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Abstract
Proteins perform many of their biological roles through protein–protein, pro-
tein–DNA or protein–ligand interfaces. The identification of the amino acids com-
prising these interfaces often enhances our understanding of the biological function of
the proteins. Many methods for the detection of functional interfaces have been devel-
oped, and large-scale analyses have provided assessments of their accuracy. Among
them are those that consider the size of the protein interface, its amino acid com-
position and its physicochemical and geometrical properties. Other methods to this
effect use statistical potential functions of pairwise interactions, and evolutionary
information. The rationale of the evolutionary approach is that functional and struc-
tural constraints impose selective pressure; hence, biologically important interfaces
often evolve at a slower pace than do other external regions of the protein. Recently,
an algorithm, Rate4Site, and a web-server, ConSurf (http://consurf.tau.ac.il/), for
the identification of functional interfaces based on the evolutionary relations among
homologous proteins as reflected in phylogenetic trees, were developed in our labo-
ratory. The explicit use of the tree topology and branch lengths makes the method
remarkably accurate and sensitive. Here we demonstrate its potency in the identifica-
tion of the functional interfaces of a hypothetical protein, the structure of which was
determined as part of the international structural genomics effort. Finally, we propose
to combine complementary procedures, in order to enhance the overall performance
of methods for the identification of functional interfaces in proteins. Copyright 
2003 John Wiley & Sons, Ltd.

Keywords: functional regions; inter-protein interfaces; evolutionary relations; evo-
lutionary rate; evolutionary conservation; homologous proteins

Introduction

The discrimination of functional oligomeric
protein–protein interfaces observed in three-
dimensional (3D) structures from contacts that are
artifacts of crystallization is a challenging question.
Many criteria have previously been used to identify
and characterize protein–protein interfaces. These
rely on considerations of the solvent accessible
surface area buried upon association [14,13]; free
energy changes upon alanine-scanning mutations
[31]; experimental [35] and in silico [25] two-
hybrid systems; scoring functions based on
statistical potentials [21,26]; and physicochemical

and geometric properties of the surface, such
as electrostatics [28], hydrophobicity [32], amino
acid composition [22] and shape complementarity
or planarity [18,15,12]. Other approaches are
based on scoring evolutionary conservation. The
simplest of these are based on estimating the
local amino acid’s information content or ‘relative
entropy’ [7,34] and the more advanced involve
phylogenetic reconstruction [17]. Other forms of
utilizing phylogenetic information to this effect
include the tracing of correlated mutations [23] and
similarities between phylogenetic trees [24].

The most rudimentary approach for the identi-
fication of biological inter-protein interfaces uses
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the solvent accessibility of the protein surface area
(ASA). This approach is based on two fundamental
assumptions: (a) biologically significant interfaces
must be thermodynamically stable; and (b) relative
stability is, by and large, proportional to the number
of interacting atoms. Thus, the larger the surface
area buried upon association, the more likely the
interface is to be biologically relevant. Ponstingl
et al. [26] showed that ASA correctly classified
homodimers and monomers in 85% of cases.

In cases where a sufficient number of homol-
ogous proteins are available, evolutionary-based
methods may aid in the discrimination between
biological and non-biological contacts. Elcock and
McCammon [7] showed that a simple relative
entropy criterion can be used to correctly discrim-
inate between X-ray crystal interfaces observed
for homodimeric and monomeric proteins in 86%
of cases. Valdar and Thornton [34] combined
the ASA and conservation measures using statis-
tical tests and accurately identified 92% of the
examined inter-protein interfaces. Such methods
are also commonly used for the identification
of other functional interfaces involved, e.g. in
catalytic activity and ligand-, peptide- or DNA-
binding. Numerous applications using different
evolutionary-based methods have been developed
to this effect [1,3,4,6–9,11,16,19,29]. For example,
Madabushi et al. [20] and Yao et al. [36] applied
the Evolutionary Trace (ET) method for the identi-
fication of various known functional interfaces, and
reported a success rate of 90% or more.

