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Abstract

Humans and other animals effortlessly identify natural sounds and categorize them into

behaviorally relevant categories. Yet, the acoustic features and neural transformations that

enable sound recognition and the formation of perceptual categories are largely unknown.

Here, using multichannel neural recordings in the auditory midbrain of unanesthetized

female rabbits, we first demonstrate that neural ensemble activity in the auditory midbrain

displays highly structured correlations that vary with distinct natural sound stimuli. These

stimulus-driven correlations can be used to accurately identify individual sounds using sin-

gle-response trials, even when the sounds do not differ in their spectral content. Combining

neural recordings and an auditory model, we then show how correlations between fre-

quency-organized auditory channels can contribute to discrimination of not just individual

sounds but sound categories. For both the model and neural data, spectral and temporal

correlations achieved similar categorization performance and appear to contribute equally.

Moreover, both the neural and model classifiers achieve their best task performance when

they accumulate evidence over a time frame of approximately 1–2 seconds, mirroring

human perceptual trends. These results together suggest that time-frequency correlations

in sounds may be reflected in the correlations between auditory midbrain ensembles and

that these correlations may play an important role in the identification and categorization of

natural sounds.

Introduction

In the auditory periphery, neurons encode sounds by decomposing stimuli into cardinal physi-

cal cues such as sound pressure and frequency, which retain detailed information about the

incoming sound waveform. In midlevel auditory structures, such as the inferior colliculus

(IC), sounds are further decomposed into higher-order acoustic features such as temporal and

spectral sound modulations. Rather than firing when a frequency is simply present in the

sound, IC neurons also respond selectively to spectro-temporal structure in the envelopes of
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frequency channels [1]. In natural sounds, these spectro-temporal modulations are highly

structured and varied, and the envelopes are correlated both across frequencies and time [2–

5]. While low-level cues such as the sound spectrum contribute to many auditory tasks, includ-

ing sound localization and pitch perception [6,7], spectral cues alone are insufficient for identi-

fying most environmental sounds. Manipulating higher-order statistics related to the spectro-

temporal modulations of sounds can dramatically influence recognition [2]. Temporal modu-

lations contribute to the familiarity and recognition of natural sounds such as running water

sounds [8,9], and temporal coherence across frequencies plays a central role in auditory stream

segregation [10]. Here, we examine to what extent correlations in neural ensembles vary with

natural sounds and to what extent both neural and sound correlations may be useful for sound

recognition. Although correlations are often thought to lead to less efficient representations of

individual sensory stimuli [11,12], here, we find evidence that correlation statistics may con-

tribute to sound recognition and the formation of acoustic categories.

The spectro-temporal correlation structure of amplitude modulations in sounds is known

to contribute to auditory perception [2] and strongly modulates single-neuron activity in the

auditory midbrain [1]. For single neurons, correlated sound structure can improve signal

detection [13] and coding of spectro-temporal cues [14] and also activates gain control mecha-

nisms [15,16]. However, it is currently unclear how sound correlations shape the response cor-

relations of neural ensembles. Pairs of neurons at multiple levels of the auditory pathway show

correlated firing that strongly depends on the spatial proximity of neurons, receptive field sim-

ilarity, and behavioral state [17–19], but it remains to be seen whether these correlations are

stimulus-dependent and whether they are detrimental or beneficial for coding. Theories based

on efficient coding principles have proposed that stimulus-driven correlations should be mini-

mized in order to minimize redundancies in the neural representation [11,12], and noise cor-

relations, which reflect coordinated firing in an ensemble of neurons that is not directly

related to the sensory stimulus, are thought to directly limit the encoding of sensory informa-

tion [20,21]. On the other hand, correlations between neurons may be functionally important

and have previously been considered as plausible mechanisms for sound localization [22] and

pitch identification [23,24]. Here, we consider a more general role for stimulus-driven ensem-

ble correlations and test whether they may be useful for sound recognition in general.

The IC receives convergent input from various brainstem nuclei and has the potential to

consolidate ascending auditory information, which is ultimately relayed to the thalamus and

cortex. Furthermore, the IC is selective for various structural features in natural sounds and

has been proposed to form a compact and efficient midlevel auditory representation [3,19,25–

27]. As such, it is believed to be necessary for extracting spectro-temporal cues that underlie

sound recognition. Here, we test the hypothesis that sound-correlation statistics alter the cor-

related firing between frequency-organized neuron ensembles in the IC and that these stimu-

lus-driven correlations can be decoded to identify individual sounds. Using an auditory model

and accompanying neural recordings, we then test whether sound-correlation statistics can be

used to identify sound categories. Collectively, the data suggest stimulus-driven correlations

between neuron ensembles in the auditory midbrain may provide a signature for downstream

neurons to recognize and categorize natural sounds.

Results

Decoding neural ensemble correlation statistics to recognize sounds

We used multichannel, multiunit neural recordings in the auditory midbrain (IC) of unanes-

thetized rabbits to characterize and determine whether neural correlations between recording
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sites in the IC are affected by the correlation structure of natural sounds and whether such

neural ensemble statistics could potentially contribute to sound recognition.

The spatiotemporal correlation statistics from an example penetration site demonstrate the

diversity of neural ensemble correlation statistics observed in a frequency-organized recording

site. As expected for the principal nucleus of the IC, frequency responses areas are tonotopi-

cally organized, varying from low to high frequency with recording depth (Fig 1A; approxi-

mately 0.5–8 kHz; low frequencies more dorsal, high frequencies more ventral), and, for this

reason, spatial correlations are referred to as spectral correlations in what follows. Response

neurograms (averaged across trials) are shown for a fire sound (Fig 1B) and a water sound (Fig

1E) for this recording site, and the stimulus-driven ensemble correlations are estimated by cor-

relating the outputs of each recording channel across independent response trials (Fig 1C, 1D,

1F and 1G; Materials and Methods). In general, neural correlation statistics to natural sound

are highly diverse across sounds. The stimulus-driven spectral correlation matrix (at zero time

lag) reflects the instantaneous correlation of the neural activity between different frequency-

organized recording sites (Fig 1C for fire; 1F for water; cochleograms and corresponding neu-

ral activity patterns are shown for this site in S1 Fig). In contrast, the trial-shuffled autocorrelo-

grams for each recording site reflect the temporal correlation structure of the neural activity at

different recording locations (Fig 1D for fire; 1G for water).

The stimulus-driven neural correlations of the same penetration site are shown for natural

sound recordings of a crackling fire, a bird chorus, crowd noise, running water, and a rattling

snake, all of which contain a mixture of the target sounds and natural ambient noises (available

for listening, S1–S5 Sounds). Across sounds, spatial/spectral (Fig 1H) and temporal (Fig 1K)

correlations are quite diverse and reflect stimulus-dependent structure. For instance, in this

example penetration site, the water and crowd sounds have similar stimulus-driven spectral

correlation matrices, with the highest correlations localized to neighboring low-frequency

channels (<4 kHz, along the diagonal, slightly higher range for water). Correlations are much

more extensive and widespread for the fire sound. Nearby channels are still highly correlated

(along the diagonal), but distant recording channels can also have high correlations. The bird

chorus and rattling snake sound, by comparison, have their own distinct correlation patterns,

with the strongest correlations occurring between sites with best frequencies above approxi-

mately 1 and 2 kHz, respectively. In general, stimulus-driven spectral correlations exhibit

strong stimulus-dependent structure and high diversity across recording locations (additional

examples, S2–S4 Figs)

The stimulus-driven temporal correlations also have unique stimulus-dependent pattern

and unique timescales for each sound (Figs 1K and S2–S4). The temporal correlations for the

crowd, water, and fire sounds are relatively fast (3.0 ms, 3.0 ms, and 3.9 ms width at 50% of the

maximum; 5.9 ms, 6.9 ms, and 11.8 ms width at 10% of the maximum). The bird chorus has a

similar sharp temporal correlation (5.9 ms half width), but it also contains a broader and sub-

stantially slower component (161.2 ms, 10% width). By comparison, although the rattling

snake sound also has a relatively precise temporal correlation at zero lag (7.9 ms, 50% width;

20.6 ms, 10% width), the neural ensemble generates a periodic pattern for high-frequency sites

with a period of approximately 50 ms, reflecting the structure of the rattling at approximately

20 Hz. Furthermore, these neural correlations were stimulus-driven and frequency-dependent

since they were partly predicted by the spectral correlations from a peripheral auditory model

(see Materials and Methods; average r = 0.3 ± 0.03, t test, p< 0.01; S5 Fig).

We next decomposed the neural correlations by measuring the noise-driven correlations of

the neural ensemble (see Materials and Methods). This allows for determining how noise and

stimulus-driven correlations individually contribute to sound recognition. In contrast to stim-

ulus-driven correlations, which are highly structured in both time and frequency, noise
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correlations mostly lack stimulus-dependent structure. For the spectral domain, noise correla-

tions are largely diagonalized and limited largely to neighboring channels (Figs 1I and S2–S4).

Temporal noise correlations (Figs 1L and S2–S4) are fast, lasting only a few milliseconds and

localized about zero millisecond delay. Noise correlations were also generally stronger than the

corresponding signal correlations (spectral Signal-to-Noise Ratio [SNR]: range = −26.0 to −0.9

dB, −11.0 ± 7.2 mean ± SD; temporal SNR: range = −26.1 to −4.1 dB, −6.0 ± 8.2 mean ± SD),

indicating that much of the structure in correlations between channels is not stimulus-depen-

dent. The total response correlation (Fig 1J for spectral; Fig 1M for temporal) had a substantial

stimulus-independent component, particularly for the spectral correlations, which tended to

have a lower SNR.

As for the example, stimulus-driven correlations across our recordings exhibit stimulus-

dependent structure, whereas noise correlations show little stimulus dependence and are lim-

ited primarily to neighboring channels spectrally and brief epochs in time. To measure the

average noise and stimulus correlations across penetration sites, which have mismatched fre-

quency range, we collapsed the stimulus and noise correlations along the frequency dimension

in order to obtain a frequency-independent measure of the correlated activity. Population

average results are shown in Fig 2. The spectral noise correlations (collapsed along the diago-

nal) are consistent across sounds and more restricted in frequency (Fig 2B) than the corre-

sponding stimulus-driven spectral correlations (Fig 2A). This indicates that noise correlations

are not broadly diffused across recording locations and are largely independent of the stimu-

lus. Stimulus-driven correlations, by comparison, are broader and can be observed between

more distant recording locations. Similarly, temporal noise correlations exhibit a brief peak

around zero lag and lack stimulus-dependent structure (Fig 2D). The stimulus-driven tempo-

ral correlations (Fig 2C), by comparison, also have a brief peak at zero lag; however, they also

exhibit a broader and slower correlation component and are substantially more dependent on

the stimulus. For instance, a relatively broad and slow component is observed for the bird

vocalization, and a periodic component at approximately 20 Hz is observed for the rattling

snake sound.

Since the structure of the stimulus-driven correlations are highly diverse, we next quantify

the extent to which these response statistics could be used to identify sounds (Fig 3). We use a

single-trial classifier based on a Bayesian model of the correlations to determine whether the

spectral or temporal neural correlation structure could distinguish among the five sounds deliv-

ered (see Materials and Methods). Neural classifier results are shown for the penetration site

shown in Fig 1 (Fig 3A, red curve). Upper bounds on the classifier performance are also approx-

imated with a noiseless classifier (Fig 3A, blue curves) that averages the validation data across

trials, thus removing much of the trial-to-trial variability (i.e., “noise” correlations) and isolating

stimulus-driven structure (see Materials and Methods, S1 Text for derivation). For short dura-

tions (62.5 ms), the spectro-temporal classifier performance for each sound is quite variable,

although the average performance is above chance level (20%). As expected, the individual

sound (black curves) and average (red curve) classifier performance improves with the duration

of the recording. In isolation, the spectral- and temporal-only single-trial classifiers have similar,

Fig 1. Neural ensemble correlation statistics for an auditory midbrain penetration site. (A) Neural recording probe and the corresponding frequency response

areas at 8 staggered recording sites show tonotopic organization (red indicates high activity; blue indicates low activity). aMUA for the 16 recording channels for a (B)

fire and (E) water sound segment (red indicates strong response; blue indicates weak response). The spectral (C = fire; F = water) and temporal (D = fire; G = water)

neural ensemble correlation for the penetration site. Stimulus-driven spectral (H) and temporal (K) correlations of the recording ensemble show distinct differences

and unique patterns across the five sounds tested. Spectral (I) and temporal (L) noise correlations recorded during the same sound delivery sessions are substantially

less structured (diagonalized spectrally and restricted across time) and show little stimulus dependence. The total spectral and temporal ensemble correlations

(stimulus-dependent + noise) are shown for the same site and sounds in J and M, respectively. Additional examples penetration sites are provided in S2–S4 Figs.

