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Abstract: The detection performances of noble metal-based surface enhanced Raman spectroscopy
(SERS) devices are determined by the compositions and geometries of the metal nanostructures,
as well as the substrates. In the current study, long spiky Au-Ag alloy nanostars were synthesized, and
both core diameters and spike lengths were controlled by Lauryl sulfobetaine concentrations (as the
nanostructure growth skeleton). The long spiky star geometries were confirmed by transmission
electron micrograph images. Elements energy dispersive spectrometer mapping confirmed that
Au and Ag elements were inhomogeneously distributed in the nanostructures and demonstrated
a higher Ag content at surface for potential better SERS performance. Selected synthesized spiky
nanostars were uniformly assembled on multi-mode silica fiber for probe fabrication by silanization.
The SERS performance were characterized using crystal violet (CV) and rhodamine 6G (R6G) as
analyte molecules. The lowest detection limit could reach as low as 10−8 M, with a 6.23 × 106

enhancement factor, and the relationship between analyte concentrations and Raman intensities was
linear for both CV and R6G, which indicated the potential qualitative and quantitative molecule
detection applications. Moreover, the fiber probes also showed good reproducibility and stability in
the ambient atmosphere.

Keywords: noble metal; nanostructure; glass fiber; local surface plasmon resonance

1. Introduction

Noble metal (such as silver, gold, platinum, copper, etc.) nanostructures have attracted
much attention for their optical and electrical properties (originating from their local surface
plasmon resonance (LSPR)) for various applications in recent years [1–3]. Surface enhanced
Raman scattering (SERS) is one of these important applications for ultra-low or single
molecular substance detection [4]. Raman scattering signal from analyte molecules can be
exponentially amplified from the electric field resonance between nanostructure surface
and attached analyte molecules [5,6] under laser excitation [7]. The SERS analytical method
has been studied and applied for trace organic molecules detection, pollutant heavy metal
ions monitoring [8], food safety [9], bio-sensing [10,11], and others.

The SERS performances are highly dependent on the components, morphologies,
geometries of noble metal nanostructures, and supporting materials [12,13]. In general,
special nanostructure geometries provide denser hot spots [14] and larger surface area for
analyte attachment for better SERS detection behavior than regular sphere nanoparticles.
Moreover, sharp tips in special structures generate a much stronger LSPR electric field than
sphere nanoparticles [15], due to size and space effect, for further SERS improvement. Many
kinds of nanostructures, such as nanocubes [16], nanorods [17], nanostars [18], octahedral
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nanoparticles [15], and nanocages [19] have been synthesized and their SERS behavior on
planar supporting substrates have been investigated [20]. The results indicated that these
nanostructures could have higher enhancement factors and reduce the detection limit to
10−9 M scale for ultra-trace substance analysis [21,22]. In addition, the nanostructure com-
ponents also are of great importance for SERS performance [23]. Pure Ag nanostructures
showed better LSPR effect and SERS detection limit due to higher free electron density and
broader UV-visible response range [24]. However, Ag nanostructures are easily oxidized,
and the stability of Ag nanostructure-based SERS detection is still a critical problem to
be solved [25]. The Raman signal rapidly decayed and disappeared in a short duration
(such as 24 h in an ambient atmosphere). Au nanostructures show better stability while
their LSPR effect and SERS detection performance were not as good as that from Ag under
similar sizes or structures [26]. Au-Ag alloy nanostructures provide both a good LSPR
effect and good stabilities, for potential SERS substrates, for ultra-trace molecules detection
under different circumstances [27–29]. In addition, the spiky stars also could furtherly
improve detection limit, from high LSPR induced field strength on sharp tips and large
surface area for analyte attachment [30,31].

Silica glass fiber has been extensively applied for information communication medi-
ums due to low optical loss, compact dimensions, lightweight, anti-electromagnetic inter-
ference, and environmental stability [32]. In fact, optical fiber can be used as metal nanos-
tructures supporting materials for ultra-trace molecules SERS detection probes [23,33]. The
fiber offers input and output optical channel for SERS excitation and detection, more im-
portantly, provides special benefits including flexible, real-time, in-situ, and online spectral
detection [34]. Since the excitation beam and SERS signal are confined into the fiber core
region, there is a large proportion of scattering signal loss, which result in the detection
limit and sensitivity of fiber probes are not as good as planar SERS detector [35]. Recent
research found that the detection limit could reach as low as 10−9 M for silver rod-based
fiber probes using 4-aminothiophenol (4-ATP) as analyte [36–38] or 10−10 M for Au-Ag
alloy nanostars fiber probes using crystal violet (CV) as analyte [39,40]. Fiber structure
designs, such as hollow fiber and tapered fiber, and active nanostructure optimization are
potential methods for fiber probe detection improvement [23].

