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Abstract

Optimizing diet quality in conjunction with statin therapy is currently the most common approach
for coronary artery disease (CAD) risk management. Although effects on the cardiovascular
system have been extensively investigated, little is known about the effect of these interventions

in the colon and subsequent associations with CAD progression. To address this gap, Ossabaw
pigs were randomly allocated to receive, for a six-month period, isocaloric amounts of either a
heart healthy-type diet (HHD; high in unrefined carbohydrate, unsaturated fat, fiber, supplemented
with fish oil, and low in cholesterol) or a Western-type diet (WD; high in refined carbohydrate,
saturated fat and cholesterol, and low in fiber), without or with atorvastatin therapy. At the end
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of the intervention period, colon samples were harvested, mucosa fraction isolated, and RNA
sequenced. Gene differential expression and enrichment analyses indicated that dietary patterns
and atorvastatin therapy differentially altered gene expression, with diet-statin interactions.
Atorvastatin had a more profound effect on differential gene expression than diet. In pigs not
receiving atorvastatin, the WD upregulated “LXR/RXR Activation” pathway compared to pigs fed
the HHD. Enrichment analysis indicated that atorvastatin therapy lowered inflammatory status in
the HHD-fed pigs, whereas it induced a colitis-like gene expression phenotype in the WD-fed
pigs. No significant association was identified between gene expression phenotypes and severity of
atherosclerotic lesions in the left anterior descending-left circumflex bifurcation artery. These data
suggested diet quality modulated the response to atorvastatin therapy in colonic mucosa, and these
effects were unrelated to atherosclerotic lesion development.
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Introduction

Cardiovascular disease (CVD) is the leading cause of death globally [1]. Approximately
one-third of US adult deaths are attributable to CVD [2]. Coronary artery disease (CAD)

is a type of CVD characterized by the development cholesterol laden plaques in coronary
arteries, exacerbated by inflammation and dyslipidemia [2]. The colon contributes to the
modulation of cholesterol homeostasis by regulating bile acids resorption and dietary
cholesterol bioavailability [3]. Despite recent reports of a heart-gut axis [4,5], little is

known about the influence of the gastrointestinal tract (GIT), particularly the colon, on CAD
progression.

Evidence-based lifestyle recommendations for the prevention and management of CAD
include adopting a heart-healthy dietary pattern [6-8], defined by the American Heart
Association (AHA) and American College of Cardiology (ACC) as rich in fruits and
vegetables, whole grains, healthy proteins, nuts, seeds and legumes, while limiting intake
of sodium, saturated fat, processed meats and sugar-sweetened beverages [8]. Heart-healthy
dietary patterns have been associated with optimal CVD risk factors, including plasma lipid
and lipoprotein profiles, blood pressure and body weight, and higher life expectancy [9,10].
A cross-sectional analysis of gene expression signatures of peripheral blood mononuclear
cells from healthy adults concluded that dietary patterns (Prudent vs. Western) were
associated with altered gene networks related to the immune and/or inflammatory response,
cancer and CVD, which may modulate the risk of chronic disease [11]. Additional work
focusing on the relation between numerous dietary factors and gene expression signatures
in human colon tissue concluded that dietary factors were associated with altered gene
expression networks related to cancer, organismal injury, and cell death [12]. Neither study
addressed issues concerning the relation between gene expression signatures and clinical
endpoints. No evidence is currently available for the effect of dietary patterns on colonic
gene expression signatures and subsequent association with CAD progression.
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Statin therapy to lower low-density lipoprotein (LDL) cholesterol concentrations is
frequently prescribed to individuals diagnosed with or at elevated CAD risk, and who

fail to adopt or insufficiently respond to lifestyle modifications [6]. In addition to lower
LDL cholesterol concentrations, statin therapy has been reported to increase nitric oxide
production, and have antiproliferative and anti-inflammatory effects [13]. In the GIT, statin
therapy has been associated with reduced risk of new onset inflammatory bowel disease and
lower prevalence of gut microbiota dysbiosis [14,15].