Figure data and related code are available from http://dx.doi.org/10.6080/K03X84V3. aMUA, analog multiunit activity; SPL, sound pressure level; Freq., frequency.

https://doi.org/10.1371/journal.pbio.3000449.g001
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although slightly lower, performances. Furthermore, for both spectral and spectro-temporal

classifiers, the noiseless classifier performance (blue curve) is higher than the single-trial classi-

fier (red curve). By comparison, for temporal classifier, the single-trial and noiseless classifiers

have similar performances, indicating that the temporal classifier performance is not strongly

affected by noise correlations. This is consistent with the observation that noise correlations,

which are present in single-trial activity, are largely stimulus-independent and can limit the

Fig 2. Average stimulus-driven and noise-driven neural correlations. Summary results showing the average stimulus-driven (A = spectral, C = temporal) and noise-

driven (B = spectral; D = temporal) neural correlations across N = 13 penetration sites (N = 4 and 9, from two animals). To allow for averaging across recording sites

with different best frequencies, the spectral and temporal correlation matrices (as for A, C, and Fig 1H and 1K) are collapsed across their principal dimension (channel

offset for spectral and time lag for temporal) prior to averaging. The average noise-driven correlations are more compact, being restricted in both time and frequency,

and have less structure across sounds than the corresponding stimulus-driven correlations. Figure data and related code are available from http://dx.doi.org/10.6080/

K03X84V3.

https://doi.org/10.1371/journal.pbio.3000449.g002
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classification accuracy. As such, the noiseless classifier approximates an upper bound on the

performance for this particular classifier when noise is not present.

It is possible that tonotopic ordering of the temporal correlation matrix provides informa-

tion that contributes to the temporal classifier performance. The snake and bird chorus

sounds, e.g., both have stronger temporal correlations at high frequencies (Fig 1K), which

could provide valuable frequency-dependent information for classification. Indeed, altering

tonotopy by manipulating the frequency ordering of sounds has been shown to impair pitch

perception and vowel recognition [7,28]. To measure the contribution of purely temporal cor-

relations, we distorted the tonotopic ordering from the temporal correlation matrix by ran-

domizing the channel ordering. Doing so substantially reduces the temporal classifier

performance from 72% to 35% for the longest sound duration measured (1 s; Fig 3A). Thus,

removing the tonotopic ordering to isolate purely temporal correlations leads to a reduction in

the classifier accuracy.

Fig 3. Using neural ensemble correlation statistics to identify sounds. (A) Single-trial classification results for the penetration site shown in Fig 1. The average

single-trial classifier performance (red curve) and the performance for each individual sound (black lines) are shown as a function of the sound duration for four

classifiers. Blue curves designate upper bound on performance based on a noiseless classifier (see Materials and Methods). In all cases, classifier performance improves

with sound duration. The combined spectro-temporal classifier has the highest performance, followed by the spectral and temporal classifiers. Removing the tonotopic

ordering of recording sites for the temporal classifier for this recording location (far right) substantially reduces its performance. (B) Average performance across

N = 13 IC penetration sites (N = 4 and 9, from two animals) for each of the four classifiers shown as a function of sound duration for the single-trial (red) and noiseless

(blue) classifiers. Red and blue bands represent SD. The average performance for each individual sound and classifier is provided in S6 Fig. Figure data and related

code are available from http://dx.doi.org/10.6080/K03X84V3. IC, inferior colliculus; w/o, without.

https://doi.org/10.1371/journal.pbio.3000449.g003
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Across all penetration sites, we find that, just as with the single example, neural correlation

structure is highly informative and can be used to recognize sounds. Across all sounds and

classifiers, the average performance is above chance (red curves in Fig 3B; t test, p< 0.01,

tested at 1 s duration) and improves with increasing sound duration (Fig 3B). Furthermore, as

for the example recording site, performance is degraded substantially when tonotopic ordering

is removed (Fig 3B, far right). Similar performance improvements are observed when sounds

are analyzed individually (S6 Fig), and, although the spectral and temporal classifier perfor-

mances are similar on average (Fig 3), they can be very different for different sounds (S6 Fig).

These differences suggest that spectral and temporal correlation statistics can contribute differ-

entially and independently to sound identification and that, when combined, they can improve

classification performance

Differences in correlations statistics are not due to sound spectrum alone

One possible explanation for the stimulus-dependent neural correlations is that these statistics

may be driven by the spectral content of a sound. For instance, channels tuned to frequencies

with high power could potentially have stronger correlations. Since sound spectra can vary

extensively as a function of direction (head and pinnae filtering) and acoustical absorption

properties of the environment, the correlations would thus be influenced by factors not related

to the sound identity. On the other hand, if stimulus-driven correlations reflect other sound

cues, such as fine structure and temporal modulation cues that neurons throughout the auditory

pathway respond to [29], these statistics may allow for a more stable neural representation.

To examine the extent to which the spectrum may be driving the observed correlations, we

repeated the sound identification task using sound variants that were equalized to have a

matched power spectrum (see Materials and Methods; S7 Fig). This manipulation assures that

spectrum cues are the same across sounds and that only fine structure and temporal modula-

tion cues differ. Perceptually, these sounds are readily identified as the original (available for

listening; S6–S10 Sounds) despite the fact that their spectra are identical and that the original

and equalized spectra can deviate by as much as 60 dB (S7 Fig).

Fig 4 shows that the neural correlations for both the original sounds and spectrum-equal-

ized conditions of a single recording location are remarkably similar (Pearson correlation coef-

ficient, r = 0.92 ± 0.01 for spectral, r = 0.72 ± 0.07 for temporal; mean ± SE). Across recording

locations, the neural correlations for the original and equalized sounds have an average Pear-

son correlation coefficient of 0.95 ± 0.02 for spectral and 0.80 ± 0.02 for temporal (mean ± SE).

Overall, this suggests that the much of the neural correlation structure is driven by fine struc-

ture and modulation cues and is not solely determined by the sound spectrum.

Next, we tested whether the neural correlations are sufficiently preserved despite the spec-

trum equalization to allow neural decoding. For this paradigm, the classifier was trained using

responses to the original sounds (as for Fig 1), whereas the validation data were obtained from

either the spectrum-equalized or the original sound response (as a control). For the site of Fig

4A–4D, the accuracy of the spectral, temporal, and spectro-temporal classifiers is slightly

reduced for the equalized sounds (Fig 4F; blue when compared to the original sound, red), and

the maximum performance exceeds chance (p< 0.05, t test) and remains high (63% for spec-

tral, 63% for temporal, 71% for spectro-temporal). Furthermore, although the spectrum (rate)

classifier achieves very high accuracy approaching 94% for the original sound, accuracy drops

to chance level when the spectrum is equalized (Fig 4F, far right).

Similar results are observed for the entire set of recordings (Fig 4G and 4H). For the three

correlation-based classifiers (spectral, temporal, and spectro-temporal), residual information

remains when the spectrum is equalized. All three classifiers perform above chance for 1 s

A neural ensemble correlation code for sound category identification
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duration when the spectrum is equalized (Fig 4H; spectral = 48%, temporal = 49%, spectro-

temporal = 58%; p< 0.01, t test), and classification accuracy improves with increasing dura-

tion. In sharp contrast, although average accuracy of the spectrum classifier exceeds all three

correlation classifiers for the original sound (Fig 4G, green curve; 90.0 ± 2.0%, mean ± SE),

accuracy drops to near chance (Fig 4H, green curve; 27.0 ± 1.0%, mean ± SE) and does not

substantially improve with sound duration when the spectrum cues are removed.

Correlation statistics of natural and man-made sound categories

After establishing that neuron ensembles in IC have highly structured spatiotemporal correla-

tion statistics, we now aim to determine to what extent these correlations are inherited from

the correlations in the sounds themselves. We use a dynamic auditory model to characterize

the structure of the time-averaged and time-varying spectro-temporal correlations in an

assortment of 13 natural sound categories and then determine their potential contribution

towards sound category identification.

Average correlation statistics and diversity. We first evaluated the correlations between

modulations of different frequency-selective outputs of a cochlear model (Fig 5; see Materials

and Methods). The time-averaged spectro-temporal correlations (Fig 5B and 5F) highlight dis-

tinct acoustic differences between sounds. At zero lag, the spectro-temporal correlations reflect

the instantaneous or spectral correlations between different frequency channels (Fig 5C and

5G), while correlations within the same frequency channels at different time lags reflect the

temporal correlation structure of each sound (Fig 5D and 5H). For example, the spectral corre-

lation structure of speech is relatively broad, reflecting the strong comodulation between fre-

quency channels. This contrasts the running water excerpt, in which the correlations are

largely diagonalized, with minimal correlation between distant frequency channels. The tem-

poral correlation structure in speech exhibits a relatively slow temporal structure (64 ms half

width), which reflects the relatively slow time-varying structure of speech elements and words

[30,31]. By comparison, the water sound has a relatively fast temporal correlation structure (4

ms half width) that is indicative of substantially faster temporal fluctuations in the sound

power.

The average spectral (Fig 6A) and temporal (Fig 6B) correlations of 13 sound categories

and white noise (as a control) reflect conserved acoustic structure in each of the categories,

and, for the categories tested here, this structure is highly diverse. Certain sound categories,

particularly background sounds such as those from water (rain, running water, waves) and

wind, have relatively restricted spectral correlations (diagonalized) and relatively fast temporal

correlation structure (impulsive; correlation half width: water = 3.9 ms; wind = 3.6 ms). Such a

diagonalized and fast temporal structure reflects the fact that these sounds are relatively inde-

pendent across frequency channels and time. Note that because of the bandwidth of the over-

lapping filters in the cochleogram, white noise has similar, restricted spectral correlations

Fig 4. Neural ensemble correlation statistics for sound variants with equalized power spectrum. The spectral (A and B) and temporal (C and D) correlations of a

single IC recording site show similar structure between the original (A and C) and 1/f equalized (B and D) sounds (Pearson correlation coefficient, r = 0.92 for

spectral; r = 0.72 for temporal; averaged across five sounds). (E) Across penetration sites (N = 11 total; N = 3 and 8 from two animals), the neural correlations of the

original and spectrum-equalized variants have an average Pearson correlation coefficient of r = 0.95 ± 0.02 for spectral and r = 0.80 ± 0.02 for temporal when the

comparison is between same sounds (e.g., original fire versus 1/f fire sounds; red). Across-sound comparisons (e.g., original fire versus 1/f water sound; blue) show a

reduced correlation (r = 0.85 ± 0.02 for spectral; r = 0.57 ± 0.01 for temporal). (F) Single-trial classification results (averaged across five sounds) for the above

penetration site obtained for the original and spectrum-equalized sounds. The model is trained using the responses to the original sounds, while the validation data

are from the responses to the original (red) or the spectrum-equalized (blue) sounds (see Materials and Methods). The spectrum-equalized (1/f) condition shows

slightly lower performance for spectro-temporal, spectral, and temporal classifiers, while the spectrum (rate code) classifier is near chance. Average performance

versus sound duration across N = 11 IC penetration sites for each of the four classifiers. Classification performance is shown for the original (G) and spectrum-

equalized (H) sound responses. Figure data and related code are available from http://dx.doi.org/10.6080/K03X84V3. IC, inferior colliculus; Ori, original.

https://doi.org/10.1371/journal.pbio.3000449.g004
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rather than perfectly uncorrelated frequency channels. Other sounds such as isolated vocaliza-

tions (e.g., cat, dogs, and speech) have more varied and extensive spectral correlation that is

indicative of strong coherent fluctuations between frequency channels. Such sounds also have

relatively slow temporal correlation structure (correlation half width: speech = 64.9 ms;

dogs = 76.3 ms; cats = 117.3 ms), indicating slow dynamics associated with the production of

vocalizations.

