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Abstract: Two new phenanthrenes, (1R,2R)-1,7-hydroxy-2,8-methoxy-2,3-dihydrophenanthrene-
4(1H)-one (1) and 2,7-dihydroxy-phenanthrene-1,4-dione (2), were isolated from the ethyl
acetate-soluble fraction of Dendrobii Herba, together with seven known phenanthrenes (3–9),
two bibenzyls (10–12), and a lignan (13). Structures of 1 and 2 were elucidated by analyzing
one-dimensional (1D) and two-dimensional (2D)-NMR and High-resolution electrospray ionization
mass spectra (HR-ESI-MS) data. The absolute configuration of compound 1 was confirmed by the
circular dichroism (CD) spectroscopic method. In cytotoxicity assay using FaDu human hypopharynx
squamous carcinoma cell line, compounds 3–6, 8, 10, and 12 showed activities, with IC50 values that
ranged from 2.55 to 17.70 µM.

Keywords: Dendrobii Herba; (1R,2R)-1,7-hydroxy-2,8-methoxy-2,3-dihydrophenanthrene-4(1H)-one;
2,7-dihydroxy-phenanthrene-1,4-dione; cytotoxicity; FaDu human hypopharynx squamous
carcinoma cell

1. Introduction

Dendrobii Herba is a herbal medicine that uses stems of Dendrobium species (Orchidacea), such
as D. nobile, D. chrysanthum, D. officinale, D. loddigessi, D. fimbriatum var. oculatum, D. moniliforme, or
D. candidum [1,2]. It has been traditionally used to treat lower fever, dryness of throat, gastrodynia due
to stomach problem, blurred vision, and atrophy of the tendon and bone due to kidney problems in
East Asia [3–5]. Previous phytochemical studies on Dendrobium species have reported the isolation of
various types of compounds, specifically phenanthrenes as major components [6–14]. Phenanthrenes
have been reported to have anti-inflammatory [6–8], antifibrotic [9], anti-cancer [10–12], and
antibacterial activities [13]. Bibenzyl compounds, including stilbenes, are also abundant in Dendrobium
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species [14–19] with diverse activities, such as antioxidant [14], anti-inflammatory [14],
anti-migratory [15], retinal neoangiogenesis inhibitory [16], and antimutagenic [17,18] activities.

Head and neck cancer is a group of cancers that primarily originate in the lips, mouth, nasal
cavity, sinuses, and larynx. Head and neck squamous cell carcinoma (HNSCC) accounts for most
of the cancers of the head. It arises from the mucosal surface of this part [20]. The most common
risk factors that are associated with head and neck cancer are alcohol and tobacco [21]. Around the
world, over 550,000 cases of HNSCC and around 300,000 deaths have been annually reported [21].
Although clinical trials, including surgery, radiation therapy, and chemotherapy, have been conducted,
five-year survival rate of HNSCC patients has not improved over the past few decades [20,21]. Natural
products with apoptotic mechanism in HNSCC have been reported as part of the effort to develop
chemotherapeutic agents for HNSCC [22,23].

During our screening procedure to find new bioactive compounds from plant sources, the ethyl
acetate-soluble fraction of Dendrobii Herba exhibited considerable cytotoxicity against the FaDu
human hypopharynx squamous carcinoma cell line, with an IC50 value of 13.16 µg/mL. Therefore, it
was subjected to detailed phytochemical investigation, affording 13 compounds, including two new
phenanthrenes 1 and 2 (Figure 1). Herein, we describe the structural elucidation of 1 and 2 and the
results of biological evaluation for compounds 1–13.
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Figure 1. Chemical structures of compounds isolated from the ethyl acetate-soluble fraction of
Dendrobii Herba.