The present study used a transcriptomic approach to assess the effect of two dietary patterns,
a heart healthy-type diet (HHD) and Western-type diet (WD), with and without atorvastatin
therapy, and their interaction, on colonic mucosa gene expression in the Ossabaw pigs. The
heart and colon of the Ossabaw pigs and humans share similar anatomical structures and are
comparable in size, making them a good experimental model to study the Aeart-gut axis [16].
This pig breed is a good experimental model of diet-induced metabolic syndrome [17] and
CAD [18]. We hypothesized that in the colonic mucosa, unique gene expression signatures
associated with atherosclerosis of Ossabaw pigs fed the WD relative to the HHD will be
identified, and atorvastatin therapy will modulate these associations. Altered gene expression
signatures will be largely involved in intestinal permeability, inflammation, and immune
activation.

Materials and Methods

2.1. Study design and animals

2.2.

Presented is an ancillary investigation of a previously reported study designed to determine
the impact of two dietary patterns, WD and HHD, without or with atorvastatin therapy (=S
or +S), on the progression of CAD in Ossabaw pigs [18]. Thirty-two 5-8 week old pigs

(16 boars+16 gilts) were randomly allocated to one of four groups using a 2 x 2 factorial
design: WD-S, WD+S, HHD-S, HHD+S. An equal number of boars and gilts was allocated
in each group. After a one-month acclimation period the pigs were gradually shifted to their
respective experimental diets for an addition 6 months, with incremental increases in energy
to meet growth requirements. Two pigs died due to causes unrelated to the interventions,
resulting in a final sample size of 30. The Beltsville Agricultural Research Center and Tufts
Medical Center/Tufts University Institutional Animal Care and Use Committee approved the
study protocol.

Diets and atorvastatin therapy

Diets were designed to be isocaloric and reflect typical human Western and heart healthy
dietary patterns. The composition and ingredients have been previously described [18].
Briefly, both diets provided 47% of energy (E) as carbohydrate, 38% E as fat, and 15% E
as protein. The diets differed in the types of carbohydrate and fat, quantity of cholesterol
and fiber, and fish oil supplementation. The WD was high in refined carbohydrate (sugar,
white flour), saturated fat (butter), and cholesterol, whereas the HHD was rich in unrefined
carbohydrate (whole wheat flour, oats), unsaturated fat (canola, soybean and corn oils), and
fiber (freeze-dried fruits and vegetables mix, Futureceuticals, Momence, IL). HHD-fed pigs
also received fish oil supplements (Epanova 1000 mg [550 mg EPA+200 mg DHA as free
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fatty acids], AstraZeneca, Cambridge, MA) three times per week. Pigs in the atorvastatin
(Lipitor, Pfizer, New York, NY) therapy groups received 20 mg/day during months 1-3 and
40 mg/day during the months 46 of the intervention to accommodate increases in body
weight.

2.3. Sample collection

At the end of the intervention period, pigs were euthanized by an intravenous injection of
Euthasol (50 mg sodium pentobarbital/kg body weight; Virbac Animal Health, Inc., Fort
Worth, TX). Proximal colon segments (2 cm in length) were harvested from an anatomically
similar region, cleaned and rinsed with ice-cold PBS, flash-frozen in liquid nitrogen, and
stored at —80°C. As previously described, blood samples were also collected at necropsy
[18].

2.4. Sample processing

2.5.

2.4.1. Blood samples—Serum cardiometabolic risk factors, including LDL cholesterol,
high-density lipoprotein (HDL) cholesterol, triglyceride, tumor necrosis factor-alpha (TNF-
a), and high-sensitivity C-reactive protein (hsCRP) concentrations, were measured and
reported as previously described [18].

2.4.2. Coronary artery histopathology—Histopathological assessment of
atherosclerotic lesion severity in the left anterior descending-left circumflex bifurcation
arteries, presented as Stary scores [19], were determined by a blinded board-certified
veterinary cardiovascular pathologist, as previously reported [18].