Although the average statistics illustrate differences between categories that could facilitate

recognition, each individual sound in a category can be statistically quite different from the

average, which could limit the usefulness of such statistics for recognition. Sound categories in

which the correlation statistics exhibit little diversity from sound to sound may be easier to

identify, while sounds with large amount of diversity might be more difficult to identify. We

Fig 5. Measuring the average correlation structure of natural sounds. The procedure is illustrated for a speech and a flowing water sound. The spectro-temporal

correlations are obtained by cross-correlating the frequency-organized outputs of a cochlear model representation (A, E). The resulting spectro-temporal correlation

matrices (B, F) characterize the correlations between frequency channels at different time lags. The spectro-temporal correlations are then decomposed into purely

spectral (C, G) or temporal (D, H) correlations. Speech is substantially more correlated across frequency channels, and its temporal correlation structure is substantially

slower than for the water sound. Figure data and related code are available from http://dx.doi.org/10.6080/K03X84V3. Freq., frequency.

https://doi.org/10.1371/journal.pbio.3000449.g005
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thus developed a category diversity index (CDI) to quantify the diversity in the correlation

structure within each of the sound categories (Fig 6C). Of all sounds in our database, white

noise has the smallest diversity, which is expected given that white noise is wide-sense station-

ary. Of the natural sounds, speech has the lowest diversity (CDI = 0.12). Although this is

Fig 6. Sound-correlation statistics for the 13 sound categories and white noise. The category average (A) spectral correlation matrix and (B) temporal

correlations show unique differences among the 13 sounds examined. (C) The CDI quantifies the variability of the correlation statistics for each category. A CDI of

1 indicates that the sound category is diverse (the correlation statistics are highly variable between sounds), while 0 indicates that the category is homogenous (all

sounds have identical correlation statistics). A detailed list of sounds and sources used is provided in S1 Table. Figure data and related code are available from http://

dx.doi.org/10.6080/K03X84V3. CDI, category diversity index; Freq., frequency.

https://doi.org/10.1371/journal.pbio.3000449.g006
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unexpected, it likely reflects the fact that the sound segments used in our database consisted of

different speech excerpts from a single male speaker. More generally, there is no clear distinc-

tion or trend between different classes of sounds. For instance, the diversity indices for isolated

vocalization categories are quite varied. Bird songs have a relatively high CDI of 0.29, and

barking dogs have intermediate values (0.21). Similarly, the diversity of background sounds is

quite varied, ranging from highly diverse categories such as fire (CDI = 0.39) to less diverse

categories such as crowd noise (CDI = 0.15) and wind (CDI = 0.18). Although such trends

partly reflect biases in the selection of sounds in the database, they also likely reflect acoustic

properties that are unique to each sound category.

Short-term correlation statistics and stationarity. While the average correlation statis-

tics provide some insights of the structural differences between sound categories, many

sounds, such as vocalizations, exhibit nonstationary structure with complex temporal dynam-

ics and are not well-described by time-averaged correlation statistics. Here, we use time-vary-

ing, modified short-term correlations [32] to characterize nonstationary structure.

Computations involving time-localized and continuously varying correlations may be more

plausible than time-averaged correlations because lemniscal auditory neurons integrate sounds

over restricted integration time windows (approximately 10 ms in the midbrain to 100 ms in

cortex [19]).

The short-term correlation decomposition of a speech and a flowing water sound excerpt

illustrate extreme differences in the time-varying correlation statistics (Fig 7; A–D for speech;

E–H for water; see additional examples shown as S1–S4 Movies). Speech is highly nonstation-

ary at the timescale shown (400-ms moving window) and the correlation structure (spectro-

temporal, spectral, and temporal correlations) varies considerably from one instant in time to

the next. Such nonstationary spectro-temporal correlation structure is, in part, due to the dif-

ferences between periods of speech and silence. However, even within speech periods, the cor-

relation structure can vary and can be quite distinct for each word and differ from the average

correlation structure (Fig 7B–7D; average shown in gray boundary). These differences likely

reflect the range of articulatory mechanisms involved during speech production and the rap-

idly changing phonemes, formants, and pitch. In sharp contrast to speech, water sounds are

relatively stationary. For an example sound, the correlation statistics at each instant in time are

relatively consistent and closely resemble the time-averaged correlation (Fig 7F–7H; average

shown in gray boundary). Regardless of the time segment we examine, spectral correlations

are diagonalized, indicating that only neighboring channels have similar envelopes, while tem-

poral correlations are relatively fast, with similar fast time constants across all frequencies.

To quantify the degree of stationarity (or lack of), we developed a stationarity index (SI; see

Materials and Methods) with a value of 1 indicating perfect stationarity and a value of 0 indi-

cating that the sound is highly nonstationary. Although the results are quite varied, we note

several trends. First, except for fire sounds, environmental sounds (including running water,

waves, thunder and wind) tend to have the highest average SI (SI = 0.49 ± 0.04; mean ± SE).

This might be expected, given that such environmental sounds typically consist of mixtures of

randomly arriving sound elements (e.g., water droplets, air bubbles, etc.) and have been shown

to be perceptually well-described by average statistics [2,8]. By comparison, vocalized sounds

have a somewhat lower nonstationary index (SI = 0.28 ± 0.04; mean ± SE) at the analysis time-

scales employed. This is expected, given that vocalizations transition from periods of silence

and vocalizations at timescales of just a few Hz [31], and even within vocalization segments,

the correlation structure can vary dynamically from moment to moment (e.g., Fig 7). In the

classification analysis that follows, we aim to describe this nonstationary structure and deter-

mine to what extent ignoring nonstationary impairs sound categorization.
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Decoding neural and sound-correlation statistics to categorize sounds

Given that the neural correlation statistics are modulated by the correlation structure in sounds

and that natural sounds have highly varied correlation statistics, we next tested whether these sta-

tistics could directly contribute to sound category identification. Here, we aim to quantify the

specific contributions of spectral and temporal correlations. While both spectral and temporal

cues can contribute to a variety of perceptual phenomena, they often do so differentially. For

instance, speech recognition can be performed with low spectral resolution so long as temporal

details are preserved [33], whereas music perception requires much finer spectral resolution [34].

Thus, it is plausible that one of the two dimensions (temporal or spectral) could be more infor-

mative for specific sound categories or for the sound category identification task as a whole.

Decoding neural correlation statistics in a three-category identification task. We first

developed a three-sound–category neural recording paradigm to test whether neural correlation

Fig 7. Short-term correlation statistics and stationarity. The short-term correlation statistics are estimated by computing the spectro-temporal correlation matrix

using a moving sliding window. The procedure is shown for an excerpt of (A–D) speech and (E–H) water (additional examples in S1–S4 Movies). The sliding window

(400 ms for these examples) is varied continuously over all time points but is shown for three select time points for this example. The short-term statistics are also

shown for the spectral and temporal correlation decompositions. Note that for speech, the correlations change dynamically from moment to moment and differ from

the time-averaged correlations (gray panel), indicating nonstationary structure. By comparison, the time-varying correlations for water resemble the time-averaged

correlations (gray panel), indicating more stationarity. (I) SIs for the 13 categories and white noise. Speech has the lowest stationarity values, while white noise is the

most stationary sound. Principal components derived for the short-term spectral and temporal correlations of all natural sounds in the database are shown in S8 Fig.

Figure data and related code are available from http://dx.doi.org/10.6080/K03X84V3. Freq., frequency; SI, stationarity index.

https://doi.org/10.1371/journal.pbio.3000449.g007
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statistics in the IC can contribute to categorizing sounds. The stimulus-driven spectral and tem-

poral correlations from an example IC penetration site for sounds from three categories (fire,

water, and speech; see Materials and Methods) are shown in Fig 8A and 8C. Within a sound cat-

egory, spectral and temporal correlations are very similar across different sound exemplars,

while across sound categories, correlation matrices are diverse and show distinct structures. In

this example site (frequency response areas approximately 3–6 kHz), neural responses to water

sounds have relatively restricted spectral correlations and fast temporal correlations. Spectral

correlations are more extensive for the fire sounds, with the stronger correlations localized at

high-frequency channels, although temporal correlations are succinct. For speech sounds, spec-

tral correlations are widespread, and temporal correlations are relatively slow. Such diverse neu-

ral correlation statistics indicate that they could be used for sound categorizations.

In a three-category identification task, we applied principal component analysis (PCA) to

the correlation feature vectors (a low-dimensional representation of the neural correlations)

and fitted a naïve Bayes classifier (see Materials and Methods). After training the model with

the responses of five exemplars per sound category, we used the Bayes classifier to categorize

single-response trials obtained from the remaining exemplar (leave-one-out cross validation;

see Materials and Methods). Fig 8B and 8D show the projections of the spectral and temporal

correlations for the training data set onto the first two principal components from the same

penetration site. With two principal components, most of the response variance is explained

(95.6% for spectral and 85.9% for temporal), and the three categories are highly clustered, sug-

gesting that neural correlations for the three sound categories are distinct from each other.

The neural correlation classifier accurately categorized the sounds in the three-category

identification task. For the example recording site (Fig 8E, same site as Fig 8A–8D), all classifi-

ers (spectro-temporal, spectral, and temporal) show increasing performance with sound dura-

tion, and the categorization accuracy approached 100% when the sound is 1 s. The spectrum

(rate code) classifier also achieves high accuracy in this categorization task (94% for 1 s dura-

tion). Averaging across all penetration sites, neural classification performance improves with

increasing sound duration (Fig 8F). For 1 s sound duration, the spectro-temporal classifier is

above chance and achieves on average a 96% maximum accuracy (t test, p< 0.01), followed by

the temporal classifier (95%, t test, p< 0.01) and spectral (91%, t test, p< 0.01). The spectrum

(rate code) classifiers also achieve high performance for 1 s duration (91%, above chance, t
test, p< 0.01). These results suggest that for the chosen categories and sounds, neural correla-

tions are sufficiently stable (within category) and distinct (across categories) to enable identifi-

cation of sound categories.

Decoding sound-correlation statistics to categorize sounds. To further evaluate the role

of correlations for sound category identification, we next developed a statistical classifier

applied to the short-term correlation statistics of natural sounds (Fig 7) and evaluated the

model’s performance in a 13-category identification task. After computing the time-varying

correlations for purely spectral, purely temporal, or spectro-temporal correlations (Fig 7), we

again reduce the dimensionality of the features using PCA (S8 Fig). We then fit the low-dimen-

sional representation of the correlations using an axis-aligned Gaussian mixture model

(GMM) for each sound category (see Materials and Methods). After training, we classify test

sounds by comparing the posterior probability of the sounds under the mixture models of

each category. By limiting the short-term correlations to spectral (Fig 7C and 7G), temporal

(Fig 7D and 7H), or spectro-temporal (Fig 7B and 7F), we can measure how each of these

acoustic dimensions contributes to categorizing sounds (see Materials and Methods).

We optimized the model and classifier for each task separately using multiple temporal res-

olutions (τW = 25–566 ms; Fig 9A; optimized at 10 s duration). The optimal window resolution

for both the temporal and spectral classifiers is 141 ms, while the optimal resolution for the
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joint spectro-temporal classifier is slightly faster (100 ms). Classification performance is above

chance for all temporal resolutions tested (Fig 9A; chance performance = 7.69%; p< 0.01, t
test, Bonferroni correction), and classification performance improves with increasing sound

duration (Fig 9B). Furthermore, all three classifiers achieve similar maximum performance at

approximately 10 s (spectro-temporal = 84%, spectral = 83%, temporal = 81%; spectral versus

temporal: p = 0.60; spectral versus spectro-temporal: p = 0.79; temporal versus spectro-tempo-

ral: p = 0.42; two-sample t test). This indicates that both spectral and temporal correlations

contribute roughly equally to the sound identification task for the full sound duration. How-

ever, the spectral classifier performance increases at a faster rate than the temporal classifier

(reaching 90% of maximum in 1.7 versus 3.0 s; Fig 9B), indicating that evidence about the

sound category may be accumulated more efficiently using spectral correlations. The joint

spectro-temporal classifier improves at an even faster rate (reaching 90% of its maximum in

1.2 s). Finally, ignoring the nonstationary structure of the spectro-temporal correlation by

averaging the statistics over time reduced the sound category identification performance by

approximately 25% (Fig 9C). Thus, the time-varying statistical structure of the sounds can con-

tribute to more accurate sound categorization.

As with the neural correlations, we find distinct differences between the performance of the

spectral and temporal classifiers for the individual sound categories (Fig 9D and 9E). Certain

sounds such as waves perform substantially better for the spectral classifier (spectral = 100%

versus temporal = 33%). Other sounds, such as wind, exhibit higher performance with the

temporal classifier (spectral = 47% versus temporal = 80%). Thus, although on average, the

performance of the spectral and temporal classifiers is comparable, performance of certain

sound categories appears to be dominated by one of the two sets of features (Fig 9E).