2. Results and Discussion

2.1. Structure Elucidation of Compounds 1 and 2

Compound 1 was obtained as a brown solid with a molecular ion peak at m/z 311.0891 [M + Na]+

in high resolution electrospray ionization mass spectrum corresponding to an elemental formula of
C16H16O5Na. In the 1H-NMR spectrum of 1, two sets of ortho-coupled aromatic proton signals at
δH 8.99 (1H, d, J = 9.0 Hz, H-5), 8.32 (1H, d, J = 8.8 Hz, H-9), 7.73 (1H, d, J = 8.8 Hz, H-10), and
7.24 (1H, d, J = 9.0 Hz, H-6) showed the two fused benzene ring system (Table 1). Thus, it was
supported by 1H-1H COSY NMR correlations of H-5/H-6 and H-9/H-10 and 1H-13C-HMBC-NMR
correlations of H-5/C-7, C-8a, H-6/C-4b, C-7, C-8, H-9/C-4b, C-8, and H-10/C-8a (Figure 2). The 1H
and 13C-NMR spectra of 1 displayed signals for two oxygenated methine groups at δH 4.88 (1H, d,
J = 8.5 Hz, H-1)/δC 70.9 (C-1) and 3.79 (1H, m, H-2)/80.5 (C-2), a methylene group at δH 3.22 (1H,
dd, J = 16.2, 3.8 Hz, H-3α), and 2.74 (1H, dd, J = 16.2, 8.5 Hz, H-3β)/δC 42.2 (C-3), and a carbonyl
group at δC 198.7 (C-4), representing a cyclohexanone ring that was linked to C-4a and C-10a in
the naphthalene system by 1H-13C-HMBC-NMR correlations of H-1/C-2, C-4a, C-10a, H-3/C-1, C-2,
C4, H-9/C-10a, and H-10/C-4a. Positions of two methoxy groups were assigned at C-2 and C-8,
respectively, by 1H-13C-HMBC-NMR correlations of OCH3/C-2 and OCH3/C-8. In addition, when
comparing 1H and 13C-NMR spectra of 1 with those of heliophenanthrene [24] indicated that the
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structure of 1 was similar to that of heliophenanthrene, except for the difference in signals of the
aromatic ring system and functional groups. The trans stereochemistry between H-1 and H-2 was
deduced by their large coupling constant (J = 8.5 Hz). The absolute configuration of 1 at C-1 and
C-2 was assigned by comparing its experimental ECD spectrum to the calculated ECD spectra of
two enantiomers (1R,2R)-1 and (1S,2S)-1 and determined as (1R,2R) due to the similarity of ECD
spectrum of 1 with that of (1R,2R)-1 (Figure 3). Therefore, the structure of compound 1 was elucidated
as (1R,2R)-1,7-hydroxy-2,8-methoxy-2,3-dihydrophenanthrene-4(1H)-one.

Table 1. 1H-NMR (500 MHz) and 13C-NMR (125 MHz) spectral data (CD3OD, δ in ppm) of 1 and 2
isolated from Dendrobii Herba.

Position
1 2

δH δC δH δC

1 4.88 (4H, d, J = 8.5 Hz) 70.9 180.9
2 3.79 (1H, m) 80.5 159.0
3 6.18 (1H, s) 110.6

3α 3.22 (1H, dd, J = 16.2, 3.8 Hz) 42.2
3β 2.74 (1H, dd, J = 16.2, 8.5 Hz)
4 198.7 188.8
5 8.99 (1H, d, J = 9.0 Hz) 123.3 9.41 (1H, d, J = 9.3 Hz) 129.8
6 7.24 (1H, d, J = 9.0 Hz) 121.1 7.26 (1H, dd, J = 9.3, 2.0 Hz) 122.5
7 146.5 158.7
8 140.1 7.14 (1H, d, J = 2.0 Hz) 109.6
9 8.32 (1H, d, J = 8.8 Hz) 127.3 7.94 (1H, d, J = 8.8 Hz) 131.8
10 7.73 (1H, d, J = 8.8 Hz) 125.8 8.03 (1H, d, J = 8.8 Hz) 121.6
4a 126.0 127.4
4b 129.6 123.8
8a 125.4 139.8