2.4.3. Isolation of colonic mucosa and RNA extraction—Frozen colon segments
were treated with prechilled RNA /ater-1ICE (Invitrogen, Carlsbad, CA) at —20°C for

24 hours to preserve RNA quality and prepare samples for further dissection. Colon
segments were opened longitudinally, and the mucosal layer was cleanly separated from
the submucosal layer using a scalpel and tweezers. Total RNA from the mucosal layer
was extracted using the TRI Reagent according to the manufacturer’s instructions (Zymo
Research, Irvine, CA). With the addition of RNAseOUT (Invitrogen, Carlshad, CA) to
minimize RNA degradation, residual DNA was removed using TURBO DNA-free kit
(Invitrogen, Carlsbad, CA). The RNA quality and concentration were assessed using an
Experion RNA StdSens Analysis kit (Bio-Rad, Hercules, CA). All samples had an RNA
Quality Indicator greater than 8.

RNA sequencing

The sample libraries were prepared using lllumina TruSeq RNA Sample Preparation Kit

v2 (Illumina, San Diego, CA) and AMPure XP beads (Beckman Coulter, Hercules, CA).
Libraries were quantified using a KAPA Library Quantification kit (KAPA Biosystems,
Wilmington, MA) and Experion DNA 1K Analysis kit (Bio-Rad, Hercules, CA), for quality
control per manufacture’s protocol. Libraries were sequenced using NextSeq 500/550
Output kit v2.5 (Illumina, San Diego, CA) on NextSeq 500 platform (Illumina, San Diego,
CA) with 100 base pair single end reads. Raw data in FASTQ format was trimmed for
quality by CLC Bio Genomic Workbench (Qiagen, Valencia, CA).
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The porcine translational research database (version NR 112918) [20], a manually curated
pig genome, was used as reference to assemble and reconstruct the transcriptome. To further
validate the results, a secondary analysis using the domestic pig (Ensembl sus scrofa 11.1,
version 98.111) [21] as genome reference was conducted. The latter genome contained a
wider range of annotated genes, but it also contained errors that were manually corrected
using the former genome [20]. Comparison Analysis by Ingenuity Pathway Analysis (IPA;
v 9.0, Mountain View, CA) was conducted to compare the results generated by these

two genomes. All heatmaps presenting sequencing results were generated using Morpheus
(Broad Institute, Cambridge, MA) [22].

2.6. Characterizing colonic mucosa cell types and sample homogeneity

2.7.

To evaluate consistency of colonic mucosa sampling, the xCell tool [23] was used to analyze
the RNA sequencing data (reads per kilobase million [RPKM]) that predicted enrichment of
various cell types within each colon sample. One sample in the HHD-S group displayed low
epithelial cell enrichment relative to all other samples (36% of the mean of other samples),
suggesting low presence of colonic mucosa, and was therefore excluded from subsequent
analyses, resulting in a final sample of n=29. The epithelial cell enrichment data among the
four groups was analyzed by one-way ANOVA (Prism 8, GraphPad Software, La Jolla, CA).
No significant differences were identified, suggesting similar enrichment of colonic mucosa
among groups.

Differential expression analysis of RNA-seq data and gene enrichment analysis

Differential expression analysis was performed on a Bioconductor package “edgeR” [24]
using a two-factor model design matrix (two-way ANOVA) in R (version 3.5.1; run

on RStudio, version 1.0.153, Boston, MA). This model was constructed to determine
differential gene expression attributable to dietary patterns, atorvastatin therapy and their
interaction. Genes were considered differentially expressed based on a false discovery rate
(FDR) < 0.05 and absolute log fold change (logFC) =0.6 (absolute fold change >1.5). Fold
change for genes were interpreted as diet effect (WD vs. HHD) and statin effect (+S vs. =S).
An interaction of diet-statin with FDR<0.05 was considered significant.

To further assess potential interactions by dietary patterns or atorvastatin therapy, analyses
adopting an exact test model were conducted in edgeR [24]. Comparison pairs included diet
effect within statin groups (WD-S relative to HHD-S, and WD+S relative to HHD+S) and
statin effect within diet groups (WD+S relative to WD-S, and HHD+S relative to HHD-S).
Results were analyzed in a downstream gene enrichment analysis.

