed above. We further examined the case in

which a population of neurons is active in multiple different sequences. Such neurons that are shared

across different sequences have been observed in several neuronal datasets (Okubo et al., 2015;

Pastalkova et al., 2008; Harvey et al., 2012). For one test, we constructed two sequences in which

shared neurons were active at a common pattern of latencies in both sequences; in another test,

shared neurons were active in a different pattern of latencies in each sequence. In both tests, factori-

zations using the x-ortho penalty achieved near-perfect reconstruction error, and consistency was
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Figure 3. Testing factorization performance on sequences contaminated with noise. Performance of the x-ortho penalty was tested under four different

noise conditions: (A) probabilistic participation, (B) additive noise, (C) temporal jitter, and (D) sequence warping. For each noise type, we show: (top)

examples of synthetic data at three different noise levels; (middle) similarity of extracted factors to ground-truth patterns across a range of noise levels

(20 fits for each level); and (bottom) examples of extracted factors W’s for one of the ground-truth patterns. Examples are shown at the same three

noise levels illustrated in the top row. In these examples, the algorithm was run with K ¼ 20, L ¼ 50 and l = 2l0 (via the procedure described in

Figure 4). For C, jitter displacements were draw from a discrete guassian distribution with the standard deviation in timesteps shown above For D,

timewarp conditions 1–10 indicate: 0, 66, 133, 200, 266, 333, 400, 466, 533 and 600 max % stretching respectively. For results at different values of l, see

Figure 3—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.38471.009

The following figure supplements are available for figure 3:

Figure supplement 1. Robustness to noise at different values of l.

DOI: https://doi.org/10.7554/eLife.38471.010

Figure supplement 2. Robustness to small dataset size when using the x-ortho penalty.

DOI: https://doi.org/10.7554/eLife.38471.011

Figure supplement 3. Robustness to different types of sequences.

DOI: https://doi.org/10.7554/eLife.38471.012
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similar to the case with no shared neurons (Figure 2E,F). We also examined other types of complex

structure and have found that the x-ortho penalty performs well in data with large gaps between

activity or with large overlaps of activity between neurons in the sequence. This approach also

worked well in cases in which the duration of the activity or the interval between the activity of neu-

rons varied across the sequence (Figure 3—figure supplement 3).

Robustness to noisy data
The cross-orthogonality penalty performed well in the presence of types of noise commonly found in

neural data. In particular, we considered: participation noise, in which individual neurons participate

probabilistically in instances of a sequence; additive noise, in which neuronal events occur randomly

outside of normal sequence patterns; temporal jitter, in which the timing of individual neurons is

shifted relative to their typical time in a sequence; and finally, temporal warping, in which each

instance of the sequence occurs at a different randomly selected speed. To test the robustness of

the algorithm with the x-ortho penalty to each of these noise conditions, we factorized data contain-

ing three neural sequences at a variety of noise levels (Figure 3, top row). The value of l was chosen

using methods described in the next section. Factorizations with the x-ortho penalty proved rela-

tively robust to all four noise types, with a high probability of returning the correct numbers of signif-

icant factors (Figure 4—figure supplement 5). Furthermore, under low-noise conditions, the

algorithm produced factors that were highly similar to ground-truth, and this similarity declined

gracefully at higher noise levels (Figure 3). Visualization of the extracted factors revealed a good

qualitative match to ground-truth sequences even in the presence of high noise except for the case

of temporal jitter (Figure 3). We also found that the x-ortho penalty allows reliable extraction of

sequences in which the duration of each neuron’s activity exhibits substantial random variation

across different renditions of the sequence, and in which the temporal jitter of neural activity exhibits

systematic variation at different points in the sequences (Figure 3—figure supplement 3).

Finally, we wondered how our approach with the x-ortho penalty performs on datasets with only

a small number of instances of each sequence. We generated data containing different numbers of

repetitions ranging from 1 to 20, of each underlying ground-truth sequence. For intermediate levels

of additive noise, we found that three repetitions of each sequence were sufficient to correctly

extract factors with similarity scores close to those obtained with much larger numbers of repetitions

(Figure 3—figure supplement 2).

Methods for choosing an appropriate value of l
The x-ortho penalty performs best when the strength of the regularization term (determined by the

hyperparameter l) is chosen appropriately. For l too small, the behavior of the algorithm

approaches that of convNMF, producing a large number of redundant factors with high x-ortho

cost. For l too large, all but one of the factors are suppressed to zero amplitude, resulting in a fac-

torization with near-zero x-ortho cost, but with large reconstruction error if multiple sequences are

present in the data. Between these extremes, there exists a region in which increasing l produces a

rapidly increasing reconstruction error and a rapidly decreasing x-ortho cost. Thus, there is a single

point, which we term l0, at which changes in reconstruction cost and changes in x-ortho cost are bal-

anced (Figure 4A). We hypothesized that the optimal choice of l (i.e. the one producing the correct

number of ground-truth factors) would lie near this point.

To test this intuition, we examined the performance of the x-ortho penalty as a function ofl in

noisy synthetic data consisting of three non-overlapping sequences (Figure 4A). Our analysis

revealed that, overall, values of l between 2l0 and 5l0 performed well for these data across all noise

types and levels (Figure 4B,C). In general, near-optimal performance was observed over an order of

magnitude range of l (Figure 1). However, there were systematic variations depending on noise

type: for additive noise, performance was better when l was closer to l0, while with other noise

types, performance was better at somewhat higher values of ls ( » 10l0).

Similar ranges of l appeared to work for datasets with different numbers of ground-truth sequen-

ces—for the datasets used in Figure 2D, a range of l between 0.001 and 0.01 returned the correct

number of sequences at least 90% of the time for datasets containing between 1 and 10 sequences

(Figure 2—figure supplement 2). Furthermore, this method for choosing l also worked on datasets

containing sequences with shared neurons (Figure 4—figure supplement 2).

Mackevicius et al. eLife 2019;8:e38471. DOI: https://doi.org/10.7554/eLife.38471 11 of 42

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.38471


0

0.2

0.4

0.6

0.8

1

C
o

s
t

Reconstruction cost

X-ortho cost

10
0

10
1

#
 S

ig
n

if
ic

a
n

t 
fa

c
to

rs

0

0.5

1

F
ra

c
ti
o

n
 c

o
rr

e
c
t

S
im

ila
ri
ty

10
-5

10
0

10
5

0

0.5

C
o

m
p

o
s
it
e

 p
e

rf
o

rm
a

n
c
e

0

0.2

0.4

0.6

0.8

1

10
1

10
-5

10
0

10
5

10
-1

10
0

10
1

10
2

10
3

10
4

 /
 

0

No noise

Participation

Additive

Jitter

Warping

 = 
0

A

C

D

E

F

M

G

I

J

K

L

B H

increasing noise

*

0

0.5

1

Figure 4. Procedure for choosing l for a new dataset based on finding a balance between reconstruction cost and

x-ortho cost. (A) Simulated data containing three sequences in the presence of participation noise (50%

participation probability). This noise condition is used for the tests in (B–F). (B) Normalized reconstruction cost

(jjeX�Xjj2F ) and cross-orthogonality cost (jjðW
�
>
XÞSH>jj

1;i 6¼j) as a function of l for 20 fits of these data. The cross-

over point l0 is marked with a black circle. Note that in this plot the reconstruction cost and cross-orthogonality

Figure 4 continued on next page
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The value of l may also be determined by cross-validation (see Materials and methods). Indeed,

the l chosen with the heuristic described above coincided with a minimum or distinctive feature in

the cross-validated test error for all the cases we examined (Figure 4—figure supplement 3). The

seqNMF code package accompanying this paper provides functions to determine l both by cross-

validation or in reference to l0.

Sparsity constraints to reduce redundant factors
One of the advantages of the x-ortho penalty is that it includes only a single term to penalize corre-

lations between different factors, and thus requires only a single hyperparameter l. This contrasts

with the approach of incorporating a sparsity constraint on W and H of the form

lwkWk1 þ lhkHk1 (Peter et al., 2017). We have found that the performance of the sparsity

approach depends on the correct choice of both hyperparameters lw and lh (Figure 4—figure sup-

plement 4). Given the optimal choice of these parameters, the L1 sparsity constraint yields an overall

performance approximately as good as the x-ortho penalty (Figure 4—figure supplement 4). How-

ever, there are some consistent differences in the performance of the sparsity and x-ortho

approaches depending on noise type; an analysis at moderately high noise levels reveals that the

x-ortho penalty performs slightly better with warping and participation noise, while the L1 sparsity

penalty performs slightly better on data with jitter and additive noise (Figure 4—figure supplement

5). However, given the added complexity of choosing two hyperparameters for L1 sparsity, we pre-

fer the x-ortho approach.