10a 142.4 128.3
2-OCH3 3.47 (3H, d, J = 1.5 Hz) 56.2
8-OCH3 3.91 (3H, d, J = 1.5 Hz) 60.2
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Compound 2 was obtained as a brown solid with a molecular ion peak at m/z 239.0346 [M −H]− in
high resolution electrospray ionization mass spectrum, which is consistent with an elemental formula
of C14H7O4. The 1H spectrum of 2 displayed signals for a 1,2,4-trisubstituted aromatic ring system
at δH 9.41 (1H, d, J = 9.3 Hz, H-5), 7.26 (1H, dd, J = 9.3, 2.0 Hz, H-7) and 7.14 (1H, d, J = 2.0, H-8),
ortho-coupled aromatic protons at δH 7.94 (1H, d, J = 8.8 Hz, H-9), and 8.03 (1H, d, J = 8.8 Hz, H-10),
and an aromatic proton singlet at δH 6.18 (1H, s, H-2). The 13C spectrum of 2 showed signals for two
conjugated carbonyl carbons at δC 180.9 (C-1) and 188.8 (C-4) (Table 1). These NMR data suggest that
2 has a phenathrenedione structure. This was supported by the 1H-13C-HMBC-NMR correlations
of H-3/C-1, H-5/C-7, C-8a, H-6/C-4b, H-8/C-6, H-9/C-4b, C-8, C-10a, and H-10/C-8a (Figure 2). The
few three bond correlations observed in the 1H-13C-HMBC-NMR spectrum of 2 did not allow for
unambiguous assignment of 13C resonance at C-2 or C-3. However, further comparison of 13C-NMR
data of two carbonyl groups with published values in 1,4-phenanthrenedione structure [14,25,26]
confirmed that two carbonyl carbon signals at δC 180.9 and δC 188.8 could be assigned to C-1 and
C-4, respectively. Accordingly, the position of a hydroxyl group in the 1,4-benzoquinone moiety was
determined as C-2 by three-bond correlation from the aromatic proton signal at δH 6.18 (1H, s, H-2) to
the carbonyl carbon signal at δC 180.9 (C-1). Another hydroxyl group was attached at C-7, as evidenced
by the 1H-13C-HMBC-NMR correlations of H-5/C-7. Furthermore, the 1H and 13C spectra (in DMSO-d6)
of 2 showed almost identical signals to those of 3 [14], except for the absence of signals for a methoxy
group at δH 3.86 (3H, s, 2-OCH3)/δC 57.0 (OCH3) in 3 (Supplementary Materials Table S1). Therefore,
its structure was determined to be 2,7-dihydroxy-phenanthrene-1,4-dione.

The eleven known compounds were identified as densiflorol B (3) [14], 6,7-dimethoxy-
phenanthrene-2,5-diol (4) [27], dehydroorchinol (5) [8], 1,5,7-trimethoxy-2-phenanthrenol (6) [8],
denthyrsinin (7) [28], ephemeranthol A (8) [29], lusianthridin (9) [30], moscatilin (10) [18], gigantol
(11) [12], 3-[(1E)-2-(3-Hydroxyphenyl)ethenyl]-5-methoxyphenol (12) [31], and (−)-syringaresinol
(13) [19] by comparing their spectroscopic data with the published data (Supplementary Materials
Figures S11–S32). Although the known compounds (3–11 and 13) have been isolated from Dendrobium
species, the isolation of compound 12 from Dendrobium species has not been reported yet.

2.2. Biological Activity

The ethanol extract and solvent fractions of Dendrobii Herba primarily tested their cytotoxic
activities on human pharynx squamous carcinoma (FaDu) cell line. The ethanol extract showed the
activity with IC50 value of 16.57 µg/mL. It was successively partitioned with hexanes, ethyl acetate,
and n-butanol, and these solvent fractions exhibited their cytotoxicities with IC50 values of 14.51, 13.16,
and 13.67 µg/mL, respectively (Supplementary Materials Figure S33). The most active fraction, the
ethyl acetate fraction, was subjected to detailed laboratory investigation in order to isolate the active
compounds. All of the isolates were evaluated for their cytotoxicities to FaDu cell line and, of them,
compounds 3–6, 8, 10, and 12 exhibited cytotoxicities with IC50 values of 15.91, 11.40, 17.33, 17.70, 17.03,
2.55, and 17.14 µM, respectively (Supplementary Materials Figure S34). Cisplatin as a positive control
showed an IC50 value of 1.18 µM. The structural differences influenced the potency of cytotoxicity. In
broad outlines, the methylation of the free hydroxyl groups and the presence of additional oxygenated
groups in both aromatic rings in each skeleton group, phenanthrene (3–6), 9,10-dihydrophenanthrene
(8), or bibenzyl (10) were deduced to be more active. Of these active compounds, compound 10 showed
the strongest cytotoxicity. Previous studies regarding the anticancer activities of 10 have reported that
10 can induce apoptosis of human pancreatic cancer cells though reactive oxygen species (ROS) and the
c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) pathway [32], apoptosis of human
esophageal cancer cells by G2/M arrest and protein regulating mitosis [33], and the apoptosis of human
colorectal cancer cells via JNK activation by tubulin depolymerization and DNA damage [34]. There
are also reports on the regulation of tumor cell metastasis by 10. For example, it has been reported that
compound 10 can inhibit lung cancer cell migration and invasion through the suppression of ROS
and focal adhesion kinase/protein kinase B (FAK/Akt) activation [35]. It can also inhibit breast cancer
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cell migration by inhibiting Akt/Twist [36]. In addition, compound 10 has an anti-angiogenesis effect
on human umbilical vein endothelial cells via Extracellular signal-regulated kinases (ERK1/2), Akt,
and endothelial nitric oxide synthase (eNOS) signaling pathways [37]. However, to the best of our
knowledge, there has been no report of an anticancer mechanistic study of compound 10 in HNSCC,
including FaDu cells. Thus, 10 could be beneficial for treating human pharynx squamous cancer.
However, further studies are needed to determine its mechanism of action while using in vitro and
in vivo models.