Following differential gene expression analysis, an exploratory gene enrichment analysis
was conducted to determine relevant biological pathways and functional annotations
(Diseases and Functions) altered by treatments. Genes with an absolute logFC =0.6 were
uploaded to IPA. A Zscore was calculated to determine up- or down-regulation of pathways
or functional annotations. A term with an absolute Zscore =2 and FDR <0.05 was
considered statistically significant. In addition, Comparison Analysis in IPA was conducted
to visualize interactions between dietary patterns and atorvastatin therapy.
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2.8. Analysis Match with public gene expression datasets

To compare the derived biological interpretation of our dataset to other analyses, Analysis
Match in IPA was used. The algorithm created a signature from the highest confidence
predictions from our query analysis and compared it to the signatures of analyses generated
from public gene expression datasets curated by OmicSoft (QIAGEN Mountain View, CA)
from Gene Expression Omnubus (GEO), ArrayExpress, Sequency Read Archive (SRA),
and other public data sources. This feature enables confirmation of our data interpretation
and provides insights into underlying shared biological mechanisms. Matching results were
filtered by sample types (colon, colonic mucosa) and ranked by matching Zscores (%) in
descending order. Select matching results of interest were scrutinized.

2.9. Correlation analyses among gene expression and clinical traits

To determine the association of gene expression in colonic mucosa with atherosclerotic
lesion severity and cardiometabolic risk factors, pigs from all groups were pooled (n=29).
The differentially expressed genes and genes involved in pathways altered by dietary
patterns and/or atorvastatin therapy were included in this analysis. In total, 95 genes
were analyzed. Spearman’s correlation coefficients were calculated (Prism 8, GraphPad
Software, La Jolla, CA) between expression data of these genes (RPKM) and previously
measured atherosclerotic lesion severity (Stary scores in the left anterior descending-left
circumflex bifurcation arteries) and serum cardiometabolic risk factors (LDL cholesterol,
HDL cholesterol, triglyceride, TNF-a, and hsCRP concentrations) [18]. Due to the
exploratory nature of these analyses, an association was considered statistically significant
when absolute correlation coefficient 720.4 with a Pvalue <.05.

2.10. Sex difference

A descriptive secondary analysis was performed in colonic mucosa to determine whether
boars and gilts differentially respond to the interventions, using the methods described in the
Section “Differential expression analysis of RNA-seq data and gene enrichment analysis.”
Comparison Analysis in IPA was conducted to assess pathways altered by the main effects
of dietary patterns and atorvastatin therapy on the basis of sex.

3. Results

3.1. Differential gene expression analysis

Thirty-one differentially expressed genes with FDR<0.05 and absolute logFC=0.6 were
identified in colonic mucosa attributable to dietary patterns, atorvastatin therapy, and/or
their interaction (Table 1). Of these genes, dietary patterns (WD vs. HHD) altered the
expression of five genes, and atorvastatin therapy (atorvastatin vs. no atorvastatin) altered
the expression of 29 genes. Note that all of the genes altered by dietary patterns were

also altered by atorvastatin therapy. The expression of 10 genes demonstrated a significant
diet-statin interaction.
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3.2. Gene enrichment analysis

To assess the biological relevance of differential gene expression to dietary patterns and
atorvastatin therapy, IPA was used to evaluate gene enrichment. Genes with absolute

logFC =0.6 were included to extend our ability to explore potential pathways and
biological functions altered by dietary patterns and atorvastatin therapy. Ten pathways were
significantly affected by the main effect of dietary patterns (diet effect) and 11 by the

main effect of atorvastatin therapy (statin effect; all absolute 2 score=2 and FDR<0.05,
Table 2). The trend of a diet-statin interaction was identified by IPA Comparison Analysis
(Fig. 1). Results from the pathway analyses were similar regardless of the databased used;
comparison of results between porcine translational research database and domestic pig
genome database is presented in Supplemental Fig. 1.

To assess the main diet effect, 311 genes with absolute logFC=0.6 that differed by dietary
patterns were included in the gene enrichment analysis. The pigs fed the WD exhibited
four upregulated pathways relative to HHD-fed pigs, including “LXR/RXR Activation”
and “PPAR Signaling,” and six downregulated pathways including “Phospholipase,” “p38
MAPK Signaling,” and “TREML1 Signaling” (Table 2).