As a control, we also compared the performance of the correlation-based classifier against

the performance for a classification strategy utilizing the sound spectrum (Materials and Meth-

ods). Although useful for discriminating sounds, the sound spectrum provides little informa-

tion about the sound identity in most instances [2] and is strongly affected by the sound

source direction [6] and physical characteristics of the room or acoustic environment (e.g.,

size, shape, and boundary materials) [35]. Thus, it is possible that the sound-correlation struc-

ture is a more invariant cue for the categorization task. Unlike the correlation-based classifiers,

performance of the spectrum-based classifier does not depend on the temporal resolution of

the analysis (Fig 9A), indicating that it does not benefit from nonstationary time-dependent

information. Furthermore, the overall performance of the spectrum classifier is lower than the

either of the three correlation-based classifiers (Fig 9B). This supports the hypothesis that the

stimulus correlation structure is a more informative and invariant cue for the categorization

task.

Finally, we evaluated the performance of the classifier in a two-alternative forced choice

task in which we required the classifier to distinguish vocalization and background sound cate-

gories. The model performance is consistently high, with accuracy rates for the spectro-tempo-

ral classifier approaching 90% for background sounds and nearly 100% for vocalizations (Fig

10). Interestingly, the performance for identifying vocalizations improves with increasing

Fig 8. Using neural ensemble correlation statistics to categorize sounds in a three-category identification task. The sound categories delivered included fire, water,

and speech, with six exemplars per category. As shown for a representative IC penetration site, spectral (A) and temporal (C) neural correlations (100 observations × 6

exemplars × 3 categories; see Materials and Methods) show distinct structures across sound categories but are similar within a category. Projections of the neural

correlations onto the first two principal components show that spectral (B) and temporal (D) correlation form distinct clusters for each of the three sound categories.

(E) Single-response trial classification results for this penetration site. In all cases, classifier performance improves with sound duration approaching near 100% for the

full sound duration (1 sec). (F) Average performance across IC penetration sites (N = 11; N = 3 and 8 from two animals). The spectro-temporal classifier has the highest

performance, with an average performance of 96% correct classification for 1 s duration. Figure data and related code are available from http://dx.doi.org/10.6080/

K03X84V3. IC, inferior colliculus; PC, principal component.

https://doi.org/10.1371/journal.pbio.3000449.g008
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Fig 9. Using short-term correlation statistics to categorize sounds in a 13-category identification task. A cross-validated Bayesian classifier is applied to the sound

short-term correlation statistics (spectral, temporal, and spectro-temporal) to identify the category of each of the test sounds (see Materials and Methods). (A) Both the

spectral and temporal correlation classifiers had an optimal temporal resolution of 144 ms (i.e., short-term analysis window size). The optimal resolution of the spectro-

temporal correlation classifier, by comparison, is slightly higher (100 ms). For reference, the performance of a spectrum-based classifier is largely independent of the

sound resolution used. (B) For all three correlation classifiers and the spectrum classifier control, the performance improves with the sound duration. The spectro-

temporal correlation classifier performance improved with sound duration at the fastest rate, while temporal correlations had the slowest rate of improvement. The

correlation-based classifiers outperformed the spectrum-based classifier performance in all instances. (C) The short-term spectro-temporal classifier outperforms the
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sound duration, while the performance for background sounds remains constant for all three

classifiers. Since background sounds are more stationary, their statistics can be assessed

quickly in this task by the classifier. Vocalizations, on the other hand, are nonstationary over

longer timescales and have epochs of silence that may require the classifier to accumulate evi-

dence over longer time. Additionally, the classification accuracy of background sounds is com-

parable (approximately 90%) for spectral and temporal features. By comparison, vocalizations

are more accurately classified with spectral compared to temporal correlations (p< 0.01, t test

with Bonferroni correction), and the spectral correlations alone appear to account for most of

the spectro-temporal classifier performance.

Discussion

Here, we have demonstrated that natural sounds can have highly structured spectro-temporal

correlations and can induce highly structured correlations between neural ensembles in the

auditory midbrain. Unlike noise correlations, which are largely unstructured, stimulus-driven

neural correlations in both time and frequency (or space) are highly informative and can con-

vey critical information about the sound or category identity, with evidence accumulation

times on the order of a few seconds.

Using sound-driven correlation statistics for recognition

Previous work has emphasized the distinct roles of noise-driven and stimulus-driven correla-

tions in limiting the information capacity of neural ensembles. Noise correlations, which are

the result of coordinated firing not related to the stimulus structure, are thought to limit the

encoding of sensory information [20,21]. At the same time, theories of efficient coding suggest

that neural ensembles should minimize the amount of stimulus-driven correlated firing to

limit redundancies in the neural code [11,12,19]. Here, we find that while stimulus-driven cor-

relations in the IC are highly structured, noise correlations are largely unstructured. Noise

time-averaged classifier, indicating that nonstationary structure improves performance. (D) Confusion matrices for the three correlation-based classifiers for 10 s sound

durations. (E) Performance for the three classifiers shown as a function of sound category (measured at the optimal resolution and at 10 s sound duration). Figure data

and related code are available from http://dx.doi.org/10.6080/K03X84V3.

https://doi.org/10.1371/journal.pbio.3000449.g009

Fig 10. Model classification performance in a two-category identification task. The classification task requires that the model distinguish vocalization from

background sound categories. For all three classifiers, the overall performance is consistently high and improved with increasing sound duration. Vocalization

classification accuracy is highest for the spectro-temporal classifier (C) and shows a nearly identical trend for the spectral classifier (A). The performance of the

temporal classifier, however, is approximately 20% lower. For background sounds, classification accuracy does not improve over time and is consistently high

(approximately 90%) for all three classifiers. Figure data and related code are available from http://dx.doi.org/10.6080/K03X84V3.

https://doi.org/10.1371/journal.pbio.3000449.g010
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correlations are localized primarily to nearby recording channels and brief time epochs, and

they do not vary systematically with the sound. These findings thus provide an alternative and,

perhaps, underappreciated viewpoint: correlations in neuron ensembles can convey critical

information about the stimulus ensemble itself. Rather than a redundant structure in the fea-

ture-based representation that should be removed [12], sound correlation can be viewed as

high-level acoustic features or cues that are highly informative about particular sound or cate-

gory and that, as demonstrated, drive correlated activity in midlevel auditory structures. Thus,

rather than simply discarding correlated neural activity, downstream cortical circuits could

transform and utilize such signals for the purpose of recognition.

Indeed, recent studies on sound textures confirm that correlation structure is a critical cue

required to create realistic impressions of sounds [2], and there is growing evidence from neu-

ral recordings that neural correlations contribute to signal coding and decision-making [36–

38]. Our findings extend these views by demonstrating that stimulus-driven correlations

between neural ensembles in a midlevel auditory structure can directly vary with and contain

information about sound identity and that sound categories have unique correlation statistics

that may promote or enhance sound categorization. The measured neural correlations are

only mildly affected by manipulations in the sound spectrum (Fig 4), which often arise

through head-related filtering [6] and room characteristics [35]. Future studies will need to

parse out the possible limits to such a code, given natural spectral variability in the environ-

ment and the fact that temporal structure of sounds can be distorted by reverberation [39].

Biological plausibility

While our results demonstrate that neural correlations in the IC are highly structured, how

and whether such information is used by higher brain regions needs further exploration. One

possible mechanism for computing correlations between neurons has been previously consid-

ered for pitch detection: the frequency-coincidence detection network [23,24]. The key pro-

posal of this network is that neurons encoding different frequencies project onto the same

downstream neurons that then detect coincident firing. Given that anatomical connections

within and beyond the IC can span a broad range of frequencies, the central auditory system

anatomy allows for such a possibility. Many projection neurons in the IC have long-range col-

laterals that integrate across different frequencies and send their outputs to the auditory thala-

mus [40]. Thalamocortical and intracortical connections, although frequency-specific, can also

extend across several octaves [41,42]. This pattern of connectivity has the capacity to integrate

information across frequency channels and may subserve a coincidence-like operation

between inputs of different frequency. Such coincidence detection could allow downstream

neurons to compute spectral correlations not just for pitch detection but for sound categoriza-

tion, as well.

Contribution of spectral and temporal correlations

A key question brought up by the model and neural data is the extent to which spectral and

temporal correlations individually contribute to sound recognition. Although some differences

could be observed for specific sounds or categories, both dimensions appear to contribute

roughly equally. Performance of the model classifier is only marginally better when the two

dimensions are combined, and the optimal neural classifier used roughly equal proportions of

spectral and temporal correlations (S9 Fig). Thus, both dimensions contain sound-related

information that can contribute to recognition.

Insofar as neural mechanisms for computing the sound-correlation statistics go, spectral

models have broader biological support. Spectral correlations could be computed using
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coincidence detection, in which two neurons tuned to distinct frequencies converge multipli-

catively on downstream neurons. Such spectral convergence is widespread in auditory system

anatomy, and the required multiplicative interactions have been previously described [43,44].

On the other hand, computing temporal correlations requires coincidence detection at differ-

ent times, which can be achieved by delay lines or feedback loops. Such mechanisms, however,

are more speculative and lack strong anatomical or physiologic evidence.

Although some of the neural correlation structure in the IC was accounted for by the

model correlation (S5 Fig), neural correlations tend to be more complex in the IC. For one,

correlated firing in IC is shaped by its anatomy because correlated firing is reduced with

increasing distance across frequency lamina but not within a lamina [19,45]. Furthermore,

in contrast to peripheral auditory filters, which are selective for frequency content, IC neu-

rons are also selective for temporal and spectral modulations that are critical elements of all

natural sounds. This second-order decomposition of a sound into modulation bands further

constrains the correlated firing between neurons [19,45]. As such, correlated firing in IC

reflects high-level sound correlations that are not strictly selective for frequency content but

also for modulation components in natural sounds. Such high-level correlations have been

shown to be critical perceptually [2] and, as shown here, have the potential to contribute

towards sound recognition.

Resolution and integration timescales for feature analysis and inference

Sound categorization performance for both the neural data and model improved over the

course of 1–2 s and depended strongly on sound duration, similar to human listeners [46,47].

This brings up the question of whether the previously observed perceptual integration times in

human observers should be attributed to a slow central neural integrator. Rather than comput-

ing average statistics about a sound over long timescales, it is plausible that sound statistics

themselves are integrated and estimated by the auditory system at relatively short timescales

analogous to the optimal integration window resolution of our model (approximately 150 ms).

The long timescales of a few seconds required to make perceptual decisions may instead reflect

a statistical evidence accumulation process, as previously proposed for cortical areas involved

in decision-making [48].

In modeling correlations in natural sounds, we find that the times required to accumu-

late statistical information about sound categories are roughly an order of magnitude

larger than the optimal temporal window for calculating the correlations (approximately

100–150 ms). This is consistent with a temporal-resolution–integration paradox previously

observed for neural discrimination of sounds [49]. Here, the correlations are estimated

using an optimal time window of approximately 100 ms while evidence accumulates over

these consecutive windows, achieving 90% of the maximum performance in the time

course of a few seconds (evidence accumulation time). From a neural coding perspective,

the temporal resolution can be viewed as the time window over which neurons compute

the correlations, while the evidence accumulation time represents the time over which a

downstream neural population reads the correlations to accumulate evidence. Our esti-

mated timescales are substantially longer than those previously reported for neural dis-

crimination of sounds in auditory cortex (approximately 10 ms and approximately 500

ms), which likely reflects differences in the acoustic features and task [49,50]. The time-

scales for auditory cortex in these previous studies were optimized for discrimination of

pairs of sounds based on spike-train distance measures at a single-neuron level. By com-

parison, here we use high-order correlation statistics of neuron ensembles as the primary

feature for categorizing many more sounds.
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Conclusion

The results show that the correlation structure of natural sounds shows reliable differences

between categories. Surprisingly, this acoustic structure is mirrored in the correlation of IC

neural ensembles, and such neural correlations can be decoded to accurate recognize individ-

ual sounds or categories. The combined results suggest that correlated firing in the auditory

system may play an important role not just in pitch perception or localization but in sound

recognition more generally.

Materials and methods

Ethics statement

All animals in the study were handled according to approved procedures by the University of

Connecticut Animal Care and Use Committee (protocol A18-056) and in accordance with

National Institutes of Health and the American Veterinary Medical Association guidelines.