3. Materials and Methods

3.1. General Procedures

Optical rotations were measured on a JASCO P-2000 polarimeter (JASCO Co., Tokyo, Japan).
Circular dichroism (CD) measurements were performed while using a JASCO J-810 CD-ORD
spectropolarimeter (JASCO Co., Tokyo, Japan). One-dimensional (1D) and two-dimensional (2D)-NMR
experiments were performed on a JNM-ECA 500 MHz NMR instrument (JEOL Ltd., Tokyo, Japan)
with tetramethylsilane (TMS) as the internal standard. High-resolution electrospray ionization mass
spectra (HR-ESI-MS) were recorded on a Waters SYNAPT G2 mass spectrometer (Waters, Milford, MA,
USA). Silica gel (70–230 mesh, Merck, Darmstadt, Germany), RP-18 (YMC gel ODS-A, 12 nm, S-75 µm,
YMC Co., Tokyo, Japan), and Sephadex LH-20 (GE Healthcare Bio-Sciences, Uppsala, Sweden) were
used for column chromatography (CC). Thin-layer chromatographic (TLC) analysis was performed
on Kieselgel 60 F254 (Merck, Darmstadt, Germany) and Kieselgel 60 RP-18-F254S (Merck, Darmstadt,
Germany), with visualization under UV light (254 and 365 nm) and 10% (v/v) sulfuric acid spray,
followed by heating at 180 ◦C for 2 min. YMC-Pack Pro C18 column (5 µm, 250 mm × 20 mm i.d., YMC
Co., Tokyo, Japan) was used for preparative high performance liquid chromatography (HPLC) that
was conducted on a Gilson Preparative HPLC system (Gilson Inc., Middleton, WI, USA). Medium
pressure liquid chromatography (MPLC) was performed on a CombiFlash Rf200 system (Teledyne
ISCO, Lincoln, NE, USA) with RediSep Rf Normal Phase Silica columns. Analytical HPLC-DAD was
carried out on an Agilent 1200 series system (Agilent Technologies Co., Santa Clara, CA, USA) that
was equipped with a YMC-Triart C18 column (5 µm, 250 mm × 4.6 mm, YMC Co., Tokyo, Japan).

3.2. Plant Material

Dendrobii Herba stems (CK PHARM Co., Ltd., Seoul, Korea) were purchased from the Jewondang
herb shop in Jeongup-si, Jeollabuk-do, Korea. Voucher specimens (accession no. TM007) were
deposited at the Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute.
HPLC-DAD analysis was performed on its ethanol extract and solvent fractions to confirm the quality
of this plant material (Supplementary Materials Figure S35).