Direct selection of K to reduce redundant factors
An alternative strategy to minimizing redundant factorizations is to estimate the number of underly-

ing sequences and to select the appropriate value of K. An approach for choosing the number of

factors in regular NMF is to run the algorithm many times with different initial conditions, at different

values of K, and choose the case with the most consistent and uncorrelated factors. This strategy is

called stability NMF (Wu et al., 2016) and is similar to other stability-based metrics that have been

Figure 4 continued

cost are normalized to vary between 0 and 1. (C) The number of significant factors obtained as a function of l; 20

fits, mean plotted in orange. Red arrow at left indicates the correct number of sequences (three). (D) Fraction of

fits returning the correct number of significant factors as a function of l. (E) Similarity of extracted factors to

ground-truth sequences as a function of l. (F) Composite performance, as the product of the curves in (D) and (E)

(smoothed using a three sample boxcar, plotted in orange with a circle marking the peak). Shaded region

indicates the range of l that works well (� half height of composite performance). (G–L) same as (A–F) but for

simulated data containing three noiseless sequences. (M) Summary plot showing the range of values of l (vertical

bars), relative to the cross-over point l0, that work well for each noise condition (� half height points of composite

performance). Circles indicate the value of l at the peak of the smoothed composite performance. For each noise

type, results for all noise levels from Figure 3 are shown (increasing color saturation at high noise levels; Green,

participation: 90, 80, 70, 60, 50, 40, 30, and 20%; Orange, additive noise 0.5, 1, 2, 2.5, 3, 3.5, and 4%; Purple, jitter:

SD of the distribution of random jitter: 5, 10, 15, 20, 25, 30, 35, 40, and 45 timesteps; Grey, timewarp: 66, 133, 200,

266, 333, 400, 466, 533, 600, and 666 max % stretching. Asterisk (*) indicates the noise type and level used in

panels (A–F). Gray band indicates a range between 2l0 and 5l0, a range that tended to perform well across the

different noise conditions. In real data, it may be useful to explore a wider range of l.

DOI: https://doi.org/10.7554/eLife.38471.013

The following figure supplements are available for figure 4:

Figure supplement 1. Analysis of the best range of l.

DOI: https://doi.org/10.7554/eLife.38471.014

Figure supplement 2. Procedure for choosing l applied to data with shared neurons.

DOI: https://doi.org/10.7554/eLife.38471.015

Figure supplement 3. Using cross-validation on held-out (masked) data to choose l.

DOI: https://doi.org/10.7554/eLife.38471.016

Figure supplement 4. Quantifying the effect of L1 sparsity penalties on W and H.

DOI: https://doi.org/10.7554/eLife.38471.017

Figure supplement 5. Comparing the performance of convNMF with an x-ortho or a sparsity penalty.

DOI: https://doi.org/10.7554/eLife.38471.018
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used in clustering models (von Luxburg, 2010). The stability NMF score, diss, is measured between

two factorizations, F1 ¼ fW1;H1g and F
2 ¼ fW2;H2g, run from different initial conditions:

dissðF1;F2Þ ¼
1

2K
2K�

XK

j¼1

max
1�k�K

Cjk �
XK

k¼1

max
1�j�K

Cjk

 !

where C is the cross-correlation matrix between the columns of the matrix W
1 and the the columns

of the matrix W
2. Note that diss is low when there is a one-to-one mapping between factors in F

1

and F
2, which tends to occur at the correct K in NMF (Wu et al., 2016; Ubaru et al., 2017). NMF is

run many times and the diss metric is calculated for all unique pairs. The best value of K is chosen as

that which yields the lowest average diss metric.

To use this approach for convNMF, we needed to slightly modify the stability NMF diss metric.

Unlike in NMF, convNMF factors have a temporal degeneracy; that is, one can shift the elements of

hk by one time step while shifting the elements of wk by one step in the opposite direction with little

change to the model reconstruction. Thus, rather than computing correlations from the factor pat-

terns W or loadings H, we computed the diss metric using correlations between factor reconstruc-

tions (eXk ¼ wk
� hk).

Cij ¼
Tr eXT

i
eXj

h i

keXikFk
eXjkF

where Tr½�� denotes the trace operator, Tr½M� ¼
P

iMii. That is, Cij measures the correlation

between the reconstruction of factor i in F
1 and the reconstruction of factor j in F

2. Here, as for sta-

bility NMF, the approach is to run convNMF many times with different numbers of factors (K) and

choose the K which minimizes the diss metric.

We evaluated the robustness of this approach in synthetic data with the four noise conditions

examined earlier. Synthetic data were constructed with three ground-truth sequences and 20

convNMF factorizations were carried out for each K ranging from 1 to 10. For each K the average

diss metric was computed over all 20 factorizations. In many cases, the average diss metric exhibited

a minimum at the ground-truth K (Figure 5—figure supplement 1). As shown below, this method

also appears to be useful for identifying the number of sequences in real neural data.

Not only does the diss metric identify factorizations that are highly similar to the ground truth

and have the correct number of underlying factors, it also yields factorizations that minimize recon-

struction error in held out data (Figure 5, Figure 5—figure supplement 2), as shown using the

same cross-validation procedure described above (Figure 5—figure supplement 2). For simulated

datasets with participation noise, additive noise, and temporal jitter, there is a clear minimum in the

test error at the K given by diss metric. In other cases, there is a distinguishing feature such as a kink

or a plateau in the test error at this K (Figure 5—figure supplement 2).

Strategies for dealing with ambiguous sequence structure
Some sequences can be interpreted in multiple ways, and these interpretations will correspond to

different factorizations. A common example arises when neurons are shared between different

sequences, as is shown in Figure 6A and B. In this case, there are two ensembles of neurons (1 and

2), that participate in two different types of events. In one event type, ensemble one is active alone,

while in the other event type, ensemble one is coactive with ensemble 2. There are two different rea-

sonable factorizations of these data. In one factorization, the two different ensembles are separated

into two different factors, while in the other factorization the two different event types are separated

into two different factors. We refer to these as ’parts-based’ and ’events-based’ respectively. Note

that these different factorizations may correspond to different intuitions about underlying mecha-

nisms. ‘Parts-based’ factorizations will be particularly useful for clustering neurons into ensembles,

and ‘events-based’ factorizations will be particularly useful for correlating neural events with

behavior.

Here, we show that the addition of penalties on either W or H correlations can be used to shape

the factorizations of convNMF, with or without the x-ortho penalty, to produce ‘parts-based’ or

‘events-based’ factorization. Without this additional control, factorizations may be either ‘parts-
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based’, or ‘events-based’ depending on initial conditions and the structure of shared neurons activi-

ties. This approach works because, in ‘events-based’ factorization, the H’s are orthogonal (uncorre-

lated) while the W’s have high overlap; conversely, in the ‘parts-based’ factorization, the W’s are

orthogonal while the H’s are strongly correlated. Note that these correlations in W or H are

unavoidable in the presence of shared neurons and such correlations do not indicate a redundant

factorization. Update rules to implement penalties on correlations in W or H are provided in Table 2
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Figure 5. Direct selection of K using the diss metric, a measure of the dissimilarity between different

factorizations. Panels show the distribution of diss as a function of K for several different noise conditions. Lower

values of diss indicate greater consistency or stability of the factorizations, an indication of low factor redundancy.

(A) probabilistic participation (60%), (B) additive noise (2.5% bins), (C) timing jitter (SD = 20 bins), and (D) sequence

warping (max warping = 266%). For each noise type, we show: (top) examples of synthetic data; (bottom) the diss

metric for 20 fits of convNMF for K from 1 to 10; the black line shows the median of the diss metric and the dotted

red line shows the true number of factors.

DOI: https://doi.org/10.7554/eLife.38471.019

The following figure supplements are available for figure 5:

Figure supplement 1. Direct selection of K using the diss metric for all noise conditions.

DOI: https://doi.org/10.7554/eLife.38471.020

Figure supplement 2. Estimating the number of sequences in a dataset using cross-validation on randomly

masked held-out datapoints.

DOI: https://doi.org/10.7554/eLife.38471.021

Mackevicius et al. eLife 2019;8:e38471. DOI: https://doi.org/10.7554/eLife.38471 15 of 42

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.38471.019
https://doi.org/10.7554/eLife.38471.020
https://doi.org/10.7554/eLife.38471.021
https://doi.org/10.7554/eLife.38471


with derivations in Appendix 1. Figure 9—figure supplement 2 shows examples of using these pen-

alties on the songbird dataset described in Figure 9.

L1 regularization is a widely used strategy for achieving sparse model parameters (Zhang et al.,

2016), and has been incorporated into convNMF in the past (O’Grady and Pearlmutter, 2006;

Ramanarayanan et al., 2013). In some of our datasets, we found it useful to include L1 regulariza-

tion for sparsity. The multiplicative update rules in the presence of L1 regularization are included in

Table 2, and as part of our code package. Sparsity on the matrices W and H may be particularly

useful in cases when sequences are repeated rhythmically (Figure 6—figure supplement 1A). For

example, the addition of a sparsity regularizer on the W update will bias the W exemplars to

include only a single repetition of the repeated sequence, while the addition of a sparsity regularizer

on H will bias the W exemplars to include multiple repetitions of the repeated sequence. Like the

ambiguities described above, these are both valid interpretations of the data, but each may be

more useful in different contexts.