Animal experimental procedures

Multichannel neural recordings are performed in the auditory midbrain (IC) of unanesthe-

tized female Dutch Belted rabbits (N = 4; 1.5–2.5 kg). Rabbits are chosen for these experiments

because their hearing range is comparable to that of humans and they sit still for extended

periods of time, which enables us to record from different brain locations daily over a period

of several months.

Surgery

All surgical procedures are performed using aseptic techniques. Surgical procedures are

carried out in two phases with a recovery and acclimation period between procedures. For

both procedures, rabbits are initially sedated with acepromazine and a surgical state of

anesthesia achieved via delivery of isoflurane (1%–3%) and oxygen (approximately 1 L/

min). In the first procedure, the skin and muscle overlying the dorsal surface of the skull

are retracted, exposing the sagittal suture between bregma and posterior to lambda. Stain-

less steel screws (0–80) and dental acrylic are used to affix a brass restraint bar, oriented

rostrocaudally and to the left of the sagittal suture. Dental acrylic is then used to form a

dam on the exposed skull on the right hemisphere between lambda and bregma. Next, cus-

tom-fitted ear molds are fabricated for each ear. A small cotton ball is inserted to block the

external auditory meatus and a medical-grade polyelastomeric impression compound

poured into the ear canal. After approximately 5 minutes, the hardened impression com-

pound is removed. The ear impression mold is subsequently used to build a cast from

which custom ear molds are fabricated.

Following the first surgery and a 5-day recovery period, the animal is acclimated over a

period of 1–2 weeks to sit still with the head restrained. During this period, the animal is also

gradually exposed to sounds through the custom-fitted ear molds. Once the animal is capable

of sitting still during sound delivery, the second surgical procedure is performed. The animal

is again anesthetized as described above, and an opening (approximately 4 × 4 mm) is made

on the right hemisphere within the dental acrylic dam and centered approximately 10–12 mm

posterior to bregma. At this point, the exposed brain area is sterilized with chlorhexidine solu-

tion, and medical-grade polyelastomeric compound is poured into the acrylic dam to seal the

exposed region.
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Sound delivery and calibration

Sounds are delivered to both ears via dynamic speakers (Beyer Dynamic DT 770 drivers; beyer-

dynamic, Heilbronn, Germany) in a custom housing and custom-fitted ear molds obtained as

described above. The molds are fitted with a sound delivery tube (2.75 mm inner diameter) that

is connected to the dynamic speaker housing, forming a closed audio system. Calibration con-

sisted of delivering a 10-s–long chirp signal at 98 kHz sampling rate via TDT RX6 (Tucker-

Davis Technologies, Alachua, FL, USA) and measuring the audio signal with a B&K calibration

microphone (Brüel and Kjær, Nærum, Denmark) and probe tube placed approximately 5 mm

from the tympanum. The measured signal is used to derive the sound-system impulse response

(via Wiener filter approach; combined speaker driver and tube), and an inverse filter finite

impulse response is then derived. Subsequently, all sounds delivered to the animal are passed

via the inverse filter, which is implemented in real time using a TDT RX6 (Tucker-Davis Tech-

nologies) at 98 kHz sampling rate. The sound delivery system has a flat transfer function and

linear phase between 0.1–24 kHz (flat to within approximately ±3 dB).

At each penetration site, we first delivered a pseudorandom sequence of tone pips (50 ms

duration, 5 ms cosine-squared ramp, 300 ms intertone interval) covering multiple frequencies

(0.1–16 kHz) and sound pressure levels (SPLs) (5–75 dB SPLs). These tone-pip sequences are

used to measure frequency response areas, which allows us to estimate the frequency selectivity

of each recording site (different channels).

Sound paradigm 1. Next, across N = 13 recording locations (N = 4 and 9 across two ani-

mals), we delivered a sequence of five environmental noises with distinct structural properties

to determine whether the ensemble activity of the auditory midbrain reflected frequency-

dependent correlation statistics present in the sounds and to determine whether such neural

population statistics can be used identify the individual sounds. Each sound is 3 s duration and

is delivered in a block-randomized fashion with a 100-ms interstimulus interval between

sounds. To avoid broadband transients, the sounds have b-spline onset and offset ramps (20

ms rise–decay time) and are delivered at an RMS SPL of 65 dB RMS SPL; 87 dB peak SPL over

all sounds. Each recording had 5 sound conditions in which each sound had at least 18 trials

(range 18–39), with a 3-s duration for each trial. The sounds included crackling fire, bird cho-

rus, outdoor crowd, running water, and a rattling snake sound. These sounds each contain

unique time-frequency correlation statistics, allowing us to test and quantify whether such sta-

tistics are potentially encoded by the auditory midbrain and ultimately represented in the neu-

ral ensemble activity. For instance, the water sounds have minimal across-frequency channel

correlation because the air bubbles and droplets responsible for this sound are relatively nar-

row-band and occur randomly in time, thus activating frequency channels independently [8].

Sounds such as crackling fire, by comparison, have strong frequency-dependent correlations

because of crackling embers, which produced brief impulsive “pops” that span multiple fre-

quency channels simultaneously. The temporal correlations of these five sounds are also quite

varied. For instance, the water sound has a very brief impulsive correlation structure lasting

just a few milliseconds, whereas the bird chorus and the outdoor crowd, which contains multi-

speaker speech babble, have a broader and slower temporal correlation function. The rattling

snake sound, by comparison, had strong periodic correlations at approximately 20 Hz.

Sound paradigm 2. In N = 11 recording locations (N = 3 and 8 across two animals), we

also delivered the above sounds (paradigm 1) using variants with matched power spectrum.

This was done by synthetically equalizing the sounds so that all sounds have 1/f power spec-

trum. This manipulation removes all spectral cues but preserves many of the fine structure and

high-order modulation cues in the original sounds. Furthermore, the 1/f spectrum is chosen as

opposed to a flat spectrum because it provides roughly uniform activation across the tonotopic
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axis (equal power per octave). The paradigm allows us to dissociate and examine how spectral

and high-level correlation cues contribute to the neural population activity. Although all five

sounds have identical power spectra, they can still be easily identified. This seems to indicate

that consistent with prior findings [2], the power spectrum is not critical for sound

identification.

To generate the 1/f equalized sounds, we first estimated the sound magnitude spectrum of

each sound, S(f), using a Welch average periodogram (b-spline window; frequency resolu-

tion = 10 Hz; 40 dB sidelobe error). The spectrum of each sound was then used to generate a

zero-phase inversion filter with transfer function of the form

Hðf Þ ¼ C � Sðf Þ� 1f � 1;

where the C is a gain normalization constant required to assure that the sounds have identical

SPLs (65 dB RMS; matched to the SPL for paradigm 1). Each sound was next filtered with H(f),
thus producing a synthetic variant with identical 1/f spectrum (see S7 Fig). To minimize the

effects of adaptation, the equalized sounds were interleaved with the original sounds in para-

digm 1 (as controls) and delivered in block-randomized fashion with a 100-ms interstimulus

interval between sounds. Sounds were delivered for N = 20 trials in all recording sites but one,

which had N = 14 trials.

Sound paradigm 3. Finally, in N = 11 recording locations (across two animals, N = 3 and

8), we tested whether neural ensemble statistics in the IC can contribute to the identification of

acoustic categories. We delivered a sequence of sounds selected from three acoustic categories

(fire, water, and speech), each containing multiple exemplars (6 exemplars per category; 18

sounds total; see sound spectrum in S7 Fig). These sounds represent a subset of the sounds

used subsequently for the neural model classifier (Materials and Methods, see below; S2

Table). Sounds were delivered at 65 dB SPL in block-randomized order. A minimum of 10

sound trials (maximum = 20) were delivered at each recording location.

Electrophysiology

Multichannel acute neural recording silicon probes (Neuronexus 10 mm probe; 16 linear

spaced recording sites with 150 μm separation and 177 μm2 contact area or 64-channel poly-

trodes with 60 μm separation and 177 μm2 contact area [used for paradigms 2 and 3]; site

impedance approximately 1–3 MO) are used to record neural activity from the IC of unanes-

thetized rabbits. In the case of the 64-channel polytrodes, we selected a subset of equally spaced

16 channels for analysis in order to ensure that the data format and sampling of the IC were

comparable to that of the 16-channel linear probes. We recorded neural data from N = 33 pen-

etration sites in 4 rabbits. Viable recording sites were selected by requiring that the neural

activity had stable response magnitudes for a minimum of 15 trials for paradigm 1 and 10 trials

for paradigms 2 and 3. These requirements were imposed to assure that the correlation-based

classifier had a sufficient number of trials that could be used for model generation and valida-

tion step (described subsequently). In addition, we required that the recording locations had a

well-defined tonotopic gradient and were consistent with the central nucleus of the IC [51–

53]. This selection resulted in N = 13 penetration sites for paradigm 1 and N = 11 sites for para-

digms 2 and 3. Since there are 16 recording channels for each penetration site, data are

obtained from a total of 16 × 24 = 384 recording sites within the IC.

Prior to recording, the polyelastomeric compound is removed from the craniotomy, and

lidocaine is applied topically to the exposed cortical tissue. The area is then flushed with sterile

saline and the acute recording probe inserted at approximately 12–13 mm posterior to bregma.

If necessary, a sterile hypodermic needle is used to nick the dura to allow the electrode to
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penetrate the neural tissue. An LS6000 microdrive (Burleigh EXFO, Quebec, Quebec, Canada)

is used to insert the neural probe to a depth of approximately 7.5–9.5 mm relative to the corti-

cal surface, where, at this penetration depth, most or all of the recording electrodes are situated

in the IC and have clear responses to brief bursts of broadband noise or tones. Neural activity

is acquired continuously at sampling rate of 12 kHz using a PZ2 preamplifier and RZ2 real

time processor (Tucker-Davis Technologies).

The sampled extracellularly recorded neural signals are analyzed offline using an analog

representation of multiunit activity (analog multiunit activity [aMUA]) [54]. We use this mul-

tiunit representation for several reasons. First, neighboring neurons in the IC have similar

spectro-temporal preferences and strong correlated firing, restricted to a relatively small neigh-

borhood of approximately 100 μm, and similar best frequencies [19,45]. The electrodes used in

the study have identical electrical properties (impedance, contact area) and a similar recording

radius (estimated approximately 100 μm) to those we have used previously [45] and thus iso-

late neural activity on each channel from mostly independent neural ensembles. Second,

unlike single-unit activity, the local aMUA signals can be obtained from all 16 recording sites

simultaneously, which allows us to study how local populations in the IC represent acoustic

information along the tonotopic axis. We did not use single-unit analysis for this study because

although we are able to spike-sort the data and identify single neurons, on average, we are only

able to isolate at most approximately 3 neurons per recording session across the entire elec-

trode array [3,19]. In addition, although we considered using more conventional measures of

multiunit activity obtained by thresholding, past work suggests that aMUA signals capture the

structure of population activity with substantially less noise [54]. Here, when we compare the

correlations between electrodes measured with thresholded MUA (thresholding criteria, 2×
SDs above the noise floor) and aMUA, we find that the correlation patterns are very similar

but that the correlations with thresholded MUA are weaker and noisier (S10 Fig). In this

experimental setting, aMUA signals are thus better suited than single-unit or thresholded

MUA to quantify correlations across a large tonotopic spans and to study classification perfor-

mance with large populations.

From each of the recorded neural traces, aMUA is measured by first extracting the envelope

of the recorded voltage signal within the prominent frequency band occupied by action poten-

tials spanning frequencies 325 and 3,000 Hz (b-spline filter, 125 Hz transition width, 60 dB

attenuation) [55]. The bandpass-filtered voltage signal is next full-wave rectified and low-

pass–filtered with a cutoff frequency of 475 Hz (b-spline filter, transition width of 125 Hz, and

stopband attenuation of 60 dB) because neurons in the auditory midbrain typically do not

phase-lock to envelopes beyond approximately 500 Hz [53]. The resulting envelope signal is

then downsampled to 2 kHz. Such neural envelope signals capture the synchronized activity

and the changing dynamics of the local neural population with each recording array in both

time and frequency domains [54]. For each recording channel, an analog raster is generated

that consists of the aMUA response over time and across trials.