In the present research, long spiky Au-Ag nanostars were synthesized using the
metal ions reduction method. The nanostructure geometries, and spiky branch length
in particular, were controlled by Lauryl sulfobetaine (LSB) content addition. The sizes,
morphologies, and element distributions of nanostructures were analyzed. The obtained
long spiky nanostructures were homogeneously coated on the end tip and wall of silica fiber
for probes fabrication. The SERS performance was characterized using CV and Rhodamine
6 G as analytes. The reproducibility and stability of fiber probes were investigated as well.
The results indicated that long spiky Au-Ag nanostars fiber probes could be applied for
low concentration substance analysis.

2. Materials and Methods
2.1. Materials

Hydrogen tetrachlorocuprate (III) hydrate (HAuCl4·3H2O, 99.9%), silver nitrate (AgNO3,
99.99%), Sodium citrate (C6H5O7Na3, 98%), L-dopa (C9H11NO4, 99%), ascorbic acid
(C6H8O6, AA, 99%), Lauryl sulfobetaine (C17H37NO3S, LSB, 99%), were purchased from
Aladdin (Shanghai, China) and directly used for nanostructure synthesis without fur-
ther purification. Triethoxy-3-aminopropylsilane (C9H23NO3Si, 3-APTES, 99%, Aladdin)
was used as a surfactant for fiber probes fabrication. Dye compounds, rhodamine 6G
(C28H31N2O3C, 99%, Aladdin), crystal violet (CV) (C25H30N3Cl, 99%, Aladdin) were used
as analytes for SERS performance characterization. Deionized (DI) water with a resistivity
of 18.2 MΩ·cm produced using a Milli-Q SP ultrapure-water purification system from
Nihon Millipore Ltd., Tokyo, Japan was used as a solvent for nanostructure synthesis.
Multimode silica optical fibers with 62.5 µm core diameter and 125 µm total diameter were
purchased from Yangtze Optical Fiber & Cable Joint Stock Co. Ltd., Wuhan, China.
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2.2. Synthesis Methods

Long spiky Au-Ag alloy nanostars were synthesized according to Dickson Joseph’s
method [41]. 25 mM, 50 mM, 75 mM and 100 mM LSB solutions were prepared by dissolving
0.419, 0.839, 1.258 and 1.678 g LSB, respectively, in 50 mL deionized water and stirred until
completely dissolved. 0.5 mL 10 mM HAuCl4 solution and 0.05 mL AgNO3 (20 mM)
solution were added into LSB solution and well mixed by manual stirring. Then, 0.1 mL
AA (100 mM), and 0.05 M NaOH solution were added, while continuous magnetic stirring,
until the solution turned dark. The solutions were kept at room temperature for 24 h
for the growth of Au-Ag alloy nanostars. The solutions were centrifuged and washed
using dehydrate ethanol and pure water several times to remove organic and inorganic
intermediates, and then concentrated to 2 mL solution, for further use. Since the contents
of HAuCl4 and AgNO3, as raw materials for Au and Ag alloy nanostructures, were fixed,
the diameters and branch lengths were determined by LSB concentrations.

Multi-mode silica optical fibers with 62.5 core diameter and 125 cladding thickness
were used for fiber probes fabrication. The fibers were soaked into 5 µL/mL 3-APTES
aqueous solution for 30 min for surface silanization, then transferred into prepared Au-Ag
alloy nanostructures solution for 24 h for long spiky Au-Ag alloy nanostars adsorption in
order to fabricate fiber probes (Figure S1). Then, the fabricated fiber probes were dried in
vacuum at room temperature.

2.3. Materials Characterization

The sizes distribution and morphologies of synthesized metal nanostructures were
characterized using transmission electron microscopy (TEM, JEM-1400, JEOL, Japan), with
an acceleration voltage of 200 kV. The absorption spectra of the nanostructures were mea-
sured using a UV-Vis-NIR spectrophotometer (Lambda 750S, Perkin Elmer, Waltham, MA,
USA), ranging from 300 nm to 900 nm. The crystal phase of obtained nanostructures was
characterized using an X-Ray diffraction diffractometer (XRD, D8 DISCOVER, Bruker, Ger-
many), operating at 40 kV, 40 mA, with Cu Kα radiation, 1.54056 Å, 2◦/min scanning speed,
and 0.02◦ step size. The high-resolution TEM images, element distributions mapping,
and selected area electron diffraction were taken from another TEM (JEM-2100F, JEOL,
Japan), and attached energy dispersive spectroscopy (EDS). The nanostructure distribu-
tions on fiber tip were characterized using a field-emission scanning electron microscope
(FE-SEM, S-4800, Hitachi, Japan), images were taken using a microscope with a 5 kV ac-
celerating voltage. The digital images of naked fiber and coated fiber were taken using an
optical microscope (CX33, Olympus, Japan). All of the measurements were conducted at
room temperature.