Quantifying the prevalence of sequential structure in a dataset
While sequences may be found in a variety of neural datasets, their importance and prevalence is still

a matter of debate and investigation. To address this, we developed a metric to assess how much of

the explanatory power of a seqNMF factorization was due to synchronous vs. asynchronous neural

firing events. Since convNMF can fit both synchronous and sequential events in a dataset, recon-

struction error is not, by itself, diagnostic of the ‘sequenciness’ of neural activity. Our approach is

guided by the observation that in a data matrix with only synchronous temporal structure (i.e. pat-

terns of rank 1), the columns can be permuted without sacrificing convNMF reconstruction error. In

contrast, permuting the columns eliminates the ability of convNMF to model data that contains

A

B

C

D

Parts-based Parts-based

Events-based Events-based

Figure 6. Using penalties to bias toward events-based and parts-based factorizations. Datasets that have neurons

shared between multiple sequences can be factorized in different ways, emphasizing discrete temporal events

(events-based) or component neuronal ensembles (parts-based), by using orthogonality penalties on H or W to

penalize factor correlations (see Table 2). (Left) A dataset with two different ensembles of neurons that participate

in two different types of events, with (A) events-based factorization obtained using an orthogonality penalty on H

and (B) parts-based factorizations obtained using an orthogonality penalty on W. (Right) A dataset with six

different ensembles of neurons that participate in three different types of events, with (C) events-based and (D)

parts-based factorizations obtained as in (A) and (B).

DOI: https://doi.org/10.7554/eLife.38471.022

The following figure supplement is available for figure 6:

Figure supplement 1. Biasing factorizations between sparsity in W or H.

DOI: https://doi.org/10.7554/eLife.38471.023
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sparse temporal sequences (i.e. high rank patterns) but no synchronous structure. We thus compute

a ‘sequenciness’ metric, ranging from 0 to 1, that compares the performance of convNMF on col-

umn-shuffled versus non-shuffled data matrices (see Materials and methods), and quantify the per-

formance of this metric in simulated datasets containing synchronous and sequential events with

varying prevalence (Figure 7C). We found that this metric varies approximately linearly with the
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Figure 7. Using seqNMF to assess the prevalence of sequences in noisy data. (A) Example simulated datasets. Each dataset contains 10 neurons, with

varying amounts of additive noise, and varying proportions of synchronous events versus asynchronous sequences. For the purposes of this figure,

’sequence’ refers to a sequential pattern with no synchrony between different neurons in the pattern. The duration of each dataset used below is 3000

times, and here 300 timebins are shown. (B) Median percent power explained by convNMF (L = 12; K = 2; l=0) for each type of dataset (100 examples

of each dataset type). Different colors indicate the three different levels of additive noise shown in A. Solid lines and filled circles indicate results on

unshuffled datasets. Note that performance is flat for each noise level, regardless of the probability of sequences vs synchronous events. Dotted lines

and open circles indicate results on column-shuffled datasets. When no sequences are present, convNMF performs the same on column-shuffled data.

However, when sequences are present, convNMF performs worse on column-shuffled data. (C) For datasets with patterns ranging from exclusively

synchronous events to exclusively asynchronous sequences, convNMF was used to generate a ‘Sequenciness’ score. Colors correspond to different

noise levels shown in A. Asterisks denote cases where the power explained exceeds the Bonferroni-corrected significance threshold generated from

column-shuffled datasets. Open circles denote cases that do not achieve significance. Note that this significance test is fairly sensitive, detecting even

relatively low presence of sequences, and that the ‘Sequenciness’ score distinguishes between cases where more or less of the dataset consists of

sequences.
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degree to which sequences are present in a dataset. Below, we apply this method to real experimen-

tal data and obtain high ‘sequenciness’ scores, suggesting that convolutional matrix factorization is a

well-suited tool for summarizing neural dynamics in these datasets.

Application of seqNMF to hippocampal sequences
To test the ability of seqNMF to discover patterns in electrophysiological data, we analyzed multi-

electrode recordings from rat hippocampus (https://crcns.org/data-sets/hc), which were previously

shown to contain sequential patterns of neural firing (Pastalkova et al., 2015). Specifically, rats were

trained to alternate between left and right turns in a T-maze to earn a water reward. Between alter-

nations, the rats ran on a running wheel during an imposed delay period lasting either 10 or 20 sec-

onds. By averaging spiking activity during the delay period, the authors reported long temporal

sequences of neural activity spanning the delay. In some rats, the same sequence occurred on left

and right trials, while in other rats, different sequences were active in the delay period during each

trial types.

Without reference to the behavioral landmarks, seqNMF was able to extract sequences in both

datasets. In Rat 1, seqNMF extracted a single factor, corresponding to a sequence active throughout

the running wheel delay period and immediately after, when the rat ran up the stem of the maze

(Figure 8A); for 10 fits of K ranging from 1 to 10, the average diss metric reached a minimum at 1

and with l ¼ 2l0, most runs using the x-ortho penalty extracted a single significant factor

(Figure 8C–E). Factorizations of thes data with one factor captured 40.8% of the power in the data-

set on average, and had a ‘sequenciness’ score of 0.49. Some runs using the x-ortho penalty

extracted two factors (Figure 8E), splitting the delay period sequence and the maze stem sequence;

this is a reasonable interpretation of the data, and likely results from variability in the relative timing

of running wheel and maze stem traversal. At somewhat lower values of l, factorizations more often

split these sequences into two factors. At even lower values of l, factorizations had even more signif-

icant factors. Such higher granularity factorizations may correspond to real variants of the sequences,

as they generalize to held-out data or may reflect time warping in the data (Figure 5—figure sup-

plement 2J). However, a single sequence may be a better description of the data because the diss

metric displayed a clear minimum at K ¼ 1 (Figure 8C). In Rat 2, seqNMF typically identified three

factors (Figure 8B). The first two correspond to distinct sequences active for the duration of the

delay period on alternating left and right trials. A third sequence was active immediately following

each of the alternating sequences, corresponding to the time at which the animal exits the wheel

and runs up the stem of the maze. For 10 fits of K ranging from 1 to 10, the average diss metric

reached a minimum at three and with l ¼ 1:5l0, most runs with the x-ortho penalty extracted

between 2 and 4 factors (Figure 8F–H). Factorizations of these data with three factors captured

52.6% of the power in the dataset on average, and had a pattern ‘sequenciness’ score of 0.85. Taken

together, these results suggest that seqNMF can detect multiple neural sequences without the use

of behavioral landmarks.

Application of seqNMF to abnormal sequence development in avian
motor cortex
We applied seqNMF methods to analyze functional calcium imaging data recorded in the songbird

premotor cortical nucleus HVC during singing. Normal adult birds sing a highly stereotyped song,

making it possible to detect sequences by averaging neural activity aligned to the song. Using this

approach, it has been shown that HVC neurons generate precisely timed sequences that tile each

song syllable (Hahnloser et al., 2002; Picardo et al., 2016; Lynch et al., 2016). Songbirds learn

their song by imitation and must hear a tutor to develop normal adult vocalizations. Birds isolated

from a tutor sing highly variable and abnormal songs as adults (Fehér et al., 2009). Such ‘isolate’

birds provide an opportunity to study how the absence of normal auditory experience leads to path-

ological vocal/motor development. However, the high variability of pathological ‘isolate’ song makes

it difficult to identify neural sequences using the standard approach of aligning neural activity to

vocal output.

Using seqNMF, we were able to identify repeating neural sequences in isolate songbirds

(Figure 9A). At the chosen l (Figure 9B), x-ortho penalized factorizations typically extracted three

significant sequences (Figure 9C). Similarly, the diss measure has a local minimum at K ¼ 3
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(Figure 9—figure supplement 1B). The three-sequence factorization explained 41% of the total

power in the dataset, with a sequenciness score of 0.7 andhe extracted sequences included sequen-

ces deployed during syllables of abnormally long and variable durations (Figure 9D–F, Figure 9—

figure supplement 1A).

In addition, the extracted sequences exhibit properties not observed in normal adult birds. We

see an example of two distinct sequences that sometimes, but not always, co-occur (Figure 9). We

observe that a shorter sequence (green) occurs alone on some syllable renditions while a second,
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Figure 8. Application of seqNMF to extract hippocampal sequences from two rats. (A) Firing rates of 110 neurons recorded in the hippocampus of Rat

1 during an alternating left-right task with a delay period (Pastalkova et al., 2015). The single significant extracted x-ortho penalized factor. Both an

x-ortho penalized reconstruction of each factor (left) and raw data (right) are shown. Neurons are sorted according to the latency of their peak

activation within the factor. The red line shows the onset and offset of the forced delay periods, during which the animal ran on a treadmill. (B) Firing

rates of 43 hippocampal neurons recorded in Rat 2 during the same task (Mizuseki et al., 2013). Neurons are sorted according to the latency of their

peak activation within each of the three significant extracted sequences. The first two factors correspond to left and right trials, and the third

corresponds to running along the stem of the maze. (C) The diss metric as a function of K for Rat 1. Black line represents the median of the black

points. Notice the minimum at K = 1. (D) (Left) Reconstruction (red) and correlation (blue) costs as a function of l for Rat 1. Arrow indicates

l ¼ 8� 10
�5, used for the x-ortho penalized factorization shown in (A). (E) Histogram of the number of significant factors across 30 runs of x-ortho

penalized convNMF. (D) The diss metric as a function of K for Rat 2. Notice the minimum at K = 3. (G–H) Same as in (D–E) but for Rat 2. Arrow indicates

l ¼ 8� 10
�5, used for the factorization shown in (B).
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Figure 9. SeqNMF applied to calcium imaging data from a singing isolate bird reveals abnormal sequence deployment. (A) Functional calcium signals

recorded from 75 neurons, unsorted, in a singing isolate bird. (B) Reconstruction and cross-orthogonality cost as a function of l. The arrow at l ¼ 0:005

indicates the value selected for the rest of the analysis. (C) Number of significant factors for 100 runs with the x-ortho penalty with K ¼ 10, l ¼ 0:005.