Neural ensemble stimulus-driven correlation

For each recording penetration, we first estimate the stimulus-driven correlations of the neural

ensemble across the 16 recording channels directly from the measured aMUA signals. The

procedure consists of a modified windowed short-term correlation [32] analysis between

recording sites, in which the correlations are “shuffled” across response trials [19,56]. The win-

dowed correlation approach allows us to localize the correlation function in time, whereas the

shuffling procedure is used to remove neural variability or noise from the correlation measure-

ments [56]. Thus, the proposed shuffled windowed correlation allows us to isolate stimulus-
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driven correlation between recording sites independently of noise-driven correlations. The

windowed shuffled cross-correlation between the k-th and l-th recording site is computed as

the mean pairwise correlations between different trials of the aMUA envelope:

Fstim
kl ðt; tÞ ¼ F

shuffled
kl ðt; tÞ ¼

1

NðN � 1Þ

XN

m¼1

X

n6¼m

ϕkl;mnðt; tÞ

where N is the number of trials in each recording channel (k and l). ϕkl;mnðt; tÞ is the windowed

cross-correlation between the m-th and n-th response trials between channels, respectively (k
versus l), where t is time and τ is the cross-correlation delay:

ϕkl;mnðt; tÞ ¼
Z þ1

� 1

rk;mðgÞrl;nðg � tÞW
2ðt � gÞdg;

where γ is the time integration variable. Here, rk,m(t) is the m-th response trial (mean removed)

from channel k and rl,n(t) is the n-th response trial (mean removed) from channel l. W(γ) is

the unit amplitude square window centered about γ = 0 of duration T s (range = 62.5–1,000

ms), which is used to localize the measured signal correlations around the vicinity of the desig-

nated time point (t). Note that in this formulation, correlations between recording channels (k
and l) are computed for different response trials (m and n). The above is implemented using a

fast-shuffled correlation algorithm according to [56]

Fstim
kl ðt; tÞ ¼

1

NðN � 1Þ
N2 � FPSTHkl

ðt; tÞ �
XN

m¼1

ϕkl;mmðt; tÞ

 !

where FPSTHkl
t; tð Þ is the windowed cross-correlation function for the poststimulus time histo-

grams (PSTHs) between channel k and l:

FPSTHkl
ðt; tÞ ¼

Z þ1

� 1

PSTHkðgÞPSTHlðg � tÞW
2ðt � gÞdg;

where the PSTHs for the k-th and l-th channels are

PSTHkðtÞ ¼
1

N

XN

m¼1

rk;mðtÞ

PSTHlðtÞ ¼
1

N

XN

m¼1

rl;mðtÞ:

As previously shown [56], this fast-shuffled correlation algorithm resulted in a marked

reduction in the computational time (N + 1 correlations compared with N(N − 1)) for each

pair of recording channels. This speedup in the computational time is necessary to bootstrap

the data during the model generation and validation applied subsequently (see “Noiseless neu-

ral classifier” and “Single-trial neural classifier”).

To remove the influence of the response power on the total correlation measurements, the

short-term correlation is normalized as a correlation coefficient. To do so, we note that the

neural response correlations are measured using a short-term analysis in which the response

statistics of each analysis segment vary dynamically over time. Normalization thus requires

that we measured the average localized short-term response variance at each time and delay
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sample according to

s2

kðtÞ ¼ E
h
var½rk;mðtÞWðt � gÞ�

i
;

s2

l ðt; tÞ ¼ E
h
var½rl;nðt � tÞWðt � gÞ�

i
;

where the variance is estimated across time and the expectation is taken by averaging over tri-

als. The normalized stimulus-driven correlation is then obtained as

cstimkl ðt; tÞ ¼
Fstim

kl ðt; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
kðtÞ � s2

l ðt; tÞ
p :

Like a correlation coefficient, this population ensemble correlation function is bounded

between −1 and 1. Normally, it is expected that the normalized autocorrelation at zero lag

(cstimkl t; 0ð Þ) for a single channel is 1. However, because the total response variances (s2
k tð Þ and

s2
k t; tð ÞÞ for neural responses contain both a signal and neural noise (variability) component,

the stimulus-driven correlation at zero lag for such a scenario is always <1 (e.g., diagonal

terms in Fig 1H).

Neural ensemble noise correlation

To account for the fact that trial-to-trial variability of the neural activity can potentially affect

neural classification performance, we also measured the “noise” correlations across the ensem-

ble. Noise correlations may arise through any stimulus-independent network activity (modula-

tory, state dependent, etc.) that is unrelated to the physical properties of the acoustic stimulus

and are typically estimated by correlating firing rate residuals across repeated presentations of

the stimulus [57]. However, because the IC responses can have extremely high precision [19]

(milli- down to submillisecond), we developed a modified shuffled correlation procedure in

which the noise correlations are obtained by subtracting the shuffled from the unshuffled cor-

relogram. The procedure allows us to measure noise correlations at millisecond and submilli-

second timescales relevant to IC. Using the notation above, we first compute the unshuffled

correlation obtained by correlating single-trial activity between the k-th and l-th recording

channels:

F
unshuffled
kl ðt; tÞ ¼

1

N

XN

m¼1

ϕkl;mmðt; tÞ:

The ensemble noise correlation is then obtained as (see S1 Text for proof)

Fnoise
kl ðt; tÞ ¼ F

unshuffled
kl ðt; tÞ � Fshuffled

kl ðt; tÞ:

As for the stimulus-driven correlations, noise correlations are normalized by the total response

power

cnoisekl ðt; tÞ ¼
Fnoise

kl ðt; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
kðtÞ � s2

l ðt; tÞ
p

and are thus strictly bounded between −1 and 1. However, as for the stimulus-driven correla-

tions, the noise autocorrelations at zero lag ðcnoisekl t; 0ð ÞÞ are always<1. However, it is worth not-

ing that the total correlation obtained by combining the stimulus and noise and correlations at

zero lag are ctotalkl t; 0ð Þ ¼ cstimkl t; 0ð Þ þ cnoisekl t; 0ð Þ ¼ 1. This effect is observed in Fig 1H–1J and all
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subsequent neural data shown, in which it is noted that the diagonals of the noise and stimulus-

driven correlations at zero lag are less than 1 (H and I); however, the combined total correlation

is 1 along the diagonal (J).

Noiseless neural classifier

We first developed a noiseless neural classifier in order to assess whether spatial, temporal,

and/or spatiotemporal correlations of the neural ensemble in IC could be used to recognize/

categorize sounds. Although technically, the correlations are measured between the neural

activity across spatially separated electrode channels (k versus l), the electrode channels with

our recording paradigm are frequency-ordered (Fig 1A). The neural ensemble activity thus

reflects spectral correlations between frequency channels, and, in what follows, we describe

spatial correlations between recording channels as “spectral correlations.”

The noiseless classifier is implemented using shuffled correlograms of the neural data for

both the model generation and the validation steps. The shuffled-correlogram metric removes

the noise correlations in the neural data, revealing strictly the stimulus-driven structure [56].

As such, this classifier approximates an upper bound of the classification performance for this

specific classification strategy because trial-to-trial variability is not present in the metric. Sub-

sequently, a single-trial classifier is used to assess the real-world performance for this classifica-

tion strategy.

The noiseless neural classifier is implemented using a cross-validation approach in which

half of the data is used for model generation and the second half for model validation. For each

recording site, we chose the first half of the aMUA raster for a given sound (1.5 s) as the model

and the second half as the validation data. The first and second halves of the data are then

swapped, and the procedure is repeated using the first half of the data for validation and the

second half for model generation.

Here, we use a naïve Bayes classifier and identify or categorize sounds using a low-dimen-

sional representation of the correlations as features. Classification is carried iteratively for dif-

ferent data segments of the validation data half using a Bayesian approach applied to a low-

dimensional representation of the correlation feature vectors, c. The correlation feature vectors

c used for the model are obtained iteratively by measuring aMUA windowed shuffled correla-

tions about randomly selected time points in the modeling data using 500-ms data windows.

We then reduce the dimensionality of the correlations by applying principal component analy-

sis to the measured correlation feature vectors c obtained from the modeling data half. We

then fit a naïve Bayes classifier and describe the distribution of principal component scores for

each sound or sound category using an axis-aligned multivariate Gaussian distribution (the

likelihood). Finally, we select and use the highest-ranked principal components that maximize

the classifier performance.

Given an observed response correlation from the validation set, we then use this Bayesian

model to evaluate the posterior probability of each sound or sound category. The features fed

to the classifier consist of the principal component scores (projections of the feature vectors c
on the highest-ranked model principal components) from the sound’s shuffled spectral, tem-

poral, or spectro-temporal correlation. Since we are interested in how categorization perfor-

mance changes with the sound duration (varied from 62.5 ms to 1,000 ms in ½ octave steps),

we consider feature vectors x = [x1, x2, . . ., xN], consisting of principal component scores

obtained from windowed shuffled correlations about 100 randomly selected time samples. We

then evaluate the posterior probability of each neural response under each of the different dis-

tributions (one for each sound or category). The most probable case is chosen according to the
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maximum a posteriori (MAP) decision rule:

S ¼ argmaxm PðmjxÞ;

where S is the selected sound or category that maximizes the posteriori and m varies across all

possible sounds or categories (m = 1 . . . 5 for paradigms 1 and 2, m = 1 . . . 3 for paradigm 3).

In practice, we find the MAP sound or category by using the Bayes rule and maximizing the

log-posterior, L. We assume that the sounds or categories are equiprobable a priori and that

the features at each time sample are conditionally independent so that

L ¼ logðPðmjxÞÞ ¼ log

&

PðmÞ
YN

n¼1

PðxnjmÞ
PðxnÞ

’

/
XN

n¼1

log PðxnjmÞ
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To evaluate the contribution of temporal and spectral correlations for neural classification

performance, we implement the neural classifier either using purely temporal, purely spectral,

or joint spectro-temporal correlations. The purely spectral classifier only considers correla-

tions at zero lag, cspec(t) = ckl(t, 0), as the primary features (no time lag between different fre-

quency channels). Note that ckl(t, 0) contains strictly frequency-dependent information

because the recorded neural channels are tonotopically ordered and delays are removed. For

the temporal classifier, we consider the correlations along the diagonal (k = l), ctemp(t) = ckk(t,
τ), for delays extending between τ = −100 to 100 ms as the primary features. Next, we com-

bined the spectral and temporal correlations and implemented a joint spectro-temporal classi-

fier by model averaging:

L ¼ logðPSpec� tempðmjxÞÞ ¼ a � logðPspecðmjxÞÞ þ ð1 � aÞ � logðPtempðmjxÞÞ;

where 0� a� 1 is a mixing coefficient that allows us to adjust the relative contribution of

spectral and temporal correlations to the classifier. The value of alpha was optimized so as to

maximize the log-likelihood for the spectro-temporal classifier.

We also implement a purely temporal correlation classifier that lacks frequency organiza-

tion. Note that for the temporal correlation classifier described above, the features consist of

the envelope autocorrelations taken across all possible frequency channels (ckk(t, τ)) and can

convey tonotopic information through the identity of the recording channel k. In order to iso-

late purely temporal correlation cues, we remove the tonotopic information from the temporal

correlation signal by randomly reordering the frequency channels of the validation data while

maintaining the ordering in the model data during the classification step. This channel ran-

domization assures that frequency-specific information from different channels is not available

during the validation and only temporal information is used for the classification.

Finally, the classifier was applied separately for each of the acoustic paradigms, which allows

us to test how neural correlations potentially contribute to distinct recognition tasks. In the

case of paradigm 1, the correlation model was obtained directly from the model generation

data half to the same sounds. For paradigm 2, the goal was to determine whether correlations

on their own, irrespective of spectral cues, potentially contribute to neural representation. Fur-

thermore, we were interested in determining to what extent the neural correlation structure is

invariant to manipulations in the sound spectrum. For this reason, the model was generated

using the original sounds, while the validation data were obtained from the responses to the

1/f equalized sound. Finally, for paradigm 3, the goal was to determine whether the neural cor-

relations could distinguish sounds selected from multiple categories. For this reason, we fit the

models using each category (as opposed to each individual sound) and assume that multiple

exemplars and response trials are from the same likelihood distributions.
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Single-trial neural classifier

The noiseless neural classifiers described above (spectral, temporal, and spectro-temporal)

were also implemented using single trials of the data. Whereas the noiseless classifiers set an

upper bound on the classifier performance for the specific classification strategy (assuming

noise is not present), the single-trial classifier contains noisy/variable neural data and instead

provides a direct estimate of the classification performance from single observations. Thus, the

single-trial classification is more akin to the strategies that might be employed while making

real-world behavioral decisions.