3.3. Extraction and Isolation

Dried stems (5 kg) of Dendrobii Herba were extracted with 95% EtOH (5 × 14 L) overnight at room
temperature. The solvent was evaporated in vacuo to afford a 95% EtOH extract (122 g), which was
then suspended in distilled water (1 L) and partitioned with hexanes (3 × 1 L), ethyl acetate (5 × 1 L),
and n-butanol (2 × 1 L) sequentially. The EtOAc-soluble fraction (35 g) was then subjected to silica
gel column chromatography (CC) while using a radient solvent system of CHCl3-MeOH (1:0 to 0:1,
v/v) to afford 16 fractions (F01–F16). Fraction F03 (0.7 g) was subjected to reverse-phase CC with a
solvent system of MeOH-H2O (1:2 to 1:0, v/v), affording 15 subfractions (F0301–F0315). Subfraction
F0311 (250 mg) was purified by MPLC (hexane-EtOAc, 85:15, 15 mL/min) to yield 8 (6 mg). Subfraction
F0312 (115 mg) was chromatographed on a Sephadex LH-20 column while using 100% MeOH to give 7
(56 mg) and 10 (14 mg). Subfraction F0314 (80 mg) was separated by MPLC (heaxen-EtOAc, 9:1 to
85:15, 15 mL/min), affording two subfractions (F031401 and F031402). Purified F031401 was subjected
to Sephadex LH-20 CC while using CHCl3-MeOH (1:1, v/v) to obtain 6 (1 mg) and 5 (2.5 mg). Fraction F
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04 (6 g) was subjected to silica gel CC with a solvent system of CHCl3-MeOH (9.5:0.5 to 1:1, v/v), which
afforded ten subfractions (F0401–F0412). Subfraction F0404 (0.9 g) was subjected to reverse-phase
CC with solvent system of MeOH-H2O (1:1 to 1:0, v/v), affording 20 subfractions (F040401–F040420).
Subfraction F040412 was chromatographed on a Sephadex LH-20 column while using 100% MeOH to
give 4 (3 mg). Fraction F07 (3 g) was subjected to silica gel CC with solvent system of heaxen-EtOAc (9:1
to 85:15, v/v), affording ten subfractions (F0701–F0710). Subfraction F0703 (126 mg) was subjected to
Sephadex LH-20 CC while using 100% MeOH to give five subfractions (F070301–F070305). Subfraction
F070305 (50 mg) was chromatographed on a Sepadex LH-20 column using 100% MeOH to give four
subfractions (F07030501–F07030504). The fourth fraction (20 mg) was purified by reverse-phase CC
with a gradient solvent system of MeOH-H2O (1:1 to 4:1, v/v) to yield 9 (10 mg). Subfraction F0704
(270 mg) was subjected to reverse-phase CC while using MeOH-H2O (1:1 to 1:0, v/v), producing 20
subfractions (F070401–F070420). Subfraction F070414 (14 mg) was chromatographed on a Sephadex
LH-20 column while using CHCl3-MeOH (1:1, v/v) to give four fractions (F07041401–F07041404).
F07041402 and F07041403 were purified by preparative HPLC (MeOH-H2O, 8:2, 3 mL/min) to afford 11
(2 mg, tR 22.5 min) and 3 (1.6 mg, tR 29.8 min). 2 (2 mg, tR 32.5 min) was obtained by preparative HPLC
with (MeOH-H2O, 7.5:2.5, 3 mL/min). Subfraction F070416 (23 mg) was separated by Sephadex LH-20
CC using 50% MeOH in CHCl3 to give four subfractions (F07041601–F07041604). F07041601 (3.8 mg)
was purified by preparative HPLC (MeOH- H2O, 7:3, 3 mL/min) to afford 12 (2.8 mg, tR 40.3 min).
F07041602 (3 mg) was purified by preparative HPLC (MeOH-H2O, 7:3, 3 mL/min) to obtain 13 (1.5 mg,
tR 36 min). Subfraction F0707 (120 mg) was subjected to reverse-phase CC using MeOH-H2O (1:1 to
1:0, v/v), affording 12 subfractions (F070701–F070712). The second subfraction was then purified by
Sephadex LH-20 CC while using 100% MeOH to afford 1 (10 mg).

(1R,2R)-1,7-hydroxy-2,8-methoxy-2,3-dihydrophenanthrene-4(1H)-one (1): Brown solid. [α]20
D

− 8.83◦ (c 0.03, MeOH). 1H (500 MHz) and 13C (125 MHz) data (CD3OD), see Table 1. HR-ESI-MS
(positive ions) m/z 311.0891 [M + Na]+ (calculated for C16H16O5Na, 311.0895).