Arrow indicates three is the most common number of significant factors. (D) X-ortho factor exemplars (W’s). Neurons are grouped according to the

Figure 9 continued on next page
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longer sequence (purple) occurs simultaneously on other syllable renditions. We found that biasing

x-ortho penalized convNMF towards ’parts-based’ or ’events-based’ factorizations gives a useful

tool to visualize this feature of the data (Figure 9—figure supplement 2). This probabilistic overlap

of different sequences is highly atypical in normal adult birds (Hahnloser et al., 2002; Long et al.,

2010; Picardo et al., 2016; Lynch et al., 2016) and is associated with abnormal variations in syllable

structure—in this case resulting in a longer variant of the syllable when both sequences co-occur.

This acoustic variation is a characteristic pathology of isolate song (Fehér et al., 2009).

Thus, even though we observe HVC generating sequences in the absence of a tutor, it appears

that these sequences are deployed in a highly abnormal fashion.

Application of seqNMF to a behavioral dataset: song spectrograms
Although we have focused on the application of seqNMF to neural activity data, these methods nat-

urally extend to other types of high-dimensional datasets, including behavioral data with applications

to neuroscience. The neural mechanisms underlying song production and learning in songbirds is an

area of active research. However, the identification and labeling of song syllables in acoustic record-

ings is challenging, particularly in young birds in which song syllables are highly variable. Because

automatic segmentation and clustering often fail, song syllables are still routinely labelled by hand

(Okubo et al., 2015). We tested whether seqNMF, applied to a spectrographic representation of

zebra finch vocalizations, is able to extract meaningful features in behavioral data. Using the x-ortho

penalty, factorizations correctly identified repeated acoustic patterns in juvenile songs, placing each

distinct syllable type into a different factor (Figure 10). The resulting classifications agree with previ-

ously published hand-labeled syllable types (Okubo et al., 2015). A similar approach could be

applied to other behavioral data, for example movement data or human speech, and could facilitate

the study of neural mechanisms underlying even earlier and more variable stages of learning. Indeed,

convNMF was originally developed for application to spectrograms (Smaragdis, 2004); notably it

has been suggested that auditory cortex may use similar computations to represent and parse natu-

ral statistics (Młynarski and McDermott, 2018).

Discussion
As neuroscientists strive to record larger datasets, there is a need for rigorous tools to reveal under-

lying structure in high-dimensional data (Gao and Ganguli, 2015; Sejnowski et al., 2014;

Churchland and Abbott, 2016; Bzdok and Yeo, 2017). In particular, sequential structure is increas-

ingly regarded as a fundamental property of neuronal circuits (Hahnloser et al., 2002;

Harvey et al., 2012; Okubo et al., 2015; Pastalkova et al., 2008), but standardized statistical

approaches for extracting such structure have not been widely adopted or agreed upon. Extracting

sequences is particularly challenging when animal behaviors are variable (e.g. during learning) or

absent entirely (e.g. during sleep).

Here, we explored a simple matrix factorization-based approach to identify neural sequences

without reference to animal behavior. The convNMF model elegantly captures sequential structure

in an unsupervised manner (Smaragdis, 2004; Smaragdis, 2007; Peter et al., 2017). However, in

datasets where the number of sequences is not known, convNMF may return inefficient and inconsis-

tent factorizations. To address these challenges, we introduced a new regularization term to penalize

Figure 9 continued

factor in which they have peak activation, and within each group neurons are sorted by the latency of their peak activation within the factor. (E) The

same data shown in (A), after sorting neurons by their latency within each factor as in (D). A spectrogram of the bird’s song is shown at top, with a

purple ‘*’ denoting syllable variants correlated with w2. (F) Same as (E), but showing reconstructed data rather than calcium signals. Shown at top are

the temporal loadings (H) of each factor.
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The following figure supplements are available for figure 9:

Figure supplement 1. Further analysis of sequences.
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Figure supplement 2. Events-based and parts-based factorizations of songbird data.
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correlated factorizations, and developed a new dissimilarity measure to assess model stability. Both

proposed methods can be used to infer the number of sequences in neural data and are highly

robust to noise. For example, even when (synthetic) neurons participate probabilistically in sequen-

ces at a rate of 50%, the model typically identifies factors with greater than 80% similarity to the

ground truth (Figure 3A). Additionally, these methods perform well even with very limited amounts

of data: for example successfully extracting sequences that only appear a handful of times in a noisy

data stream (Figure 3—figure supplement 2).

The x-ortho penalty developed in this paper may represent a useful improvement over traditional

orthogonality regularizations or suggest how traditional regularization penalties may be usefully

modified. First, it simultaneously provides a penalty on correlations in both W and H, thus simplify-

ing analyses by having only one penalty term. Second, although the x-ortho penalty does not for-

mally constitute regularization due to its inclusion of the data X, we have described how the penalty

can be approximated by a data-free regularization with potentially useful properties (Appendix 2).

Specifically, the data-free regularization contains terms corresponding to weighted orthogonality in
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Figure 10. SeqNMF applied to song spectrograms. (A) Spectrogram of juvenile song, with hand-labeled syllable

types (Okubo et al., 2015). (B) Reconstruction cost and x-ortho cost for these data as a function of l. Arrow

denotes l ¼ 0:0003, which was used to run convNMF with the x-ortho penalty (C) W’s for this song, fit with K ¼ 8,

L ¼ 200ms, l ¼ 0:0003. Note that there are three non-empty factors, corresponding to the three hand-labeled

syllables a, b, and c. (D) X-ortho penalized H’s (for the three non-empty factors) and reconstruction of the song

shown in (A) using these factors.
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(smoothed) H and W, where the weights focus the orthogonality penalty preferentially on those fac-

tors that contribute the most power to the reconstruction. This concept of using power-weighted

regularization penalties may be applicable more generally to matrix factorization techniques.

As in many data analysis scenarios, a variety of statistical approaches may be brought to bear on

finding sequences in neural data. A classic method is to construct cross-correlogram plots, showing

spike time correlations between pairs of neurons at various time lags. However, other forms of spike

rate covariation, such as trial-to-trial gain modulation, can produce spurious peaks in this measure

(Brody, 1999); recent work has developed statistical corrections for these effects (Russo and Dur-

stewitz, 2017). After significant pairwise correlations are identified, one can heuristically piece

together pairs of neurons with significant interactions into a sequence. This bottom-up approach

may be better than seqNMF at detecting sequences involving small numbers of neurons, since

seqNMF specifically targets sequences that explain large amounts of variance in the data. On the

other hand, bottom-up approaches to sequence extraction may fail to identify long sequences with

high participation noise or jitter in each neuron (Quaglio et al., 2018). One can think of seqNMF as

a complementary top-down approach, which performs very well in the high-noise regime since it

learns a template sequence at the level of the full population that is robust to noise at the level of

individual units.

Statistical models with a dynamical component, such as Hidden Markov Models (HMMs)

(Maboudi et al., 2018), linear dynamical systems (Kao et al., 2015), and models with switching

dynamics (Linderman et al., 2017), can also capture sequential firing patterns. These methods will

typically require many hidden states or latent dimensions to capture sequences, similar to PCA and

NMF which require many components to recover sequences. Nevertheless, visualizing the transition

matrix of an HMM can provide insight into the order in which hidden states of the model are visited,

mapping onto different sequences that manifest in population activity (Maboudi et al., 2018). One

advantage of this approach is that it can model sequences that occasionally end prematurely, while

convNMF will always reconstruct the full sequence. On the other hand, this pattern completion prop-

erty makes convNMF robust to participation noise and jitter. In contrast, a standard HMM must pass

through each hidden state to model a sequence, and therefore may have trouble if many of these

states are skipped. Thus, we expect HMMs and related models to exhibit complementary strengths

and weaknesses when compared to convNMF.

Another strength of convNMF is its ability to accommodate sequences with shared neurons, as

has been observed during song learning (Okubo et al., 2015). Sequences with shared neurons can

be interpreted either in terms of ‘parts-based’ or ‘events-based’ factorizations (Figure 9—figure

supplement 2). This capacity for a combinatorial description of overlapping sequences distinguishes

convNMF from many other methods, which assume that neural patterns/sequences do not co-occur

in time. For example, a vanilla HMM can only model each time step with a single hidden state and

thus cannot express parts-based representations of neural sequences. Likewise, simple clustering

models would assign each time interval to a single cluster label. Adding hierarchical and factorial

structure to these models could allow them to test for overlapping neural sequences (see e.g.

Ghahramani and Jordan, 1997); however, we believe seqNMF provides a simpler and more direct

framework to explore this possibility.

Finally, as demonstrated by our development of new regularization terms and stability measures,

convolutional matrix factorization is a flexible and extensible framework for sequence extraction. For

example, one can tune the overall sparsity in the model by introducing additional L1 regularization

terms. The loss function may also be modified, for example substituting in KL divergence or more

general b-divergence (Villasana et al., 2018). Both L1 regularization and b-divergence losses are

included in the seqNMF code package so that the model can be tuned to the particular needs of

future analyses. Future development could incorporate outlier detection into the objective function

(Netrapalli et al., 2014), or online optimization methods for large datasets (Wang et al., 2013).

Other extensions to NMF, for example, Union of Intersections NMF Cluster (Ubaru et al., 2017),

have yielded increased robustness and consistency of NMF factorizations, and could potentially also

be modified for application to convNMF. Thus, adding convolutional structure to factorization-based

models of neural data represents a rich opportunity for statistical neuroscience.

