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Objective: To evaluate the effect of volume guarantee (VG) combined with high-

frequency oscillatory ventilation (HFOV) on respiratory and other physiological parameters

immediately after lung recruitment and surfactant administration in HFOV elective

ventilated extremely low gestational age newborns (ELGAN) with respiratory distress

syndrome (RDS).

Design: Observational study.

Setting: Tertiary neonatal intensive care unit.

Patients: Twenty-two ELGANs of 25.5± 1.1 weeks of gestational age requiring invasive

mechanical ventilation and surfactant administration for RDS during the first 6 h of life.

Interventions: All infants intubated in delivery room, were managed with elective HFOV

and received surfactant after a lung recruitment manoeuver. Eleven infants received

HFOV + VG and were compared with a control group of 11 infants receiving HFOV

alone. HFOV was delivered in both groups by Dräger Babylog VN500 ventilator (Dräger,

Lubeck, Germany).

Main OutcomeMeasures: Variations and fluctuations of delivered high-frequency tidal

volume (VThf), fluctuation of pressure amplitude (1P) and partial pressure of CO2 (pCO2)

levels after recruitment manoeuver and immediately after surfactant administration, in

HFOV + VG vs. HFOV ventilated infants.

Results: There were no significant differences in the two groups at starting ventilation

with or without VG. The mean applied VThf per kg was 1.7 ± 0.3 ml/kg in the HFOV

group and 1.7 ± 0.1 ml/kg in the HFOV + VG group. Thirty minutes after surfactant

administration, HFOV group had a significant higher VThf/Kg than HFOV + VG (2.1 ±

0.3 vs. 1.6 ± 0.1 ml/kg, p < 0.0001) with significantly lower pCO2 levels (43.1 ± 3.8
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vs. 46.8 ± 1.5 mmHg, p = 0.01), 54.4% of patients having pCO2 below 45 mmHg.

Measured post-surfactant 1P values were higher in HFOV group (17 ± 3 cmH2O) than

in HFOV + VG group (13 ± 3 cmH2O, p = 0.01).

Conclusion: HFOV + VG maintains pCO2 levels within target range and reduces VThf
delivered variations more consistently than HFOV alone after surfactant administration.

Keywords: HFOV, volume guarantee, ELGAN, respiratory distress syndrome, lung recruitment

INTRODUCTION

Despite a shift toward non-invasive respiratory support,
mechanical ventilation and surfactant administration in the first
hours of lifemay be life-saving in preterm infants with respiratory
distress syndrome (RDS), especially in extremely low gestational
age newborns (ELGAN) (gestational age ≤ 27 weeks) (1, 2). In
the last years, high-frequency oscillatory ventilation (HFOV) has
been increasingly used in preterm infants with RDS, because early
HFOV could reduce risk of bronchopulmonary dysplasia (BPD)
(3), especially if associated with an open lung strategy (4, 5).

HFOV offers highly effective oxygenation and clearance of
waste gas, despite use of tidal volumes at or below dead space
volume (6, 7). The CO2 diffusion (gas transport) coefficient
(DCO2) is a vital variable in HFOV and is calculated as
frequency times the square of tidal volume during HFOV
(VThf) (8, 9). Recently, weight-corrected DCO2 ([ml/kg]2/s)
has been proposed to reduce inter-individual variability (10).
Consequently, VThf is crucial for CO2 elimination with a larger

impact in comparison to tidal volume during conventional
mechanical ventilation. The VThf is determined by the amplitude
of the pressure oscillations (1P), and it is delivered to the lungs
around a constant mean airway pressure (MAP). As the same1P
can be associated with very different level of chest oscillations
and VThf in different babies, and even in the same baby over the

course of pulmonary disease, the same1P can result in very large
variations of VThf and unexpected variations of CO2 removal
(11, 12).