The general classifier procedure for single trials was identical to the noiseless classifier, with

the exception of the correlation feature vectors used for the model generation and the valida-

tion data segments, which now consist of unshuffled correlations for individual trials. During

the random iterative selection of time segments of the model generation (using 1,000-ms win-

dows) and validation data (varied window size), we concurrently randomized the selected tri-

als, i.e., in addition to randomly selecting response segments at different time instances of the

response, we simultaneously randomized the selected trials. Thus, whereas the feature vectors

used for the noiseless classifier are based on noise-free estimates of the stimulus-driven corre-

lations obtained using shuffled-correlogram procedures as defined above, the single-trial cor-

relograms used for this classifier contain both signal and noise in which the noise correlations

often tend to dominate in power (as shown in Results). In this case, the equivalent model spec-

tro-temporal correlation, ctotalkl t; tð Þ, used to derive all feature vectors (spectral, temporal, or

spectro-temporal) for the single-trial classifier is

ctotalkl ðt; tÞ ¼ cstimkl ðt; tÞ þ cnoisekl ðt; tÞ

(proof in S1 Text).

Sound database for auditory model and classifier

Sounds representing 13 acoustic categories are obtained from a variety of digital sound

sources. 195 sounds from 13 different acoustic categories are used to build distributions of

dynamic, spectro-temporal correlation statistics of natural/man-made sounds. Sound seg-

ments are chosen so that they have minimal background noise and are drawn from three

broad classes: vocalizations, environmental sounds, and man-made noises. Vocalizations

include 1) single bird songs (various species), 2) cat meowing (single or multiple cats), 3) dog

barking (single or multiple dogs), and 4) human speech (male speaker). Environmental sounds

include 5) bird chorus (various species), 6) speech babble (in various environments, e.g., bars,

supermarkets, squares), 7) fire, 8) thunder and rain, 9) flowing water (rivers and streams), 10)

wave (ocean/lake waves), and 11) wind. Finally, man-made noises consist of 12) bell (church

or tower bells) and 13) automobile engines (different vehicles). Each category contains 15

sounds, each 10 s long, sampled at Fs = 44.1 kHz (see S1 Table for sources and full list of tracks

used).

Auditory model

Sounds are analyzed through a cochlear filter bank model of the auditory periphery that

decomposes the sound using frequency-organized cochlear filters. The cochlear filter bank

consists of tonotopically arranged gamma-tone filters [58]. These filters have a sharp high-fre-

quency cutoff and shallow low-frequency tails that resemble the tuning functions of auditory

nerve fibers. The k-th gamma-tone filter has an impulse response function

hkðtÞ ¼ akt
n� 1e� 2pbktcosð2pfkt þ �Þ;
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where k is the filter channel, t denotes time, and bk and fk denote the filter bandwidth and cen-

ter frequency. The filter gain coefficient ak is chosen so that the filter passband gain is 1; filter

order n and filter phase ϕ are 3 and 0, respectively. Filter bandwidths are chosen to follow per-

ceptually derived critical bandwidths for humans, bk = 25 + 75(1 +1.4fk2)0.69 [59,60]. We use

L = 58 frequency channels with center frequencies fk ranging from 100 Hz to 16 kHz in 1/8

octave steps. In the first stage of processing, the sound s(t) is passed through the cochlear filter

bank model:

skðtÞ ¼ sðtÞ � hkðtÞ;

where � represents the convolution operator. The outputs of the filter bank are next passed

through a nonlinear envelope extraction stage, which models the characteristics of the hair

cell. We first compute the magnitude of the analytic signal [61]:

sA;kðtÞ ¼ jskðtÞ þ jHfskðtÞgj;

where H{�} is the Hilbert transform operator and j ¼
ffiffiffiffiffiffiffi
� 1
p

. Then, the temporal envelope for

each channel is obtained by convolving the rectified analytic signal magnitude with a b-spline

low-pass filter with cutoff frequency of 500 Hz (transition bandwidth of 125 Hz and stopband

attenuation of 60 dB):

SkðtÞ ¼ sA;kðtÞ � hsynapseðtÞ;

which models the low-pass filtering of the hair-cell synapse (hsynapse(t)). The low-pass–filtered

envelopes are then downsampled to 1 kHz for modeling. Here, we refer to the time-varying

envelopes of the cochlear filters as the cochlear spectrogram and use the notation S(t, fk) =

Sk(t).

Nonstationary spectro-temporal correlation statistics

Since natural sounds are often nonstationary, we measure not just the long-term correlation

but the time-varying or “short-term” correlation statistics between the frequency-organized

channels in the cochlear model representation. This nonstationary representation is then used

to quantify the contribution of the sound-correlation statistics to sound categorization. The

short-term correlation statistics that we use are similar to those for the neural data analysis

except that we use the frequency channels from the cochlear spectrogram rather than the neu-

ral signals. The running short-term correlation function F between the cochlear spectrogram

channel k and l is computed according to [32]

Fklðt; tÞ ¼
Z þ1

� 1

SkðgÞSlðg � tÞW
2ðt � gÞdg;

where W2(γ) is a sliding window function that determines the temporal resolution of the cor-

relation measurement, t is the time, and τ is the cross-correlation delay. Here, W2(γ) is a Kaiser

window (β = 3.4) where the overall window resolution (corresponding to two SDs of the Kaiser

window width; varied between 25 to 566 ms in ½ octave steps) is varied to quantify the effects

of the correlation temporal resolution on categorization performance. The range of permissi-

ble cross-correlation delays (−τW to +τW) corresponds to half the window size and is thus var-

ied between −12.5 to +12.5 for the highest resolution and −283 to +283 ms for the coarsest

resolution. Conceptually, at each time point, the short-term correlation performs a correlation

between the locally windowed envelope signals Sk(t)W(t − γ) and Sl(t − τ)W(t − γ) to estimate

the localized correlation statistics of the cochlear envelopes.
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To remove the influence of spectral power on the correlation measurements, the short-term

correlations are normalized:

cklðt; tÞ ¼
Fklðt; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
kðtÞ � s2

l ðt; tÞ
p

where

s2

kðtÞ ¼
Z þ1

� 1

SkðgÞWðt � gÞdg

and

s2

l ðt; tÞ ¼
Z þ1

� 1

Slðg � tÞWðt � gÞdg

are the time-varying and delay-varying (for channel l) power k-th and l-th spectrogram chan-

nels. Again, as with a Pearson correlation coefficient, this short-term spectro-temporal correla-

tion is bounded between −1 and 1. Unlike the neural correlation measures, ckl(t, 0) = 1 because

there is no neural variability or noise in the model representation.

To assess the contribution of temporal and spectral correlations on the sound categoriza-

tion performance, we perform a secondary analysis in which the spectro-temporal correlation

function is decomposed into its purely spectral or temporal components, following a similar

framework as for the neural data analysis. To evaluate the spectral correlations, we consider

only the correlations at τ = 0 (no time lag between different frequency channels). For temporal

correlations, τ ranges from 0 to up to half of the Kaiser window length. Only autocorrelation

functions or correlation functions of a channel versus itself are considered in temporal correla-

tion analysis, although all possible frequency channels are involved in spectral correlation anal-

ysis. Correlations between different frequency channels computed at zero time lag are referred

to as purely spectral correlation components, whereas the autocorrelations computed at differ-

ent time lags for each frequency channel are referred to as temporal correlation throughout.

Stationarity and ensemble diversity indices

Given that sounds in our database are quite varied, ranging from isolated vocalizations to envi-

ronmental sounds consisting of superposition of many individual acoustic events, we seek to

characterize the overall degree of stationarity in the short-term correlation statistics for each of

the ensemble. Furthermore, since sound recordings are obtained from different sources and

animal species (e.g., for vocalizations), all of which could influence the overall category statis-

tics, we also seek to quantify the overall diversity of the short-term correlation statistics of each

ensemble. When considering sound categorization, we might expect that stationary sounds

with minimal diversity across an ensemble would be most easily recognized.

For each sound, the sampled short-term spectro-temporal correlation ckl(t, τ) (computed

using τW = 100 ms) is rearranged and expressed as a time-dependent vector function �c tð Þ with

dimensions M � L2 at each time point, where M = 99 is the number of time lags used for the

short-term correlation and L is the number of frequency channels. The SI of each sound is

defined and calculated as

SI ¼ 1 �
hk�cðtÞ � h�cðtÞiki
kh�cðtÞik

where ||�|| is the vector norm and h�i is a time average. Conceptually, the second term in the SI

equation corresponds to the time-averaged variance of the short-term correlation normalized
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by the total power of the time-averaged short-term correlation. As such, the SI measures the

average normalized variability across time and is bounded between 0 and 1, where 1 indicates

that the moment-to-moment variance of the short-term correlation is 0, thus indicating a high

degree of stationarity. By comparison, when the moment-to-moment variance is high, the

index approaches 0, indicating a highly nonstationary short-term correlation function.

We next define and measure the CDI, which is designed to measure the degree of homoge-

neity or heterogeneity in the short-term spectro-temporal correlation functions for each of the

13 sound categories studied. To do so, we first compute the time-averaged correlation function

for each sound in a given ensemble, �cn ¼ �cn tð Þh i, where n = 1. . .15 is an index representing

the sounds for each sound category. The CDI is defined and computed as

CDI ¼
k�cn � E½�cn�k
kE½�cn�k

;

where E[�] is the expectation operator taken across the sound ensemble (equivalent to an aver-

age across sounds, n). Conceptually, the CDI corresponds to the variance of the time-averaged

short-term correlation taken across the ensemble of sounds normalized by the power (norm)

of the time and ensemble average short-term correlation.

For a particular sound category, a CDI near zero is indicative of low diversity (homogene-

ity) such that the short-term spectro-temporal correlation functions of that ensemble are quite

similar from sound to sound and thus closely resemble the average ensemble correlations. By

comparison, a CDI of 1 indicates a high degree of heterogeneity (high diversity) so that the

short-term spectro-temporal correlations are quite different from sound to sound.

Dimensionality reduction and distribution model

To reduce the dimensionality of the categorization problem, we use PCA. For spectral correla-

tion statistics, the entries of the correlation matrix at zero time lag (ckl(t, 0)) are considered as

features, while time points are used as observations or trials. For temporal correlation statistics,

the correlations at different time lags within single-frequency channels (ckk(t, τ)) are consid-

ered features. Both time points and different frequency channels are treated as observations so

that temporal information is not specific to any particular frequency channel. For further anal-

ysis, we use only the highest-ranked principal components that explain 90% of the variability

in the data (26 principal components for spectral, 8 for temporal, 87 for spectro-temporal).

Using the low-dimensional representations of the spectral, temporal, or spectro-temporal

correlations, we model the distributions of principal components for each sound category with

a GMM. For each sound category i, we learn a multivariate probability distribution

Pðxjm ¼ iÞ ¼
XNc

k¼1

ai;kNðx; μi;k;Ci;kÞ

where x is the low-dimensional vector of PCA scores, m are the sound categories, P(x|m) is the

multivariate PDF of sound features for category m, ak� 0 is the weight of the k-th mixture

component, N(x; μi,k, Ci,k) is the PDF of a multivariate normal distributions with mean μk and

covariance matrix Ck, and Nc is the number of Gaussian components used for modeling. To

avoid ill-conditioned covariance matrices, we constrain Ck to be diagonal.

In order to find the optimum number of Gaussian components (Nc) required to model the

data, we compute cross-validated likelihoods for different numbers of Gaussian mixtures (Nc =

1 to 20). The optimal Nc values are 5, 8, and 13 for temporal, spectral, and spectro-temporal,

respectively.
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Bayesian classifier

Given the mixture model for each sound, we then use a Bayesian classifier for sound identifica-

tion. The features fed to the classifier consist of the principal component scores from the

sound’s short-term spectral, temporal, or spectro-temporal correlation. Since we are interested

in how categorization performance change with the sound duration, we consider feature vec-

tors x = [x1, x2, . . ., xN] consisting of principal component scores obtained from successive,

windowed segments of sounds at different time samples (t1 . . . N) selected so that adjacent

sound segments do not overlap. We then evaluate the posterior probability of each sound seg-

ment under the different mixture models. The most probable case is chosen according to the

MAP decision rule:

m^MAPðxÞ ¼ argmax
m

PðmjxÞ:

In practice, we find the MAP category by using the Bayes rule and maximizing the log-likeli-

hood. We assume that the categories are equiprobable a priori and that the features at each time

sample are conditionally independent. Thus, the MAP category is obtained by maximizing

logðPðmjxÞÞ ¼ logdPðmÞ
YN

n¼1

PðxnjmÞ
PðxnÞ

e /
XN

m¼1

logðPðxnjmÞÞ:

Cross validation

To avoid overfitting, we use a leave-one-out cross validation in which all sounds are used to

build the model distributions, except for one sound that is used for testing. Because there is

only one sound validated, each validation iteration produces a 0% or 100% correct classifica-

tion rate. The procedure is repeated iteratively over all sounds, and the average performance is

obtained as the average classification rate across all iterations. The total sound duration used

for the validation is varied by selecting N consecutive time window segments as described

above from each sound under the test to be categorized; the selected N-segments start from the

very beginning of the sound up to the end of the sound. Values of N are varied in ½ octave

steps, starting with N = 1 up to the maximum value allowed by the sound duration.