Despite limiting ourselves to a relatively simple model for the purposes of this paper, we

extracted biological insights that would have been difficult to otherwise achieve. For example, we

identified neural sequences in isolated songbirds without aligning to song syllables, enabling new
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research into songbird learning on two fronts. First, since isolated and juvenile birds sing highly vari-

able songs that are not easily segmented into stereotyped syllables, it is difficult and highly subjec-

tive to identify sequences by aligning to human-labeled syllables. SeqNMF enables the discovery

and future characterization of neural sequences in these cases. Second, while behaviorally aligned

sequences exist in tutored birds, it is that possible many neural sequences—for example, in different

brain areas or stages of development—are not closely locked to song syllables. Thus, even in cases

where stereotyped song syllables exist, behavioral alignment may overlook relevant sequences and

structure in the data. These lessons apply broadly to many neural systems, and demonstrate the

importance of general-purpose methods that extract sequences without reference to behavior. Our

results show that convolutional matrix factorization models are an attractive framework to meet this

need.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

seqNMF this paper https://github.com/FeeLab/seqNMF start with demo.m

Software,
algorithm

convNMF Smaragdis, 2004;
Smaragdis, 2007

https://github.com/colinvaz/nmf-toolbox

Software,
algorithm

sparse convNMF O’Grady and Pearlmutter, 2006;
Ramanarayanan et al., 2013

https://github.com/colinvaz/nmf-toolbox

Software,
algorithm

NMF orthogonality penalties Choi, 2008;
Chen and Cichocki, 2004

Software,
algorithm

other NMF extensions Cichocki et al., 2009

Software,
algorithm

NMF Lee and Seung, 1999

Software,
algorithm

CNMF_E (cell extraction) Zhou et al., 2018 https://github.com/zhoupc/CNMF_E

Software,
algorithm

MATLAB MathWorks www.mathworks.com,
RRID:SCR_001622

Strain, strain
background
(adeno-associated virus)

AAV9.CAG.GCaMP6f.
WPRE.SV40

Chen et al., 2013 Addgene viral prep # 100836-AAV9,
http://n2t.net/addgene:100836,
RRID:Addgene_100836

Commercial
assay or kit

Miniature
microscope

Inscopix https://www.inscopix.com/nvista

Contact for resource sharing
Further requests should be directed to Michale Fee (fee@mit.edu).

Software and data availability
The seqNMF MATLAB code is publicly available as a github repository, which also includes our song-

bird data (Figure 9) for demonstration (Mackevicius et al., 2018; copy archived at https://github.

com/elifesciences-publications/seqNMF).

The repository includes the seqNMF function, as well as helper functions for selecting l, testing

the significance of factors, plotting, and other functions. It also includes a demo script with an exam-

ple of how to select l for a new dataset, test for significance of factors, plot the seqNMF factoriza-

tion, switch between parts-based and events-based factorizations, and calculate cross-validated

performance on a masked test set.

Generating simulated data
We simulated neural sequences containing between 1 and 10 distinct neural sequences in the pres-

ence of various noise conditions. Each neural sequence was made up of 10 consecutively active
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neurons, each separated by three timebins. The binary activity matrix was convolved with an expo-

nential kernel (t ¼ 10 timebins) to resemble neural calcium imaging activity.

SeqNMF algorithm details
The x-ortho penalized convNMF algorithm is a direct extension of the multiplicative update

convNMF algorithm (Smaragdis, 2004), and draws on previous work regularizing NMF to encourage

factor orthogonality (Chen and Cichocki, 2004).

The uniqueness and consistency of traditional NMF has been better studied than convNMF. In

special cases, NMF has a unique solution comprised of sparse, ‘parts-based’ features that can be

consistently identified by known algorithms (Donoho and Stodden, 2004; Arora et al., 2011). How-

ever, this ideal scenario does not hold in many practical settings. In these cases, NMF is sensitive to

initialization, resulting in potentially inconsistent features. This problem can be addressed by intro-

ducing additional constraints or regularization terms that encourage the model to extract particular,

e.g. sparse or approximately orthogonal features (Huang et al., 2014; Kim and Park, 2008). Both

theoretical work and empirical observations suggest that these modifications result in more consis-

tently identified features (Theis et al., 2005; Kim and Park, 2008).

For x-ortho penalized seqNMF, we added to the convNMF cost function a term that promotes

competition between overlapping factors, resulting in the following cost function:

ðfW; eHÞ ¼
W;H

arg min jjeX�Xjj2F þljjðW
�
>
XÞSH>jj

1;i 6¼j

� �
(8)

We derived the following multiplicative update rules for W and H (Appendix 1):
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(10)

where the division and � are element-wise. The operator ð�Þ
‘!

shifts a matrix in the ! direction by ‘

timebins, that is a delay by ‘ timebins, and ð�Þ
 ‘

shifts a matrix in the  direction by ‘ timebins (nota-

tion summary, Table 1). Note that multiplication with the K�K matrix ð1� IÞ effectively implements

factor competition because it places in the kth row a sum across all other factors. These update rules

are derived in Appendix 1 by taking the derivative of the cost function in Equation 8 and choosing

an appropriate learning rate for each element.

In addition to the multiplicative updates outlined in Table 2, we also renormalize so rows of H

have unit norm; shift factors to be centered in time such that the center of mass of each W pattern

occurs in the middle; and in the final iteration run one additional step of unregularized convNMF to

prioritize the cost of reconstruction error over the regularization (Algorithm 1). This final step is done

to correct a minor suppression in the amplitude of some peaks in H that may occur within 2L time-

bins of neighboring sequences.

Testing the significance of each factor on held-out data
In order to test whether a factor is significantly present in held-out data, we measured the distribu-

tion across timebins of the overlaps of the factor with the held-out data, and compared the skewness

of this distribution to the null case (Figure 1). Overlap with the data is measured as W
�
>
X,

a quantity which will be high at timepoints when the sequence occurs, producing a distribution of

W
�
>
X with high skew. In contrast, a distribution of overlaps exhibiting low skew indicates a

sequence is not present in the data, since there are few timepoints of particularly high overlap. We

estimated what skew levels would appear by chance by constructing null factors where temporal
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relationships between neurons have been eliminated. To create such null factors, we start from the

real factors then circularly shift the timecourse of each neuron by a random amount between 0 and

L. We measure the skew of the overlap distributions for each null factor, and ask whether the skew

we measured for the real factor is significant at p-value a, that is, if it exceeds the Bonferroni cor-

rected ðð1� a
K
Þ � 100Þth percentile of the null skews (see Figure 2—figure supplement 1).

Algorithm 1: SeqNMF (x-ortho algorithm)

Input: Data matrix X, number of factors K, factor duration L, regularization
strength l

Output: Factor exemplars W, factor timecourses H

1 Initialize W and H randomly
2 Iter = 1
3 While (Iter < maxIter) and (D cost > tolerance) do
4 Update H using multiplicative update from Table 2
5 Shift W and H to center W’s in time
6 Renormalize W and H so rows of H have unit norm
7 Update W using multiplicative update from Table 2
8 Iter = Iter + 1
9 Do one final unregularized convNMF update of W and H

10 return

Note that if l is set too small, seqNMF will produce multiple redundant factors to explain one

sequence in the data. In this case, each redundant candidate sequence will pass the significance test

outlined here. We will address below a procedure for choosing l and methods for determining the

number of sequences.

Calculating the percent power explained by a factorization
In assessing the relevance of sequences in a dataset, it can be useful to calculate what percentage of

the total power in the dataset is explained by the factorization (eX). The total power in the data is
P

X
2 (abbreviating

PN
n¼1

PT
t¼1 x

2

nt to
P

X2). The power unexplained by the factorization is
P
ðX� eXÞ2. Thus, the percent of the total power explained by the factorization is:

P
X

2�
P
ðX� eXÞ2P
X

2
¼

P
2XeX� eX2

P
X

2
(11)

‘Sequenciness’ score
The ‘sequenciness’ score was developed to distinguish between datasets with exclusively synchro-

nous patterns, and datasets with temporally extended sequential patterns. This score relies on the

observation that synchronous patterns are not disrupted by shuffling the columns of the data matrix.

The ‘sequenciness’ score is calculated by first computing the difference between the power

explained by seqNMF in the actual and column-shuffled data. This quantity is then divided by the

power explained in the actual data minus the power explained in data where each neuron is time-

shuffled by a different random permutation.

Choosing appropriate parameters for a new dataset
The choice of appropriate parameters (l, K and L) will depend on the data type (sequence length,

number, and density; amount of noise; etc.).

In practice, we found that results were relatively robust to the choice of parameters. When K or L

is set larger than necessary, seqNMF tends to simply leave the unnecessary factors or times empty.