Valdar [33] presented a critical review of 19 dif-
ferent methods for the scoring of evolutionary con-
servation, including the ET method. The conclusion
was that none of the methods achieved statistical
or biological rigour, presumably since they all suf-
fer from inadequate treatment of the evolutionary
process. The Rate4Site algorithm [27], which was
recently developed in our laboratory and was not
reviewed by Valdar, provides a more accurate treat-
ment of the process. Rate4Site accepts as input a
phylogenetic tree reconstructed from a multiple-
alignment of the homologous sequences, and pro-
vides a maximum likelihood estimate of the evolu-
tionary rates of the amino acid sites. The topology
and branch lengths of the tree, as well as the under-
lying stochastic process of the evolution of the
homologues, are explicitly taken into account in the
calculations, which makes Rate4Site very accurate
and sensitive; we demonstrated that the algorithm

is superior to other methods in the identification
of various functional regions [27]. We have also
developed a web-server, ConSurf, which imple-
ments this algorithm for proteins with a known
3D-structure (http://consurf.tau.ac.il/ [10]).

Recently, a large-scale analysis was carried out
using the ET method in combination with sev-
eral statistical-significance tests, in an attempt to
identify known functional interfaces in a set of 86
proteins [36]. With a few exceptions, the method
correctly identified these interfaces, further demon-
strating the power of evolutionary-based methods.
Here we demonstrate that ConSurf was sensitive
enough to identify the ATP binding-pocket of puta-
tive protein Mj0577, which was overlooked in the
ET analysis.

Methods

For comparison, we attempted to use an input
that is as similar as possible to the one that
was generated by Yao et al. [36]. The reference
structure (PDB code: 1mjh [37]) was entered
into the ConSurf web-server; 19 homologues were
retrieved from the SWISSPROT database [5], using
PSI–BLAST ( [2]; E-score threshold of 0.05), and
aligned using CLUSTAL W [30]. The alignment is
available at: http://ashtoret.tau.ac.il/∼rebell.

Results and discussion

One of the major problems with hypothetical pro-
teins is how to relate them to known protein fami-
lies. In the case of the putative protein Mj0577 the
homologues are also classified as hypothetical; fur-
thermore, the sequence identity among the homol-
ogous proteins can be as low as ∼15%. We demon-
strate here that ConSurf successfully detected the
ATP binding-groove of the protein (Figure 1). The
residues comprising the ATP binding-site are not
strictly conserved among the homologues, which
may be the reason why the ET analysis of Yao
et al. [36] failed to significantly detect it. Never-
theless, ConSurf assigns these residues with rea-
sonably high conservation scores. Interestingly,
the ConSurf analysis also shows that the homod-
imer–protein interface, which was observed in the
X-ray crystal structure and was not examined by
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Figure 1. The conserved ATP-binding groove in the
ATP-binding domain of hypothetical protein Mj0577 (PDB
code: 1mjh [37]). The domain is represented as a space-filled
model, and the ATP and Mn ion are shown as ball-and-stick
models. The evolutionary rates are colour-coded onto the
domain as follows: slowly evolving residues are maroon,
residues that evolve at average rates are white, and
rapidly evolving residues are turquoise. Residues aligned
with less than 10 sequences out of a total of 19 and
whose conservation grades are of low confidence are
marked in yellow. Several amino acids that are directly
involved in ATP-binding (Asp13, Val41, Gly127, Gly130,
Gly140, Ser141, Val142 and Thr143) receive the highest
conservation grades; yet none of them is exclusively
invariable among the homologous proteins. They interact
with the ATP molecule mainly through their backbone

Yao et al., is highly conserved, suggesting that this
interface is biologically important (Figure 2).

Recent progress in structure determination tech-
niques has resulted in a major increase in the
number of novel high-resolution 3D structures
with unknown function. Evolutionary analysis of
these proteins can provide means for the identifi-
cation of their functional regions. We have analysed
dozens of proteins with unknown function (data not
shown). The bottleneck in the identification of the
functional interfaces in such proteins appears to be

Figure 2. The conserved homodimer interface of the
ATP-binding domain of the hypothetical protein Mj0577.
The evolutionary rates are colour-coded and mapped onto
the space-filled representation of one of the monomers
using the colour scheme of Figure 1; the counterpart
monomer is shown as black ribbons

the number of putatively related homologues and
their degree of similarity. Methods that make use of
evolutionary information require a minimum num-
ber of homologous proteins to provide a sufficient
span of their evolutionary history. Our experience
has been that even ConSurf, in spite of its high
accuracy and sensitivity, is somewhat limited when
dealing with less than 10 homologous proteins.
It is also noteworthy to recall that some rather
important functional interfaces are not evolution-
arily conserved; the hyper-variable peptide recog-
nition groove in MHC molecules is an excellent
example of this. In cases where there is an insuffi-
cient number of homologues, some of the comple-
mentary methods mentioned above may be used.
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