Optimal temporal resolution and integration time for categorizing sounds

As previously demonstrated for auditory neurons, an optimal temporal resolution can be iden-

tified for neural discrimination of natural sounds, and neural discrimination performance

improves with the increasing sound duration [49,50]. For this reason, we seek to identify both

the optimal temporal resolution that maximizes categorization performance as well as the inte-

gration time of the sound classifier. The temporal resolution of the correlation signals is varied

by changing the sliding window temporal resolution, τW, between 25–566 ms in ½ octave

steps. Classification performance curves vary with τW, exhibiting concave behavior with a clear

maximum that is used to identify the optimal window time constant. The classifier perfor-

mance also increased in an approximately exponential fashion with the overall sound duration.

The classifier performance also increases with the overall sound duration. The classifier inte-

gration rise time, τc, is defined as the amount of time required to achieve 90% of the asymptotic

performance measured at 10 s duration.

Spectrum-based classifier

In addition to estimating the contribution of the correlations structure towards categorization

performance, we also used a spectrum classifier to estimate the contribution of the model
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spectrum for the categorization task. This condition serves as a reference control in part

because the spectrum is normalized out of the correlation metrics, and it is possible that the

correlation structure provides independent information towards the task. The spectrum-based

classification procedure uses identical model generation and validation procedure as described

above, with the exception of the model features used for the Bayesian classifier. Instead of

using the spectral or temporal correlations as feature vectors, x, we instead replaced correlation

structure with the model spectrum by computing average amplitude of each output channel of

the cochlear spectrogram. During the validation step, the spectrum was estimated iteratively

for different window segments using identical windowing, temporal resolutions, τW, and

sound durations (by varying the number of consecutive time segments, N) as for the correla-

tion classifier.
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S1 Text. Main supporting information document containing mathematical proofs.

(DOCX)

S1 Fig. Correspondence between the model cochleogram and neural activity across 16

recording channels (neurogram). Cochleograms and neurograms are shown for the record-

ing site shown in Fig 1 (five sounds used in paradigm 1). The fire cochleogram contains brief

transient epochs with correlated transient events occurring at random times (ambers pop-

ping). Similarly, the neurogram shows sparsely activated and brief neural events with activa-

tion at comparable time instants. The neurogram for the bird chorus has periods of low neural

activity that roughly correspond to periods with little sound power in the cochleogram (e.g.,

first approximately 250 ms). The crowd and water sounds have somewhat denser cochleo-

grams and a corresponding dense response for channels 4–11. The cochleogram of the snake

sound, by comparison, has periodic fluctuations around 8 kHz that produce a similar periodic

activation for the high-frequency neural channels.

(DOCX)

S2 Fig. Stimulus-driven and noise correlations for an example IC penetration site. Stimu-

lus-driven spectral (A) and temporal (C) correlations for each site and the corresponding

noise correlations (B, spectral; D, temporal). In general, noise correlations are localized in both

time and frequency and do not exhibit stimulus-dependent structure. Stimulus-driven correla-

tions are substantially more diverse and varied with the stimulus. IC, inferior colliculus

(DOCX)

S3 Fig. Stimulus-driven and noise correlations for an example IC penetration site. The fig-

ure format is identical to S2 Fig. IC, inferior colliculus

(DOCX)

S4 Fig. Stimulus-driven and noise correlations for an example IC penetration site. The fig-

ure format is identical to S2 Fig. IC, inferior colliculus

(DOCX)

S5 Fig. Comparing the correlation structure of natural sounds to neural response correla-

tions in IC ensembles. (A) Cross-channel envelope correlations for fire, bird, crowd, water,

and snake sounds. The sound correlations are obtained by cross-correlating the frequency-

organized outputs of a cochlear model representation. (B) Sound spectral correlations at

selected frequency bands that match the neural best frequencies (measured at 65 dB SPL) of

each recording channel for a representative IC penetration site. The gray contours in A indi-

cate the selected frequency range for this representative recording location. (C) Stimulus-
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driven neural correlations of the corresponding IC recording site. (D) Boxplot of Pearson cor-

relation coefficients between the frequency matched sound and neural correlations for five

sounds (N = 13 penetration sites; diagonal terms are not included in the Pearson correlation

coefficient calculation). Red boxplots indicate the actual measured correlation coefficient val-

ues (median = 0.37, 0.37, 0.25, 0.36, and 0.25, respectively) for same-sound comparisons (e.g.,

fire neural correlation versus fire sound correlation). Blue boxplots correspond control corre-

lation coefficient values (median = −0.16, −0.17, 0.06, −0.13, 0.09) obtained across different-

sound comparisons (e.g., fire neural correlation versus water, crowd, water, bird, and snake

sound correlation). (E) Histogram plot of the Pearson correlation coefficients shown in (D;

red = actual data; blue = different sound control). The average Pearson correlation coefficient

is greater than zero and significantly different from the across-sound correlation coefficient

control (red = 0.3 ± 0.03, for blue −0.04 ± 0.02, p = 1 × 10−14, one-tailed t test). IC, inferior col-

liculus; SPL, sound pressure level.

(DOCX)

S6 Fig. Neural ensemble classification performance curves for individual sounds. Average

results are shown for all penetration sites in the IC using the (A) spectro-temporal, (B) spectral,

and (C) temporal classifiers as well as the (D) temporal classifier with frequency cues removed

(no tonotopy). Red curves correspond to the population average of the single-trial classifier

while blue represents the noiseless classifier. Red and blue filled boundaries represent ±1 SD.

The spectral classifier performance trends across sounds closely mirrored the spectro-temporal

classifier. The classifier performance is somewhat lower and more varied across sounds for the

temporal classifier. (D) The performance is substantially reduced when tonotopic cues are

removed from the temporal classifier. The classification accuracy of the single-trial classifier at

1 s duration exceeded chance (p< 0.05, t test) for all conditions except for the snake sound (�,

temporal and temporal w/o tonotopy conditions, p = 0.15 and p = 0.92, respectively; t test). IC,

inferior colliculus; w/o, without.

(DOCX)

S7 Fig. Power spectrum of sound stimuli used for paradigms 2 and 3. (A) Original fire, bird,

crowd, water, and snake sounds used for paradigm 2 have distinct power spectra (blue). (A)

Spectrum-equalized variants for each sound have a 1/f power spectrum (red). These spectrum-

equalized sounds can be readily identified even though the original and spectrum-equalized

sounds can deviate by as much as 60 dB (e.g., crowd and water sounds). (B) The power spec-

trum of each of the six exemplars used for the fire, water, and speech categories (paradigm 3).

(DOCX)

S8 Fig. Principal components obtained for the spectral and temporal correlation statistics

of natural sounds. Principal components are shown in rank order according to the amount of

variance accounted for. (A) First eight spectral principal components. Note that the diagonal

has been removed since it is not informative (always takes on a value of 1). (B) First eight tem-

poral principal components. The zero-lag component is not informative and has been

removed (value of 1).

(DOCX)

S9 Fig. The mixing coefficient of optimal spectro-temporal classifier for all IC penetration

sites. The mixing coefficient (alpha) accounts for the relative weighting of spectral versus tem-

poral cues used for the spectro-temporal classifier (see Materials and Methods). Values near 1

indicate that the classifier used strictly spectral cues for the identification or categorization

task, while values near 0 indicate that the classifier uses purely temporal cues. For paradigms 1

(original) and 2 (spectrum-equalized), the median value of alpha is 0.6 (25th and 75th
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percentiles are 0.5 and 0.7), and for paradigm 3 (categorization), the median value of alpha is

0.5 (25th percentile is 0.4). This indicates that for both identification (paradigms 1 and 2) and

categorization (paradigm 3), the optimal spectro-temporal classifier uses a mixture of spectral

and temporal cues with roughly equal weighting. IC, inferior colliculus.

(DOCX)

S10 Fig. Comparing neural correlations obtained using aMUA and tMUA. tMUA spike

trains (sequences of 0 s and 1 s) were first obtained by detecting signal events that exceeded 2 SDs

above the recording noise floor. tMUA spike trains for different channels were then correlated to

generate spectral and temporal correlation matrices (as for the aMUA). For a representative IC

site, both spectral (A and B) and temporal (C and D) correlation patterns are very similar between

aMUA and tMUA. However, the tMUA correlations (B and D) are weaker (see color scale) and

noisier because they consist of sparse spike trains with random variability. (E) shows the Pearson

correlation coefficients between aMUA- and tMUA-derived spectral and temporal correlations

(Pearson correlation measured between the first and second half of the data). aMUA and tMUA

spectral correlations are quite similar, as indicated by the relatively high Pearson correlation coef-

ficient (tMUA versus aMUA, median = 0.81). For temporal correlations, the Pearson correlation

between tMUA and aMUA was lower (median = 0.35), largely because of the noisy structure in

the tMUA. (F) The reliability of the tMUA and aMUA activity was assessed by comparing neural

correlations across halves of the data. The Pearson correlation coefficient comparing the first and

second half of the aMUA activity (blue) is significantly higher for spectral (0.98) and temporal

(0.83) correlations when compared against the tMUA (red; spectral = 0.77; temporal = 0.27). This

indicates that aMUA is less noisy and thus more reliable across repeated trials of the stimulus.

aMUA, analog multiunit activity; IC, inferior colliculus; tMUA, thresholded MUA.

(DOCX)

S1 Movie. Movie showing the short-term correlations for a barking dog. All movies follow

the same format. The moving sliding window pans along the cochleogram from left to right with

increasing time. All sounds are depicted for 100-ms window resolution (2 SD width of the analy-

sis window; full window extent shown). The instantaneous spectral (left panel) and temporal

(right panel) correlation for the windowed sound segment are shown below the cochleogram.

(MP4)

S2 Movie. Movie showing the short-term correlations for running water.

(MP4)

S3 Movie. Movie showing the short-term correlations for speech.

(MP4)

S4 Movie. Movie showing the short-term correlations for white noise.

(MP4)

S1 Sound. Original sound sample used for neural recordings for paradigms 1 and 2.

Sound = fire.

(WAV)

S2 Sound. Original sound sample used for neural recordings for paradigms 1 and 2.

Sound = bird.

(WAV)

S3 Sound. Original sound sample used for neural recordings for paradigms 1 and 2.

Sound = crowd.

(WAV)
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S4 Sound. Original sound sample used for neural recordings for paradigms 1 and 2.

Sound = water.

(WAV)

S5 Sound. Original sound sample used for neural recordings for paradigms 1 and 2.

Sound = snake.

(WAV)

S6 Sound. Spectrum-equalized sound variant used for neural recordings for paradigm 2.

Derived directly from S1 Sound by synthetically changing the spectrum to 1/f spectrum.

Sound = fire.

(WAV)

S7 Sound. Spectrum-equalized sound variant used for neural recordings for paradigm 2.

Derived directly from S2 Sound by synthetically changing the spectrum to 1/f spectrum.

Sound = bird.

(WAV)

S8 Sound. Spectrum-equalized sound variant used for neural recordings for paradigm 2.

Derived directly from S3 Sound by synthetically changing the spectrum to 1/f spectrum.

Sound = crowd.

(WAV)

S9 Sound. Spectrum-equalized sound variant used for neural recordings for paradigm 2.

Derived directly from S4 Sound by synthetically changing the spectrum to 1/f spectrum.

Sound = water.

(WAV)

S10 Sound. Spectrum-equalized sound variant used for neural recordings for paradigm 2.

Derived directly from S5 Sound by synthetically changing the spectrum to 1/f spectrum.

Sound = snake.

(WAV)

S1 Table. List of sounds and sources used for the categorization model.

(DOCX)

S2 Table. List of sounds and sources used for neural categorization (sound paradigm 3).

(DOCX)
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