To assess the main statin effect, 312 genes with absolute logFC=0.6 that differed by
atorvastatin therapy were included in gene enrichment analysis. The pigs receiving
atorvastatin therapy exhibited one upregulated pathway, “PPARa/RXRa Activation, and 10
downregulated pathways, including “p38 MAPK Signaling,” “TREM1 Signaling,” “Toll-like
Receptor Signaling,” and “LPS/IL1 Mediated Inhibition of RXR Function,” than the pigs
not receiving atorvastatin therapy (Table 2).

As results of the differential expression analysis indicated that a substantial portion

of genes demonstrated significant diet-statin interaction, IPA Comparison Analysis was
conducted to compare different core pathway analyses. To determine if atorvastatin therapy
modified the effect of dietary patterns on colonic gene expression, we used the following
comparisons (Fig. 1A, B): main effect (WD+S vs. HHD=S), pigs not receiving atorvastatin
(WD-S vs. HHD-S), and pigs receiving atorvastatin (WD+S vs. HHD+S). Results from
pathway analysis (Fig. 1A) were consistent between the main effect and pigs not receiving
atorvastatin comparisons (4 upregulated, 4 downregulated, all Zscore=2 and FDR<0.05).
However, the diet effect was largely attenuated in pigs receiving atorvastatin. Further, results
from functional annotation analysis (Fig. 1B) were consistent between the main effect and
pigs not receiving atorvastatin therapy comparisons (1 upregulated, 39 downregulated, all 2
score>2 and FDR<0.05). In contrast, the vast majority of these functional annotations in pigs
receiving atorvastatin therapy responded in the opposite direction. The diet effect was more
profound in the pigs not receiving atorvastatin.

To determine if dietary patterns modified the effect of atorvastatin therapy on colonic gene
expression, we used the following comparisons (Fig. 1C, D): main effect (WD/HHD+S vs.
WD/HHD-S), pigs fed the WD (WD+S vs. WD-S), and pigs fed the HHD (HHD+S vs.
HHD-S). Results from pathway analysis (Fig. 1C) were consistent between the main effect
and in pigs fed the HHD (1 upregulated, 11 downregulated, all Zscore=2 and FDR<0.05).
However, the statin effect was largely attenuated in the WD-fed pigs. Further, results from
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functional annotation analysis (Fig. 1D) were consistent between the main effect and in pigs
fed the HHD (40 downregulated, all Zscore=2 and FDR<0.05). In contrast, the vast majority
of these functional annotations in pigs fed the WD responded in the opposite direction. The
statin effect was more profound in the HHD-fed pigs.

3.3. Analysis Match with public gene expression datasets

The IPA Analysis Match was conducted to further elucidate insights regarding how
atorvastatin therapy affects colonic gene expression within different diet context. Results
(Fig. 2A) indicated that the colonic mucosa gene expression pattern of WD+S relative

to WD-S fed pigs was similar to that of a microbiota dysbiosis phenotype relative to
normal control (mouse colon, .Zscore=77.96% on predicted Upstream Regulators) [25], and
a ulcerative colitis phenotype relative to healthy control (mouse colon, Zscore=70.01%
on predicted Upstream Regulators) [26]. Results (Fig. 2B) also indicated that the colonic
mucosa gene expression pattern of HHD+S relative to HHD-S fed pigs was similar to that
of an anti-TNF treatment in Crohn’s disease (human colon, Zscore=65.57% on predicted
Upstream Regulators) [27], and infliximab treatment in ulcerative colitis (human colon, Z
score=56.57% on predicted Upstream Regulators) [28].

3.4. Association of gene expression with atherosclerotic lesion severity and
cardiometabolic risk factors

3.4.1. Differentially expressed genes—Among the 31 differentially expressed genes
altered by diet, statin and/or diet-statin interaction, the expression of ASS1, CD274,

GBPZ2, and SLC6A9in the colonic mucosa were negatively associated with serum hsCRP
concentrations (Table 3). CLEC4G expression was positively associated with serum HDL
cholesterol concentrations. CD5L expression was positively associated with serum TNF-a
concentrations. None of the differentially expressed genes were significantly associated with
atherosclerotic lesion severity.