2,7-dihydroxy-phenanthrene-1,4-dione (2): Brown solid. 1H (500 MHz) and 13C (125 MHz)
data (CD3OD), see Table 1. HR-ESI-MS (negative ions) m/z 239.0399 [M − H]− (calculated for
C14H7O4, 239.0344).

3.4. Computational Method

Conformer distributions, optimizations, and ECD calculations of compound 1 were carried out,
as described previously [32]. Briefly, a conformer distribution was performed Spartan’14 software
(Wave-function, Inc., Irvine, CA, USA) while using an MMFF force field. These conformers were
optimized at DFT [B3LYP functional/6-31+G(d,p) basis set] level. ECD calculations were carried out at
TDDFT (CAM-B3LYP/SVP basis set) level with a CPCM solvent model in MeCN using Gaussian 09
software (Gaussian, Inc., Wallingford, CT, USA). The calculated ECD spectra were simulated using
SpecDis 1.64 software (University of Wuerzburg, Wuerzburg, Germany) with a half bandwidth of
0.3 eV. ECD curves of these conformers were weighted by the Boltzmann distribution.

3.5. HPLC Analysis

The ethanol extract and solvent fractions of Dendrobii Herba were accurately weighed and
dissolved in MeOH at 2 mg/mL. The sample solution was filtered through a syringe filter (0.45 µm) for
HPLC analysis. The standards were accurately weighed and dissolved in MeOH at 1.0 mg/mL for
co-injection with each sample. Analysis of the chemical composition of the sample was conducted
while using the Agilent 1200 series LC system with an YMC-Triart C18 column (5 µm, 250 mm× 4.6 mm,
YMC Co.). Binary gradient elution with water (solvent A) and acetonitrile (solvent B) was performed,
as follows: 0–5 min, 20% B; 5–45 min, 20–70% B; 45–46 min, 70–100% B; 46–56 min, 100% B; 56–57 min,
and 100–20% B; 57–60 min, 20% B. The total flow rate was maintained at 1 mL/min and the injection
volume was 10 µL. Chromatograms were acquired at 230, 254, and 280 nm by the DAD detector.
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3.6. Cytotoxicity Assay

FaDu human pharynx squamous carcinoma cells were purchased from the Korean cell line bank
(Seoul, Korea). All of the experiments were conducted with low-passage cell cultures (<passage
10). These cells were cultured in Minimum Essential Medium (MEM; Corning, Manassas, VA, USA)
that was supplemented with 10% heat-inactivated FBS (Hyclone, Logan, UT, USA) in a humidified
incubator with 5% CO2 at 37 ◦C. To determine viability of FaDu cells, the CCK-8 assay kit (Dojindo,
Kumamoto, Japan) was used according to the manufacture’s protocols. Briefly, the FaDu cells were
seeded into 96-well plates at a density of 0.2 × 105 cells/mL and incubated at 37 ◦C for 24 h. After
incubation, the cultured FaDu cells were treated with the indicated concentration of each compound
(0.47−30 µM) and each extract (1.5625−100 µg/mL) for 72 h. Thereafter, 10 µL of CCK-8 reagent was
added into cultured FaDu cells and then incubated for a further 4 h and absorbance was measured
at 450 nm while using an SPARK® multimode microplate reader (Tecan, Männedorf, Switzerland).
Afterwards, 50% inhibitory concentration (IC50) was calculated from a dose-response analysis that was
performed with GrahPad Prism software (GaraphPad Software, La Jolla, CA, USA).

4. Conclusions

Phytochemical study of Dendrobii Hereba resulted in isolation of two new
phenanthrenes, (1R,2R)-1,7-hydroxy-2,8-methoxy-2,3-dihydrophenanthrene-4(1H)-one (1) and
2,7-dihydroxy-phenanthrene-1,4-dione (2). Of the 11 known compounds, compound 12 was isolated
from Dendrobium species for the first time in this study. Compounds 3–6, 8, 10, and 12 showed
cytotoxicity to the FaDu cells, with moscatilin (10) exhibiting remarkable cytotoxic activity. Further
mechanistic studies are needed to determine the anticancer action of 10 against head and neck cancers
while using in vitro and in vivo models.
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