Volume guarantee (VG), a form of volume-targeted

ventilation, is known to improve neonatal prognosis and has
been a well-established respiratory management for preterm
infants when combined with conventional ventilation (13–

16). In the last few years, volume-guarantee modality has
been combined with HFOV (HFOV+VG), demonstrating
an attenuation of the fluctuations in SpO2 and CO2, which
can prevent hypoxemia and hypocapnia (17). Iscan et al.
compared HFOV and HFOV + VG in the same preterm
infants (24–32 weeks’ gestation) with RDS, intubated within
the first 6 h of life and treated with surfactant. The HFOV +

VG period reported a reduction in fluctuations of VThf, in
the number of out-of-target pCO2 levels and hypoxia events
compared with HFOV group (18). This is confirmed in detail
by Belteki et al. (19) recording every VThf from the ventilator
and showing that the tidal volume of the oscillations varies in
the short term but is kept very close to the long term objective.
However, according to the present literature, a specific optimal
VThf has not yet been recommended, as it varies with the

instantaneous characteristics of individuals and frequencies
(20, 21).

In our previous study aimed to evaluate the changes in end-
expiratory lung volume during an oxygenation-guided stepwise
recruitment procedure in HFOV without VG, mean VThf
significantly increased between the start and the end of the
recruitment with a slight not significant reduction of mean pCO2

values, possible effect of the increased lung compliance (22).
To our knowledge, changes in VThf and the effects of HFOV

+ VG during surfactant administration in preterm infants with
RDS have not been thoroughly studied.

HFOV open lung recruitment maneuver and surfactant
administration are followed by improved alveolar ventilation
potentially resulting in volutrauma and hypocapnia (23–25).
Volutrauma can contribute to BPD, and hypocapnia can alter
cerebral blood flow increasing the risk of intra-ventricular
hemorrhage (IVH), periventricular leukomalacia (PVL), and
poor neurodevelopmental outcomes (24–30). In newborn animal
model of surfactant deficiency, the use of HFOV combined
with VG ventilation demonstrated benefits of setting the VThf

instead of 1P to modify CO2 removal from the lung (31).
Volume guarantee combined with HFOV may be clinically
advantageous, especially in conditions in which lung compliance
can change rapidly, such as during and immediately after
surfactant treatment.

The aim of the present study was to investigate the
effect of VG combined to HFOV on respiratory and other
physiological parameters in HFOV electively ventilated ELGAN
with RDS immediately after surfactant administration, when lung
compliance can change rapidly.

MATERIALS AND METHODS

Patients
This is a single center, observational study conducted in our
third level neonatal intensive care unit (NICU). This study was
approved by the Ethics Committee of Fondazione Policlinico
Universitario A. Gemelli IRCCS, Roma—Università Cattolica del
Sacro Cuore (ID 4425). The inclusion criteria were as follows:
inborn premature infants with a gestational age (GA) between
24 and 27 weeks (ELGAN), requiring endotracheal intubation at
birth with a diagnosis of RDS, electively HFOV ventilated and
receiving surfactant treatment in the first 6 h of life, and after a
recruitment maneuver as open lung strategy using oxygenation
as indirect marker for lung volume (5). In our NICU, we started
using HFOV + VG during clinical care in June 2017, because
of technical improvement led by Dräger specialists and the
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increased experience and skills of the entire neonatal staff with
the Dräger Babylog VN500 ventilator (Dräger Medical, Lubeck,
Germany), using the HFOV+ VGmodality.

In fact, before June 2017, all ELGANs that needed mechanical
ventilation were managed by HFOV without VG. A historical
control group of ELGANs, born between June 2016 and June
2017 and electively ventilated in HFOV, was then selected and
compared with a group of ELGANs prospectively studied in
the period June 2017–June 2018, electively ventilated in HFOV
+ VG.

Exclusion criteria were as follows: outborn patients, presence
of major congenital malformations, hydrops fetalis inherited
disorders of metabolism, congenital pneumonia (positive
bronchoalveolar lavage fluid culture at birth), pulmonary
hypertension (confirmed by echocardiography), suspected
pulmonary hypoplasia (based on clinician interpretation of a
chest radiograph with small and hypoplastic-appearing lungs;
premature rupture of membranes and/or oligohydramnios
documented on antenatal ultrasound 3 or more weeks prior to
delivery), severe circulatory shock (prolonged capillary filling,
reduced strength of peripheral pulses, cool skin, lethargy,
hypotension, oliguria, increasing lactate concentrations, and
metabolic acidosis), and >20% endotracheal tube leak to negate
the effect of leakage (Figure 1).

HFOV and Open Lung Ventilation Strategy
HFOV is the primary mode of mechanical ventilation in our
NICU to manage preterm newborns with GA≤ 27 weeks and/or
BW < 1,000 g affected by RDS because of the results of our

previous randomized controlled trial comparing the effects of
HFOV vs. conventional mechanical ventilation (32).