3.4.2. Genes in pathways altered by dietary patterns—Among genes expressed
in “LXR/RXR Activation” pathway, MMP9was positively associated with atherosclerotic
lesion severity, serum LDL cholesterol, HDL cholesterol, and triglyceride concentrations;
PTGS2 was negatively associated with serum LDL cholesterol, HDL cholesterol, and
TNF-a concentrations; and LY.Zwas negatively associated with serum triglyceride
concentrations (Table 4). PLA2G3 expressed in both “Phospholipase” and “p38 MAPK
Signaling” pathways were negatively associated with serum LDL cholesterol and HDL
cholesterol concentrations. Among genes expressed in “TREML1 Signaling” pathway, CD40
was negatively associated with atherosclerotic lesion severity, and /L Z0was negatively
associated with serum LDL cholesterol concentration. No unique genes involved in “PPAR
Signaling” and “PPARa/ RXRa Activation” pathways were associated with atherosclerotic
lesion severity or serum cardiometabolic risk factors.

3.4.3. Genes in pathways altered by atorvastatin therapy—Among
downregulated pathways altered by atorvastatin therapy, only the expression of CR2gene
in “PI3K Signaling in B Lymphocytes” was positively associated with atherosclerotic
lesion severity (Table 5). The gene expression of CCR3, ICOS, CYBB, TNFSF11, ATF3,
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CD180in various pathways were negatively associated with serum hsCRP concentrations;
expression of /L10and PLA2G3in various pathways were negatively associated with
serum LDL cholesterol concentrations; expression of /RAK3and PLA2G3in various
pathways were negatively associated with serum HDL cholesterol concentrations; and
expression of LYZin “Production of Nitric Oxide and Reactive Oxygen Species in
Macrophages” pathway was negatively associated with serum triglyceride concentrations.
Of note, APOD gene in “Production of Nitric Oxide and Reactive Oxygen Species

in Macrophages” pathway was positively associated with serum LDL cholesterol, HDL
cholesterol and hsCRP concentrations. Among genes involved in the only upregulated
pathway exhibited by atorvastatin therapy, “PPARa/RXRa Activation,” none of them were
significantly associated with atherosclerotic lesion severity or serum cardiometabolic risk
factors. No genes involved in these pathways was significantly associated with serum TNF-
a concentrations.

3.5. Sex difference

Although the study was under powered to assess sex-specific effect as previously reported
[18], this variable was evaluated to identify possible trends. The impact of dietary patterns
and atorvastatin therapy on pathways was similar in boars and gilts (Supplemental Fig. 2).

4. Discussion

Recent findings suggest there is an interplay between the gut and heart, referred to as the
heart-gut axis, and that this relationship can be exploited for use as a therapeutic target for
CAD risk reduction [5]. Yet, despite the widespread use of statins as a therapy to lower
CAD risk, little is known about the potential pleotropic effects of statin therapy on the
heart-gut axis, particularly in the colon or potential interactions with dietary modification
[14,15]. The present study was designed to address these gaps by assessing the effect of
two dietary patterns and atorvastatin therapy, and their interaction, on colonic mucosa gene
expression and subsequent association with cardiometabolic risk factors and atherosclerotic
lesion development.

Using the Ossabaw pig as a model of diet-induced atherosclerosis, we found that in colonic
mucosa the WD compared to the HHD upregulated “LXR/RXR Activation” and “PPAR
Signaling” pathways, and downregulated pathways related to proinflammatory immune
response, including “TREML1 Signaling” and “p38 MAPK Signaling.” We also found that
atorvastatin therapy downregulated a number of pathways related to immune response,
including “PI3K Signaling in B Lymphocytes,” “LPS/IL-1 Mediated Inhibition of RXR
Function,” and “Toll-like Receptor Signaling.” A diet-statin interaction in colonic mucosa
was identified. Independent of treatment group, a small proportion of genes involved in
these altered pathways were significantly associated with serum cardiometabolic risk factors
(LDL cholesterol, HDL cholesterol, triglyceride, TNF-a, and hsCRP concentrations) or
atherosclerotic lesion severity. Dietary pattern or atorvastatin therapy had no significant
effect on expression of genes related to colonic permeability.
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Diet effects

In colonic mucosa the “LXR/RXR Activation” pathway was upregulated in Ossabaw pigs
fed the WD compared to the HHD. Induction of this pathway has been demonstrated to
increase basolateral cholesterol efflux from intestinal epithelium into the circulation on HDL
[29,30]. This upregulation was likely in response to the higher cholesterol content in the
WD than HHD. When the diet effect was compared among the pigs receiving atorvastatin
therapy, this effect was no longer significant, suggesting that atorvastatin therapy mitigated
the differential diet effect on “LXR/RXR Activation.”