For choosing l, the goal is to find the ‘sweet spot’ (Figure 4) to explain as much data as possible

while still producing sensible factorizations, that is, minimally correlated factors, with low values of

jjðW
�
>
XÞSH>jj

1;i 6¼j. Our software package includes demo code for determining the best parameters

for a new type of data, using the following strategy:

1. Start with K slightly larger than the number of sequences anticipated in the data
2. Start with L slightly longer than the maximum expected factor length
3. Run seqNMF for a range of l’s, and for each l measure the reconstruction error
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jjX�W
� Hjj2F

� �
and the correlation cost term jjðW
�

>
XÞSH>jj

1;i 6¼j

� �

4. Choose a l slightly above the crossover point l0
5. Decrease K if desired, as otherwise some factors will be consistently empty
6. Decrease L if desired, as otherwise some times will consistently be empty

In some applications, achieving the desired accuracy may depend on choosing a l that allows

some inconsistency. It is possible to deal with this remaining inconsistency by comparing factors pro-

duced by different random initializations, and only considering factors that arise from several differ-

ent initializations, a strategy that has been previously applied to standard convNMF on neural data

(Peter et al., 2017).

During validation of our procedure for choosing l, we compared factorizations to ground truth

sequences as shown in Figure 4. To find the optimal value of l, we used the product of two curves.

The first curve was obtained by calculating the fraction of fits in which the true number of sequences

was recovered as a function of l. The second curve was obtained by calculating similarity to ground

truth as a function of l (see Materials and methods section ‘Measuring performance on noisy fits by

comparing seqNMF sequence to ground-truth sequences’). The product of these two curves was

smoothed using a three-sample boxcar sliding window, and the width was found as the values of l

on either side of the peak value that correspond most closely to the half-maximum points of the

curve.

Preprocessing
While seqNMF is generally quite robust to noisy data, and different types of sequential patterns,

proper preprocessing of the data can be important to obtaining reasonable factorizations on real

neural data. A key principle is that, in minimizing the reconstruction error, seqNMF is most strongly

influenced by parts of the data that exhibit high variance. This can be problematic if the regions of

interest in the data have relatively low amplitude. For example, high firing rate neurons may be pri-

oritized over those with lower firing rate. As an alternative to subtracting the mean firing rate of

each neuron, which would introduce negative values, neurons could be normalized divisively or by

subtracting off a NMF reconstruction fit using a method that forces a non-negative residual

(Kim and Smaragdis, 2014). Additionally, variations in behavioral state may lead to seqNMF factori-

zations that prioritize regions of the data with high variance and neglect other regions. It may be

possible to mitigate these effects by normalizing data, or by restricting analysis to particular subsets

of the data, either by time or by neuron.

Measuring performance on noisy data by comparing seqNMF sequences to
ground-truth sequences
We wanted to measure the ability of seqNMF to recover ground-truth sequences even when the

sequences are obstructed by noise. Our noisy data consisted of three ground-truth sequences,

obstructed by a variety of noise types. For each ground-truth sequence, we found its best match

among the seqNMF factors. This was performed in a greedy manner. Specifically, we first computed

a reconstruction for one of the ground-truth factors. We then measured the correlation between this

reconstruction and reconstructions generated from each of the extracted factors, and chose the best

match (highest correlation). Next, we matched a second ground-truth sequence with its best match

(highest correlation between reconstructions) among the remaining seqNMF factors, and finally we

found the best match for the third ground-truth sequence. The mean of these three correlations was

used as a measure of similarity between the seqNMF factorization and the ground-truth (noiseless)

sequences.

Testing generalization of factorization to randomly held-out (masked) data
entries
The data matrix X was divided into training data and test data by randomly selecting 5 or 10% of

matrix entries to hold out. Specifically, the objective function (Equation 5, in the Results section) was

modified to:
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W;H
arg min jjM�ðW
� H�XÞjj2F þR (12)

where � indicates elementwise multiplication (Hadamard product) and M is a binary matrix with 5 or

10% of the entries randomly selected to be zero (held-out test set) and the remaining 95 or 90% set

to one (training set). To search for a solution, we reformulate this optimization problem as:

W;H;Z
arg min jjW
� H�Zjj2F þR

subjecttoM�Z¼M�X

(13)

where we have introduced a new optimization variable Z, which can be thought of as a surrogate

dataset that is equal to the ground truth data only on the training set. The goal is now to minimize

the difference between the model estimate, eX¼W
� H, and the surrogate, Z, while constraining Z

to equal X at unmasked elements (where mij ¼ 1) and allowing Z to be freely chosen at masked ele-

ments (where mij ¼ 0). Clearly, at masked elements, the best choice is to make Z equal to the current

model estimate eX as this minimizes the cost function without violating the constraint. This leads to

the following update rules which are applied cyclically to update Z, W, and H.

Znt 
Xnt if Mnt ¼ 1

W
� Hð Þnt if Mnt ¼ 0

�
(14)

W��‘ W��‘�

Z H
‘!
� �>

eX H
‘!
� �>

þlZ
 ‘

SH
>ð1� IÞ

(15)

H H�
W
�

>
Z

W
�
> eXþlð1� IÞðW
�

>
ZSÞ

(16)

The measure used for testing generalization performance was root mean squared error (RMSE).

For the testing phase, RMSE was computed from the difference between eX and the data matrix X

only for held-out entries.

Hippocampus data
The hippocampal data was collected in the Buzsaki lab (Pastalkova et al., 2015; Mizuseki et al.,

2013), and is publicly available on the Collaborative Research in Computational Neuroscience

(CRCNS) Data sharing website. The dataset we refer to as ‘Rat 1’ is in the hc-5 dataset, and the data-

set we refer to as ‘Rat 2’ is in the hc-3 dataset. Before running seqNMF, we processed the data by

convolving the raw spike trains with a gaussian kernel of standard deviation 100 ms.

Animal care and use
We used male zebra finches (Taeniopygia guttata) from the MIT zebra finch breeding facility (Cam-

bridge, MA). Animal care and experiments were carried out in accordance with NIH guidelines, and

reviewed and approved by the Massachusetts Institute of Technology Committee on Animal Care

(protocol 0715-071-18).

In order to prevent exposure to a tutor song, birds were foster-raised by female birds, which do

not sing, starting on or before post-hatch day 15. For experiments, birds were housed singly in cus-

tom-made sound isolation chambers.

Data acquisition and preprocessing
The calcium indicator GCaMP6f was expressed in HVC by intracranial injection of the viral vector

AAV9.CAG.GCaMP6f.WPRE.SV40 (Chen et al., 2013) into HVC. In the same surgery, a cranial win-

dow was made using a GRIN (gradient index) lens (1 mm diamenter, 4 mm length, Inscopix). After at

Mackevicius et al. eLife 2019;8:e38471. DOI: https://doi.org/10.7554/eLife.38471 28 of 42

Tools and resources Neuroscience

https://crcns.org/data-sets/hc/hc-5
https://crcns.org/data-sets/hc/hc-3
https://doi.org/10.7554/eLife.38471


least one week, in order to allow for sufficient viral expression, recordings were made using the

Inscopix nVista miniature fluorescent microscope.

Neuronal activity traces were extracted from raw fluorescence movies using the CNMF_E algo-

rithm, a constrained non-negative matrix factorization algorithm specialized for microendoscope

data by including a local background model to remove activity from out-of-focus cells (Zhou et al.,

2018).

We performed several preprocessing steps before applying seqNMF to functional calcium traces

extracted by CNMF_E. First, we estimated burst times from the raw traces by deconvolving the

traces using an AR-2 process. The deconvolution parameters (time constants and noise floor) were

estimated for each neuron using the CNMF_E code package (Zhou et al., 2018). Some neurons

exhibited larger peaks than others, likely due to different expression levels of the calcium indicator.

Since seqNMF would prioritize the neurons with the most power, we renormalized by dividing the

signal from each neuron by the sum of the maximum value of that row and the 95
th percentile of the

signal across all neurons. In this way, neurons with larger peaks were given some priority, but not

much more than that of neurons with weaker signals.
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Deriving multiplicative update rules
Standard gradient descent methods for minimizing a cost function must be adapted when

solutions are constrained to be non-negative, since gradient descent steps may result in

negative values. Lee and Seung invented an elegant and widely-used algorithm for non-

negative gradient descent that avoids negative values by performing multiplicative updates

(Lee and Seung, 2001; Lee and Seung, 1999). They derived these multiplicative updates by

choosing an adaptive learning rate that makes additive terms cancel from standard gradient

descent on the cost function. We will reproduce their derivation here, and detail how to

extend it to the convolutional case (Smaragdis, 2004) and apply several forms of

regularization (O’Grady and Pearlmutter, 2006; Ramanarayanan et al., 2013; Chen and

Cichocki, 2004). See Table 2 for a compilation of cost functions, derivatives and multiplicative

updates for NMF and convNMF under several different regularization conditions.

Standard NMF
NMF performs the factorization X »

eX ¼WH. NMF factorizations seek to solve the following

problem:

ðfW; eHÞ ¼ argmin
W;H

LðW;HÞ (17)

LðW;HÞ ¼
1

2
jjeX�Xjj2F (18)

fW; eH� 0 (19)

This problem is convex in W and H separately, not together, so a local minimum is found

by alternating W and H updates. Note that:

q

qW
LðW;HÞ ¼ eXH

>�XH
> (20)

q

qH
LðW;HÞ ¼ W

> eX�W
>
X (21)

Thus, gradient descent steps for W and H are:

W W�hWðeXH
>�XH

>Þ (22)

H H�hHðW
> eX�W

>
XÞ (23)

To arrive at multiplicative updates, Lee and Seung (Lee and Seung, 2001) set:

hW ¼
W

WHH
> (24)

hH ¼
H

W
>
WH

(25)

Thus, the gradient descent updates become multiplicative:
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W  W�
XH

>

WHH
> ¼W�

XH
>

eXH
>

(26)

H  H�
W
>
X

W
>
WH

¼ H�
W
>
X

W
> eX

(27)

where the division and � are element-wise.