In all studied infants, HFOV was delivered by Dräger
Babylog VN500 (Dräger Medical, Lubeck, Germany) and started
at a MAP of 8–10 cmH20, a frequency of 15Hz, and an
inspiratory/espiratory ratio of 1:2 (I:E = 1:2). The FiO2 was
initially set to ensure adequate oxygen saturation (SpO2 89–94%).

In all infants, frequency (15Hz) and I:E = 1:2 remained
unchanged during the studied ventilation periods.

The goals of respiratory management were to maintain pH
7.30–7.45, pCO2 45–55 mmHg (5.9–7.2 kPa), pO2 50–70mmHg
(6.6–9.3 kPa), and SpO2 89–94%.

In all studied infants, HFOV or HFOV + VG was combined
with an open lung ventilation strategy aiming to recruit and
stabilize most collapsed alveoli/sacculi, using oxygenation as an
indirect parameter for lung volume (33, 34).

The MAP was increased stepwise by 1–2 cmH2O every
2–3min as long as SpO2 improves. The FiO2 was reduced
stepwise, keeping SpO2 within the target range. The recruitment
procedure was stopped if the FiO2 did not exceed 0.25 or if
oxygenation no longer improved or there were signs of lung
hyperinflation (capillary refill time >3 s and/or hypotension).
The corresponding MAP was the pre-surfactant opening
continuous distending pressure (CDPO). Next, the MAP was
reduced stepwise by 1–2 cmH2O every 2–3min until the SpO2

was deteriorated (of at least 2–3 points), and the corresponding
MAPwas the pre-surfactant closing pressure (CDPC). Finally, the
lung was recruited again by returning to the known CDPO for
2–3min and then stabilized setting MAP to 2 cmH2O above the

FIGURE 1 | Flow diagram.
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CDPC at pre-surfactant optimal pressure (CDPOPT) for at least
3 min.

TABLE 1 | Patient and maternal demographics and neonatal characteristics at

birth.

HFOV (n = 11) HFOV+VG (n = 11) p

Gestational age, weeks 25.8 ± 1.0 25.2 ± 1.2 0.20

Birth weight, g 754 ± 74 688 ± 141 0.20

Complete course of

antenatal steroidsa
5 (45) 8 (44) 1

5-min Apgar score 7 [7–9] 7 [4–9] 0.50

SGA 2 (18) 2 (18) 1

Male 5 (45) 6 (54) 1

Premature rupture of

membranes >12 h

4 (36) 5 (45) 1

Delivery by cesarean

section

9 (82) 10 (91) 1

Surfactant, hours of life 2.6 ± 1.7 2.7 ± 1.8 0.86

Values expressed as mean ± SD, median [range] and number (percent).
aA complete course of antenatal steroids was defined as two doses of betamethasone

administered more than 24 h but no more than 7 days before delivery. SGA, small for

gestational age.

TABLE 2 | Ventilator settings, ventilation at baseline, and pre-surfactant and post

surfactant time.