Compared to the HHD, the WD downregulated “p38 MAPK” and “TREM 1 Signaling”
pathway in the colonic mucosa. These two pathways are activated by a diverse spectrum

of stress stimuli including inflammatory cytokines, lipopolysaccharides (LPS) and reactive
oxygen species, leading to proinflammatory immune responses [31-33]. The results were
unexpected because the WD has been associated with a proinflammatory gene expression
profile in coronary arteries and epicardial adipose tissues from the same pigs [34,35].

Also unexpected, among the genes involved in these pathways, the expression of CD40

in “TREML Signaling” pathway was negatively associated with atheroscleratic lesion
severity. The CD40gene encodes CD40 molecules, which are essential for mediating a
broad variety of immune and inflammatory responses [36]. In the GIT, CD40 has been
reported to contribute to proinflammatory functions, including NFKB activation, cytokine
secretion, oxidative stress elevation and recruitment of leukocytes and platelets [37-40]. This
observation awaits confirmation. Other genes involved in these two pathways (16 out of

17) were not significantly associated with atherosclerotic lesion severity, suggesting these
diet-altered inflammation-related pathways in colonic mucosa have minimal association with
atherosclerotic lesion development.

Among the diet-altered pathways, the MMPI gene expression in “LXR/RXR Activation”
pathway was positively associated with atherosclerotic lesion severity, and serum LDL
cholesterol and HDL cholesterol concentrations. PLAZG3 gene expression in “p38

MAPK Signaling” and “Phospholipase” pathways was negatively associated with serum
LDL cholesterol and HDL cholesterol concentrations. The MMPI gene encodes matrix
metalloproteinase 9, and the PLA2G3 gene encodes a protein that belongs to the secreted
phospholipase A, family. MMP9 expression is induced in response to inflammation and
contributes to atherosclerotic lesion development [41-44]. Prior work suggests MMP9
modulates cholesterol metabolism through inhibition of plasma secretory phospholipase Ay,
which affects hepatic transcriptional responses to dietary cholesterol [45]. The significant
association between the expression of MMP9in colonic mucosa, serum LDL cholesterol and
HDL cholesterol concentrations, and atherosclerotic lesion severity suggested that the colon
may be a target organ in modulating atherosclerosis progression via MMP9-cholesterol
relation.

4.2. Statin effects

The vast majority of the differentially expressed genes were attributable to atorvastatin
therapy, and about one-third of the genes had a significant diet-statin interaction. When
atorvastatin-treated pigs were compared to pigs not receiving atorvastatin therapy, there
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was a down regulation of pathways related to innate and adaptive immune response and
inflammatory response. Some of these pathways, including “TREM1 Signaling,” “iNOS
Signaling,” “Toll-like Receptor Signaling,” and “LPS/IL-1 Mediated Inhibition of RXR
Function” are triggered by LPS, a luminal stimuli and major component of the outer
membrane of Gram-negative bacteria [46]. Recently, statin medications have been reported
to be associated with lower prevalence of gut microbiota dysbiosis [15]. These observations
raise the possibility that atorvastatin therapy may have suppressed colonic inflammation by
modifying the gut microbiome.

Interestingly, analyses showed that the pathways altered by atorvastatin therapy were only
observed in the colonic mucosa of pigs fed the HHD, not the WD. The IPA Analysis Match
found the gene expression pattern in response to atorvastatin therapy in the HHD-fed pigs
was similar to that of anti-TNF treatment in humans diagnosed with Crohn’s disease, and
that of infliximab treatment in humans diagnosed with ulcerative colitis. Crohn’s disease
and ulcerative colitis are two main categories of inflammatory bowel disease, and the
above stated treatments are used to lower inflammation in human colon [47,48]. Our results
suggested that in Ossabaw pigs fed the HHD, but not WD, atorvastatin therapy lowered
inflammatory status in colonic mucosa.