Standard convNMF

Convolutional NMF factorizes data X »

eX ¼P‘ W��‘H
‘!
¼W
� H. ConvNMF factorizations seek

to solve the following problem:

ðfW; eHÞ ¼ argmin
W;H

LðW;HÞ (28)

LðW;HÞ ¼
1

2
jjeX�Xjj2F (29)

fW; eH� 0 (30)

The derivation above for standard NMF can be applied for each ‘, yielding the following

update rules for convNMF (Smaragdis, 2004):

W��‘ W��‘�
XH

‘!>

eXH
‘!>

(31)

H H�

P
‘W

>
��‘X
 ‘

P
‘W

>
��‘
eX
 ‘
¼ H�

W
�
>
X

W
�
> eX

(32)

Where the operator ‘! shifts a matrix in the! direction by ‘ timebins, that is a delay by ‘

timebins, and ‘ shifts a matrix in the direction by ‘ timebins (Table 1). Note that NMF is

a special case of convNMF where L ¼ 1.

Incorporating regularization terms
Suppose we want to regularize by adding a new term, R to the cost function:

ðfW; eHÞ ¼ argmin
W;H

LðW;HÞ (33)

LðW;HÞ ¼
1

2
jjeX�Xjj2F þR (34)

fW; eH� 0 (35)

Using a similar trick to Lee and Seung, we choose a hW;hH to arrive at a simple

multiplicative update. Below is the standard NMF case, which generalizes trivially to the

convNMF case.

Note that:
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qL

qW
¼ eXH

>�XH
>þ

qR

qW
(36)

qL

qH
¼ W

> eX�W
>
Xþ

qR

qH
(37)

We set:

hW ¼
W

eXH
>þ qR

qW

(38)

hH ¼
H

W
> eXþ qR

qH

(39)

Thus, the gradient descent updates become multiplicative:

W W�hW

qL

qW
¼W�

XH
>

eXH
>þ qR

qW

(40)

H H�hH

qL

qH
¼ H�

W
>
X

W
> eXþ qR

qH

(41)

where the division and � are element-wise.

The above formulation enables flexible incorporation of different types of regularization or

penalty terms into the multiplicative NMF update algorithm. This framework also extends

naturally to the convolutional case. See Table 2 for examples of several regularization terms,

including L1 sparsity (O’Grady and Pearlmutter, 2006; Ramanarayanan et al., 2013) and

spatial decorrelation (Chen and Cichocki, 2004), as well as the terms we introduce here to

combat the types of inefficiencies and cross correlations we identified in convolutional NMF,

namely, smoothed orthogonality for H and W, and the x-ortho penalty term. For the x-ortho

penalty term, ljjðW
�
>
XÞSH>jj

1;i 6¼j, the multiplicative update rules are:

W��‘ W��‘�

X H
‘!
� �>

eX H
‘!
� �>

þlX
 ‘
SH

>ð1� IÞ

(42)

H H�
W
�

>
X

W
�
> eXþlð1� IÞðW
�

>
XSÞ

(43)

where the division and � are element-wise. Note that multiplication with the K � K matrix

ð1� IÞ effectively implements factor competition because it places in the kth row a sum across

all other factors.
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Relation of the x-ortho penalty to traditional
regularizations
As noted in the main text, the x-ortho penalty term is not formally a regularization because it

includes the data X. In this Appendix, we show how this penalty can be approximated by a

data-free regularization. The resulting regularization contains three terms corresponding to a

weighted orthogonality penalty on pairs of H factors, a weighted orthogonality penalty on

pairs of W factors, and a term that penalizes interactions among triplets of factors. We

analyze each term in both the time domain (Equation 50) and in the frequency domain

(Equations 50 and 69).

Time domain analysis
We consider the cross-orthogonality penalty term:

R¼ kðW
�
>
XÞSH>k

1;i 6¼j (44)

and define, R ¼ ðW
�
>
XÞSH>, which is a K � K matrix. Each element Rij is a positive number

describing the overlap or correlation between factor i and factor j in the model. Each element

of R can be written explicitly as:

Rij ¼
X

t

X

n

X

‘

Wni‘Xnðtþ‘Þ

X

t

SttHjt (45)

Where the index variables t and t range from 1 to T, n ranges from 1 to N, and ‘ ranges

from 1 to L.

Our goal here is to find a close approximation to this penalty term that does not contain

the data X. This can readily be done if X is well-approximated by the convNMF

decomposition:

Xnt » ðW
� HÞnt ¼
X

k

X

‘

Wnk‘Hkðt�‘Þ (46)

Substituting this expression into Equation 45 and defining the smoothed matrix
P

t

SttHjt

as Hsmooth
jt gives:

Rij »

X

t

X

n

X

‘

X

k

X

‘0

Wni‘Wnk‘0HktH
smooth
jt (47)

Making the substitution u ¼ ‘� ‘0 gives:

Rij »

X

t

X

n

XL�1

u¼�ðL�1Þ

X

k

X

‘0

Wnið‘0þuÞWnk‘0HkðtþuÞH
smooth
jt (48)

where in the above expression we have taken u ¼ ‘� ‘0 to extend over the full range from

�ðL� 1Þ to ðL� 1Þ under the implicit assumption that W and H are zero padded such that

values of W for lag indices outside the range 0 to L� 1 and values of H for time indices

outside the range 1 to T are taken to be zero.

Relabeling ‘0 as ‘ and gathering terms together yields
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Rij »

X

k

XL�1

u¼�ðL�1Þ

X

n

X

‘

Wnið‘þuÞWnk‘

 !
X

t

HkðtþuÞH
smooth
jt

 !
(49)

We note that the above expression contains terms that resemble penalties on orthogonality

between two W factors (first parenthetical) or two H factors (one of which is smoothed,

second parenthetical), but in this case allowing for different time lags u between the factors.

To understand this formula better, we decompose the above sum over k into three

contributions corresponding to k ¼ i, k ¼ j, and k 6¼ i; j

Rij »

XL�1

u¼�ðL�1Þ

X

n

X

‘

Wnið‘þuÞWni‘

 !
X

t

HiðtþuÞH
smooth
jt

 !
þ

XL�1

u¼�ðL�1Þ
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‘
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 !
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þ

X
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X

n

X

‘

Wnið‘þuÞWnk‘

 !
X

t

HkðtþuÞH
smooth
jt

 !
(50)

The first term above contains, for u ¼ 0, a simple extension of the ði; jÞth element of the H

orthogonality condition HSH
>. The extension is that the orthogonality is weighted by the

power, that is the sum of squared elements, in the ith factor of W (the apparent lack of

symmetry in weighing by the ith rather than the jth factor can be removed by simultaneously

considering the term Rji, as shown in the Fourier representation of the following section). This

weighting has the benefit of applying the penalty on H orthogonality most strongly to those

factors whose corresponding W components contain the most power. For u 6¼ 0, this

orthogonality condition is extended to allow for overlap of time-shifted H’s, with weighting at

each time shift by the autocorrelation of the corresponding W factor. Qualitatively, this

enforces that (even in the absence of the smoothing matrix S), H’s that are offset by less than

the width of the autocorrelation of the corresponding W’s will have overlapping convolutions

with these W’s due to the temporal smoothing associated with the convolution operation. We

note that, for sparse sequences as in the examples of Figure 1, there is no time-lagged

component to the autocorrelation, so this term corresponds simply to a smoothed H

orthogonality regularization, weighted by the strength of the corresponding W factors.

The second term above represents a complementary orthogonality condition on the W

components, in which orthogonality in the ith and jth factors are weighted by the (smoothed)

autocorrelation of the H factors. For the case in which the H factors have no time-lagged

autocorrelations, this corresponds to a simple weighting of W orthogonality by the strength

of the corresponding H factors.

Finally, we consider the remaining terms of the cost function, for which k 6¼ i; j. We note

that these terms are only relevant when the factorization contains at least three factors, and

thus their role cannot be visualized from the simple Type 1 to Type 3 examples of Figure 1.

These terms have the form:

X

k 6¼i;j

XL�1

u¼�ðL�1Þ

X

n

X

‘

Wnið‘þuÞWnk‘

 !
X

t

HkðtþuÞH
smooth
jt

 !
(51)

To understand how this term contributes, we consider each of the expressions in

parentheses. The first expression corresponds, as described above, to the time-lagged cross

correlation of the ith and kth W components. Likewise, the second expression corresponds to

the time-lagged correlation of the (smoothed) jth and kth H components. Thus, this term of Rij

contributes whenever there is a factor (W�k�;Hk�) that overlaps, at the same time lags, with the

ith factor’s W component and the jth factor’s H component. Thus, this term penalizes cases

where, rather than (or in addition to) two factors i and j directly overlapping one another, they

have a common factor k with which they overlap.
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An example of the contribution of a triplet penalty term, as well as of the paired terms of

Equation 50, is shown in Figure 1 of this Appendix. By inspection, there is a penalty R23 due

to the overlapping values of the pair (h2;h3). Likewise, there is a penalty R13 due to the

overlapping values of the pair (w1;w3). The triplet penalty term contributes to R12 and derives

from the fact that w1 overlaps with w3 at the same time (and with the same, zero time lag) as

h2 overlaps with h3.