HFOV (n = 11) HFOV+VG (n = 11) p

Baseline

MAP (cmH2O) 9.7 ± 0.5 9.5 ± 0.8 0.35

FiO2 0.43 ± 0.10 0.46 ± 0.10 0.96

1P (cmH2O) 20 ± 3 19 ± 1 0.32

VThf (ml/kg) 1.7 ± 0.3 1.7 ± 0.1 0.53

DCO2 (ml2/kg2/s) 46.5 ± 18.0 42.2 ± 16.1 0.46

pCO2 (mmHg) 50.5 ± 4.0 50.0 ± 3.2 0.73

OI 8.0 ± 2.3 8.4 ± 2.0 0.35

Pre-surfactant

MAP (cmH2O) 13.7 ± 1.4 13.9 ± 1.4 0.77

FiO2 0.25 ± 0.01 0.25 ± 0.01 1

1P (cmH2O) 20 ± 3 18 ± 2 0.14

VThf (ml/kg) 1.8 ± 0.3 1.6 ± 0.1 0.03

DCO2 (ml2/kg2/s) 51.6 ± 16.3 39.4 ± 5.1 0.03

pCO2 (mmHg) 48.4 ± 3.2 48.0 ± 2.2 0.76

Post-surfactant

MAP (cmH2O) 8.7 ± 0.7 8.6 ± 0.7 0.88

FiO2 0.21 ± 0.01 0.21 ± 0.01 0.75

1P (cmH2O) 17 ± 3 13 ± 3 0.005

VThf (ml/kg) 2.1 ± 0.3 1.6 ± 0.1 <0.0001

DCO2 (ml2/kg2/s) 69.5 ± 16.4 39.5 ± 5.8 <0.0001

pCO2 (mmHg) 43.1 ± 3.8 46.8 ± 1.5 0.006

Values expressed as mean ± SD. MAP, mean airways pressure; VThf (ml/kg), tidal

volume HFOV; DCO2, coefficient of gas transport; FiO2, fraction of inspired oxygen; OI,

oxygenation index (MAP x FiO2/PaO2x 100).

Bold values are the statistically significant p-values.

Surfactant was then administered at the CDPOPT (Curosurf,
Chiesi) via a closed system catheter at a dose of 200 mg/kg.

Surfactant treatment in open lung HFOV ventilated preterm
infants with RDS causes rapid increase (minutes) and subsequent
stabilization of lung volume and increases maximal compliance
of the lung, but at lower airway pressures (23).

Consequently, to avoid possible overdistension and to profit
from the increased compliance after surfactant treatment, after
a stabilization period of 5–10min, MAP was reduced by 1–
2 cmH2O and CDPC, CDPO, and CDPOPT were once more
determined post-surfactant.

HFOV and HFOV + VG Ventilation Strategy
In the HFOV group, 1P was initially set at 15 cm H2O and then
increased if necessary until the infant’s chest was seen to be visibly
vibrating. Operators adjusted 1P up or down in increments of
1–2 cm H2O as necessary, if pCO2 values were outside the target
range, to achieve a VThf of 1.5–2.0 ml/kg.

In the HFOV + VG group, the target range of VThf was
1.5–1.8 ml/kg and 1Pmax limit was set 15–20% above the
average 1P needed to achieve it, frequency was set at 15Hz,
and inspiratory/espiratory ratio was 1:2. The set VThf/Kg was
adjusted by the clinicians up or down in increments of 0.2 ml/kg
as frequently as necessary, if pCO2 values were outside of the
target range.

All patients received a loading dose of caffeine (20 mg/kg)
immediately after admission to the NICU, then maintenance
therapy (35), and Remifentanil by continuous intravenous
infusion at a dose of 0.075µg/kg/min to provide analgesia during
HFOV while preserving spontaneous respiratory activity (36).

Data Collection
Data of the historical HFOV group were collected from
ventilation sheets where doctors of our Unit usually report
vital signs and respiratory and ventilation parameters during
surfactant administration in ventilated patients.

Demographic data on patient and maternal characteristics
were collected from each patient.

Information was collected on MAP, FiO2, 1P, VThf per
weight, frequency, DCO2 per weight, SpO2, and pCO2 at
different time points: start of ventilation in the NICU, at the
pre-surfactant time (after the stabilization period at CDPOPT
pre-surfactant time), and at 30min post-surfactant (after the
stabilization period at CDPOPT post-surfactant time). To assess
the severity of lung disease at the start of ventilation, the
oxygenation index (OI): (MAPxFiO2/PaO2x100) was calculated
for each patient.

In all patients, a capillary blood sample after adequate heel
warming was obtained for gas analysis at each of the three study
phases (baseline, pre-surfactant, and post-surfactant).

Statistical Analysis
Values were expressed as mean and SD or median and range
for continuous variables or absolute frequency and percentages
for categorical variables. Continuous variables were compared
with parametric (Student’s t-test) or non-parametric (Mann–
Whitney U-test) tests, as appropriate. Categorical variables were
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FIGURE 2 | Evaluation of VThf (ml/kg), amplitude level (1P) and pCO2 in HFOV and HFOV + VG groups. (A) At start: no significant differences of the three parameters

between the two groups were observed. (B) Pre-surfactant administration (after completing the lung recruitment maneuver): there is a significant difference between

the two groups in terms of VThf/kg (p = 0.03). (C) Post-surfactant administration: there are significant differences between the two groups in terms of VThf/kg (p <

0.0001), 1P (p = 0.005), and pCO2 (p = 0.006). *Represents statistically significant differences.

compared by using a two-tailed Fisher’s exact test. A 2-tailed
value of p< 0.05 was considered significant. Pearson’s correlation
analysis was performed to determine the correlations between
selected parameters.