Although none of the pathways assessed were significantly altered by atorvastatin therapy
in the WD-fed pigs, functional annotation analysis suggested that atorvastatin induced
biological functions related to immune cell trafficking and activated colonic immune
responses such as “Binding of leukocytes,” “Adhesion of immune cells,” and “Migration
of lymphatic system cells.” The IPA Analysis Match indicated that the effect of atorvastatin
on colon gene expression in the WD-fed pigs was similar to that previously reported in
colonic tissue from mice with microbiota dysbiosis or ulcerative colitis. Hence, atorvastatin
therapy in WD-fed pigs may have triggered colonic inflammation, suggesting a potential
side-effect of atorvastatin therapy in this experimental model.

Among the genes involved in pathways altered by atorvastatin therapy, only one (CR2)

out of 86 was significantly associated with atherosclerotic lesion severity. These findings
suggested that the gene expression phenotype in colon induced by atorvastatin therapy had a
minimal association with atherosclerotic lesions development in the Ossabaw Pig model.

4.3. Diet-statin interaction

Differential gene expression and pathway analyses identified diet-statin interaction. Among
the differentially expressed genes, about one third demonstrated significant interactions.
Based on pathway analysis, the main diet effect was only observed in the pigs not receiving
atorvastatin, and the main statin effect was only observed in the HHD-fed pigs. Functional
annotation analysis indicated that the diet effect in pigs receiving atorvastatin responded in
the opposite direction to those pigs not receiving atorvastatin therapy. Additionally, the statin
effect in the WD-fed pigs responded in the opposite direction to the HHD-fed pigs. Similar
interaction patterns were not identified in our prior investigations in coronary arteries [34] or
epicardial adipose tissue [49] of these same pigs. Reasons for these interactions may result
from factors associated with changes in the gut microbiome.
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4.4. Strengths and limitations

A study strength is that the diets were formulated to mimic those habitually consumed by
humans, intending to simulate two dietary patterns, which allow for the study of diet from
a holistic rather than individual food or nutrient perspective. The atorvastatin doses were
chosen to mimic a dose typically prescribed for human [18].

A limitation of this work is that RNA was isolated from mucosal tissue homogenates that
contained multiple cell types, hence, high sampling heterogeneity may have resulted in
contamination of RNA from neurons and myocytes. To evaluate the extent of mucosa RNA
contamination with other cell types, the xCell tool [23] was used to determine enrichment
of different cell types. As a result of this analysis, one sample was excluded due to low
epithelial enrichment, attributed to tissue sampling error. The parent study was not designed
to determine causality between GIT physiology and development of atherosclerotic lesion
severity. Given the exploratory nature of the enrichment analyses, the results should be
interpreted with caution.

4.5. Conclusion

Our data indicate that dietary patterns and atorvastatin therapy differentially altered

the colonic gene expression phenotype, with diet-statin interactions in Ossabaw pigs.
Atorvastatin therapy had a more profound effect on gene expression than dietary patterns.
Interactions suggested a potential side-effect of atorvastatin therapy on colonic mucosa
within the context of a WD, emphasizing the critical role of diet quality in modulating
response to atorvastatin therapy. Human studies are needed to confirm this finding. The
specific gene expression phenotypes observed were not associated with the development of
atherosclerotic lesions in the left anterior descending-left circumflex bifurcation artery. At
the transcription level genes associated with colonic permeability were unaffected by dietary
patterns or atorvastatin therapy.
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Fig. 2.

(A) Matched gene enrichment results (Upstream Regulators) to statin effect in WD-fed
pigs. Columns from left to right: WD+S vs. WD-S of present study, a dysbiosis phenotype
vs. normal control, an ulcerative colitis phenotype vs. healthy control. (B) Matched gene
enrichment results (Upstream Regulators) to statin effect in HHD-fed pigs. Columns from
left to right: HHD+S vs. HHD-S of present study, an anti-TNF treatment in Crohn’s
disease (with treatment vs. without treatment), an infliximab treatment in ulcerative colitis
(responders vs. non-responders). WD: Western-type diet; HHD: heart healthy-type diet; S:
atorvastatin therapy. Squares with dot: not significant or no data available.
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