In summary, the above analysis shows that for good reconstructions of the data where

X »W
� H, the x-ortho penalty can be well-approximated by the sum of three contributions.

The first corresponds to a penalty on time-lagged (smoothed) H orthogonality weighted at

each time lag by the autocorrelation of the corresponding W factors. The second similarly

corresponds to a penalty on time-lagged W orthogonality weighted at each time lag by the

(smoothed) autocorrelation of the corresponding H factors. For simple cases of sparse

sequences, these contributions reduce to orthogonality in H or W weighted by the power in

the corresponding W or H, respectively, thus focusing the penalties most heavily on those

factors which contribute most heavily to the data reconstruction. The third, triplet contribution

corresponds to the case in which a factor in W and a different factor in H both overlap (at the

same time lag) with a third common factor, and may occur even when the factors W and H

themselves are orthogonal. Further work is needed to determine whether this third

contribution is critical to the x-ortho penalty or is simply a by-product of the x-ortho penalty

procedure’s direct use of the data X.

w1 w2 w3

h1

h2

h3

Appendix 2—figure 1. Example of redundancy with three factors. In addition to the direct

overlap of h2 and h3, and of w1 and w3, there is a ‘triplet’ penalty R12 on factors 1 and 2 that

occurs because each has an overlap (in either W or H) with the 3rd factor (w3;h3). This occurs

even though neither w1 and w2, nor h1 and h2, are themselves overlapping.

DOI: https://doi.org/10.7554/eLife.38471.034

Frequency domain analysis
Additional insight may be obtained by analyzing these three components of R in the Fourier

domain. Before doing so, we below derive the Fourier domain representation of R, and

provide insights suggested by this perspective.

Fourier representation of the x-ortho penalty
As in the time domain analysis, we start with defining:

Rij ¼
X

t

X

n

X

‘

Wni‘Xnðtþ‘Þ

X

t

SttHjt (52)

Unpacking the notation above, we note that:
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Rij ¼
XN

n¼1

CorrðW
�!ðnÞ

i ;X
!ðnÞ
Þ

" #
�ConvðH

!
j; s
!Þ (53)

where W
�!ðnÞ

i is the nth row of W�i�, X
!ðnÞ

is the nth row of X, H
!

j is Hj�, s
! is a smoothing vector

corresponding to the entries of each row of the smoothing matrix S, and “�” is a dot product.

For ease of mathematical presentation, in the following, we work with continuous time rather

than the discretely sampled data and extend the W factors, H factors, and data matrix X

through zero-padding on both ends so that:

CorrðW
�!ðnÞ

i ;X
!ðnÞ
ÞðtÞ ¼

Z
¥

�¥

W
�!ðnÞ

i‘ X
!ðnÞ

‘þtd‘ (54)

and

ConvðH
!

j; s
!Þ¼

Z
¥

�¥

H
!

jt s
!

t�tdt (55)

Recall that the Fourier transform is defined as:

f̂ ð!Þ � Fðf ðtÞÞ �

Z
¥

�¥

f ðtÞe�i!tdt (56)

with inverse Fourier transform:

f ðtÞ ¼F�1ðf̂ ð!ÞÞ �
1

2p

Z
¥

�¥

f̂ ð!Þeþi!td! (57)

Now recall some basic features of Fourier transforms of correlation and convolution

integrals:

FðConvðf ðtÞ;gðtÞÞÞ ¼ f̂ ð!Þĝð!Þ (58)

FðCorrðf ðtÞ;gðtÞÞÞ ¼ f̂ ð�!Þĝð!Þ (59)

f ðtÞ � gðtÞ ¼

Z
¥

�¥

f ðtÞgðtÞdt¼Corrt¼0ðf ;gÞ ¼ F
�1 f̂ ð�!Þĝð!Þd!
� �

t¼0

f ðtÞ � gðtÞ ¼
1

2p

Z
¥

�¥

f̂ ð�!Þĝð!Þd!

(60)

This final identity, known as Parseval’s theorem, says that the inner product (dot product)

between two functions evaluated in the time and frequency domain are equivalent up to a

proportionality constant of 1=ð2pÞ. With the above identities, we can calculate our quantity of

interest:

Rij ¼
XN

n¼1

CorrðW
�!ðnÞ

i ;X
!ðnÞ
Þ

" #
�ConvðH

!
j; s
!Þ (61)

First, define:

AðtÞ ¼
XN

n¼1

CorrðW
�!ðnÞ

i ;X
!ðnÞ
Þ

" #
(62)

BðtÞ ¼ConvðH
!

j; s
!Þ (63)

From Equation 60 (Parseval’s theorem):
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Rij ¼
1

2p

Z
¥

�¥

Âð�!ÞB̂ð!Þd! (64)

Then, from Equations 58 and 59, we have:

Rij ¼
1

2p

XN

n¼1

Z
¥

�¥

d!Ŵ
ðnÞ
i ð!ÞX̂

ðnÞð�!ÞĤjð!Þ̂sð!Þ (65)

The above formula shows that:

1. Viewed in the frequency domain, the x-ortho penalty reduces to a (sum over neurons and fre-

quencies of a) simple product of Fourier transforms of the four matrices involved in the

penalty.

2. The smoothing can equally well be applied to H or W or X. (For X, note that for symmetric

smoothing function sðtÞ ¼ sð�tÞ, we also have ŝð!Þ ¼ ŝð�!Þ.)

3. One can view this operation as either of the below:
a. First correlate W and X by summing correlations of each row, and then calculate the

overlap with the smoothed H, as described in the main

text:Rij ¼
1

2p

PN
n¼1

R
¥

�¥ d! Ŵ
ðnÞ
i ð!ÞX̂

ðnÞð�!Þ
h i

Ĥjð!Þ̂sð!Þ
� �

b. Correlate H with each row of X and then calculate the overlap of this correlation with the

corresponding smoothed row of W. Then sum over all

rows:Rij ¼
1

2p

PN
n¼1

R
¥

�¥ d! Ĥjð!ÞX̂
ðnÞð�!Þ

� �
Ŵ
ðnÞ
i ð!Þ̂sð!Þ

h i

Fourier representation of the traditional regularization approximation of
the x-ortho penalty
We now proceed to show how the x-ortho penalty can be approximated by a traditional (data-

free) regularization, expressing the results in the frequency domain. As in the time domain

analysis, we consider the approximation in which the data X are nearly perfectly reconstructed

by the convNMF decomposition (X »W
� H).

Noting that this decomposition is a sum over factors of row-by-row ordinary convolutions,

we can write the Fourier analog for each row of X as:

X̂
ðnÞð!Þ»

X

k

Ŵ
ðnÞ
k ð!ÞĤkð!Þ (66)

Thus, substituting X with the reconstruction, W
� H in Equation 65, we have:
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(67)

As in the time domain analysis, we separate the sum over k into three cases: k ¼ i, k ¼ j,

and k 6¼ i; j. Recall that for real numbers, f̂ ð�!Þ ¼ f̂ �ð!Þ, and f̂ ð!Þf̂ �ð!Þ ¼ jf̂ ð!Þj2. Thus,

separating the sum over k into the three cases, we have:
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Ŵ
ðnÞ
i ð!ÞŴ
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(68)

where Y represents the remaining terms for which k 6¼ i; j.

We can obtain a more symmetric form of this equation by summing the contributions of

factors i and j, Rij þRji. For symmetric smoothing functions sðtÞ ¼ sð�tÞ, for which

ŝð!Þ ¼ ŝð�!Þ, we obtain:
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RijþRji ¼
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As in the time domain analysis, the first two terms above have a simple interpretation in

comparison to traditional orthogonality regularizations: The first term resembles a traditional

regularization of orthogonality in (smoothed) H, but now weighted frequency-by-frequency by

the summed power at that frequency in the corresponding W factors. For sparse (delta-

function-like) sequences, the power in W at each frequency is a constant and can be taken

outside the integral. In this case, the regularization corresponds precisely to orthogonality in

(smoothed) H, weighted by the summed power in the corresponding W’s. Likewise, the

second term above corresponds to a traditional regularization of orthogonality in (smoothed)

W, weighted by the summed power at each component frequency in the corresponding H

factors.

Altogether, we see that these terms represent a Fourier-power weighted extension of

(smoothed) traditional orthogonality regularizations in W and H. This weighting may be

beneficial relative to traditional orthogonality penalties, since it makes the regularization focus

most heavily on the factors and frequencies that contribute most to the data reconstruction.

Finally, we consider the remaining terms in the cost function, for which k 6¼ i; j. As noted

previously, these terms are only relevant when the factorization contains at least three terms,

so cannot be seen in the simple Type 1, 2 and 3 cases illustrated in Figure 1. These terms

have the form:

1

2p

X
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¥

�¥

d!
XN

n¼1

Ŵ
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i ð!ÞŴ
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(70)

To understand how this term contributes, we consider each of the expressions in

parentheses. The first expression contains each frequency component of the correlation of the

ith and kth factors’ W’s. The second expression likewise contains each frequency component of

the correlation of the jth and kth factors’ H’s. Thus, analogous to the time domain analysis, this

term of Rij contributes whenever there is a factor (W�k�;Hk�) that overlaps at any frequency

with the ith factor’s W component and the jth factor’s H component. In this manner, this three-

factor interaction term effectively enforces competition between factors i and j even if they are

not correlated themselves, as demonstrated in Figure 1 of this Appendix.
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