Data were analyzed using commercial statistical software
(GraphPad Prism version 8.0.0, San Diego, California, USA).

RESULTS

Between 1 June 2016 and 30 June 2018, a total of 68 inborn
ELGAN with a diagnosis of RDS requiring on-going intensive
care were admitted to our NICU. Thirty-five of these ELGAN
required endotracheal intubation at birth and were electively
ventilated by HFOV.

Thirteen of these infants were excluded for the following
reasons: congenital pneumonia (n = 2), severe circulatory shock
(n = 3, two septic shocks, one recipient baby of twin-to-twin

transfusion syndrome), hydrops fetalis in congenital syphilis (n=
1), severe pulmonary hypertension in lung hypoplasia secondary
to prolonged premature rupture of membranes (n = 4), >30%
endotracheal tube leak (n= 2), and esophageal atresia (n= 1).

Of the remaining 22 patients with 25.5 ± 1.1 weeks of

GA and 721 ± 115 g of birth weight, 11 were born between
1 June 2016 and 15 June 2017 and electively ventilated in
HFOV (HFOV group), and 11 were born between 15 June
2017 and 30 June 2018 and electively ventilated in HFOV
combined with VG (HFOV + VG group). No significant

differences were observed between the two groups in terms of
demographic and clinical characteristics (Table 1), including the
severity of the lung disease, as demonstrated by oxygenation

index (OI) (MAPxFiO2/PaO2x100 values at baseline; Table 2).
All patients were intubated with 2.5mm endotracheal tube. In all
infants, frequency (15Hz) and inspiratory/espiratory ratio of 1:2
remained unchanged during the studied ventilation periods.
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The study population ventilator parameters at baseline are
shown in Table 2. There were not significant differences in the 2
groups at baseline between ventilation modes in terms of MAP,
1P, VThf per kg, DCO2, pCO2, frequency, and I:E. The mean
applied VThf/Kg was 1.7 ± 0.3 ml/kg in the HFOV group and
1.7± 0.1 in the HFOV+ VG group.

Considering data after the recruitment maneuver (i.e., pre-
surfactant administration), HFOV group had a significantly
higher VThf/Kg than HFOV + VG (1.8 ± 0.3 vs. 1.6 ± 0.1,
p = 0.03) with higher VThf/Kg variability (in terms of SD),
not corresponding to a significant difference in pCO2 values
(Figure 2 and Table 2).

After surfactant administration, HFOV group, compared to
HFOV + VG group, had significantly higher VThf/Kg (2.1 ± 0.3
vs. 1.6 ± 0.1; p < 0.0001) with significantly lower pCO2 values
(43.1 ± 3.8 vs. 46.8 ± 1.5; p = 0.006). Moreover, six patients
of HFOV group (54.4%) reached a pCO2 value below target of
45 mmHg and one patient with pCO2 below 35 mmHg of pCO2

(Figure 2).
A significant negative correlation was found between

VThf/Kg values and the corresponding pCO2 after surfactant
administration in all patients of both groups (r: −0.69; n:21, p
< 0.0001; Figure 3).

In both groups, the 1P significantly decreases after surfactant
administration, but comparing the 2 groups, the 1P post-
surfactant is lower in HFOV + VG with 13 ± 3 cm H2O vs. 17
± 3 cm H2O; p= 0.01 (Figure 2 and Table 2).

Data on weight corrected gas transport coefficient (DCO2)
in the HFOV and HFOV + VG groups show a mean DCO2

measurement significantly different, with higher values in HFOV
both pre-surfactant (51.6 ± 16.3 vs. 39.4 ± 5.1; p = 0.03) and
post-surfactant (69.5± 16.4 vs. 39.5± 5.8; p < 0.0001).

DISCUSSION

To our knowledge, this is the first paper of comparison between
HFOV and HFOV + VG during surfactant administration
in extremely preterm neonates with RDS electively HFOV
ventilated. Considering the last literature, a multicentre,
randomized, controlled trial, IN-REC-SUR-E (37), demonstrated
how surfactant administration after lung recruitment withHFOV
decreased the need for MV in the first 72 h of life in extremely
preterm infants compared to standard IN-SUR-E technique.
Volume recruitment maneuver improves surfactant distribution
and pulmonary gas exchange as also seen in animal studies
(38). Conditions where alveolar ventilation is improved and
lung compliance changes rapidly, like during open lung HFOV
surfactant treatment, can result in volutrauma and hypocapnia
(23–25). During HFOV, the same pressure amplitude and
frequency can result in different chest oscillations and tidal
volume due to changes in lung mechanics and patient–ventilator
interactions. Data published on HFOV + VG in preterm infants
constantly report the feasible use and a better maintenance
of VThf and pCO2 in the target range (19–22). The aim of
our study was to evaluate VG combined to HFOV during
surfactant administration.

FIGURE 3 | Pearson correlation analysis between VThf/kg, pCO2 significant

correlation between all VThf/kg and pCO2 levels (Pearson coefficient: r =

−0.69, p < 0.0001).

Avoiding volutrauma is a desirable goal in ventilation, with
immediate and long term benefits associated to the prevention
of both lung injury with BPD and hypocapnia that can alter

cerebral blood flow with increased risk of intra-ventricular
hemorrhage (IVH), periventricular leukomalacia (PVL), and
poor neurodevelopmental outcomes (26–30).

In our study variations of VThf and 1P were evaluated during

surfactant administration, i.e., a rapidly lung compliance change
phase, and the low and stable VThf/Kg observed in HFOV +

VG patients cause a significant low DCO2 values in this group.
The mean VThf/Kg levels used in our study, corresponding
to normocapnic blood gases, were 1.5–1.8 ml/kg. We used a
constant frequency of 15Hz to reduce the determinants of DCO2.
AsMukerji et al. demonstrated in artificial lung model, frequency
has a direct relationship with CO2 elimination when tidal volume
is fixed. Using low delivered tidal volumes and high frequencies
may allow for improved ventilation efficacy, while minimizing
lung injury (39).

Recently, it is reported that it is possible to use lower
delivered tidal volumes during HFOV combined with VG
and higher frequencies to allow minimizing lung injury. In
experimental models, the protective effect of HFOV + VG

has been proved when using smaller volumes and very high
frequencies (40) which have been successfully used in preterm
newborns in a pilot study of González-Pacheco (41). In a recent
retrospective cohort study investigating the high-frequency
parameters corresponding with adequate ventilation, the median

high-frequency tidal volume corrected by birth weight was 1.63
ml/kg for frequencies 15Hz, and tidal volumes were inversely
correlated with frequencies used (21).
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To date, there are no starting ventilation parameters defined

for VG and frequency in HFOV ventilation. Few studies support
the need for higher VThf during HFOV ranging between 1.75
and 1.90 ml/kg using a constant frequency of 10Hz (18, 42).
Another study in an almost homogeneous group of preterm
infants, already treated with surfactant, used an average VThf of
1.64± 0.25 ml/kg (20).

In our highly homogeneous population of extremely
preterm infants with RDS evaluated before and after surfactant
administration, an HFOV + VG starting ventilator setting with
VThf 1.5–1.8 ml/kg and a respiratory rate of 15Hz has been
demonstrated to be safe and efficacious.

This is a retrospective study, so the method of data recording
is a first limitation. Another important limitation is the small
number of patients evaluated in two different study periods.
However, in our unit, HFOV + VG is nowadays the elective and
routine modality of invasive ventilation and it is not possible
to perform a randomized controlled trial. Finally, our patients
received surfactant at a mean age of 2.5 h. The duration of the
HFOV recruitment maneuver (average 20–30min) may have
contributed to the delay in surfactant administration, which is
usually recommended soon after intubation.

In conclusion, although the optimal initial value of VThf
cannot be exactly known because it can be influenced by prenatal
conditions, sedation, and spontaneous breathing, in a selected
population we can suggest safety values of VThf/kg and frequency
to obtain normocapnia.

Our results show that HFOV + VG, compared to HFOV
alone, avoids increasing VThf just after surfactant administration,
reduces VThf fluctuations (as demonstrated by lower SD of

mean VThf values), and reduces large pCO2 excursions and risk
of hypocapnia.

Due to the lower 1P and VThf values and
to the reduced fluctuation of pCO2 levels, HFOV
combined with VG appears to be suitable for extremely
preterm infants, compared to HFOV alone, in the
management of acute neonatal RDS before and after
surfactant administration.
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