2.4. Electromagnetic Filed Distribution Simulation

The electromagnetic filed distributions around nanostructures were simulated using
finite-difference time-domain (FDTD) analysis. The 3D models of the nanostructures were
constructed following the TEM images, with individual nanostar, colliding tip-top and
intercrossed naonstars, as shown in Figure S2. The excitation wavelength was 633 nm, as
the Raman measurement. The air suspension geometrical model n0 = 1. The mesh range
resolution was set as 1 nm × 1 nm × 1 nm, the monitor position was set as z-axis plane,
the range was set as 1 µm × 1 µm, the incident light wave vector K was along z-axis, the
electric field E was along X-axis, and E0 = 1 V/m.

2.5. SERS Measurements

The obtained fiber probes were dipped into CV or R6G solutions with different con-
centrations (10−3, 10−4, 10−5, 10−6, 10−7, 10−8, and 10−9 M, respectively) for 5 h for further
Raman measurement. The SERS performance was characterized by Raman scattering
spectra (LABHRev-UV, Horiba, Japan), under 633 nm laser excitation. The laser power
was 10.6 mW. The accumulation and integration durations were 3 s and 4 s, respectively.
The laser beam was focused on the fiber core center surface through a 50× objective lens,
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and the beam size was approximately 2 µm. The laser beam propagated through fiber,
reached the nanostructure coated end-tip, interacted with analyte molecules and Au-Ag
nanostructures. The scattering signal transmitted backward within the fiber and received
by the detector follows the setup diagram shown in Figure S3.

3. Results
3.1. Long Spiky Au-Ag Nanostars

The TEM images of synthesized nanostructure morphologies (Figure 1a–d) indicated
that spiky tips generated and grew with LSB concentrations increase. Irregular nanoparti-
cles with ~30 nm core diameter and short blunt tips were obtained when LSB concentration
was 25 mM (Figure 1a). Spiky tips and larger core diameter (~40 nm) nanostructures were
obtained when LSB concentration was 50 mM (Figure 1b). Larger core diameters and
longer spiky tips nanostructures were obtained with further LSB concentration increase
(Figure 1c,d). Linear LSB molecular structure includes hydrophilic group at one end, and
hydrophobic group at another end, which can be assembled into spherical micelles acted
as soft templated for spiky nanostructure formation and growth [42]. Considering small
particles may provide denser LSPR hot-spot and the difficulty of fiber assembling, spiky
nanostructures synthesized with 50 mM LSB were chosen for further fiber probe fabrication
and SERS performance investigation. The UV-Vis-NIR spectra (Figure 1e) were consistent
with the morphologies of obtained nanostructures. The nanostar synthesized using 25 mM
LSB had two main peaks. The peak centered at 550 nm mainly came from the sphere-like
core, which was close to the spherical FDTD simulated extinction peak [43] and plasmonic
band of spherical gold nanoparticles [44]. The peak centered at 675 nm was derived from
the short blunt tips plasmonic band. In fact, the peaks red-shifted with LSB concentration
increase, and the sphere-like plasmonic peaks weakened and disappeared, which indicated
the formation of long spiky brunches on the larger core. In addition, the extinction peaks
from the spiky nanostars synthesized using 50, 75, and 100 mM LSB were similar with those
simulated and experimental extinction peaks [43,45] due to similar sizes and geometries.
The strong infrared absorption originated from multiple plasmon modes or the longitude
propagations mode along with tips, similar to gold nanorod infrared absorption [46]. More-
over, broad peaks indicated the irregular geometries of synthesized nanostructures. The
strong infrared absorption also indicated potential infrared SERS applications.
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Figure 1. TEM images of nanostructures synthesized with different LSB concentrations: 25 mM (a),
50 mM (b), 75 mM (c), and 100 mM (d), inset images were detailed nanostructures geometries of
independent particles, and (e) extinction spectra of the nanostructures.

To confirm the components and element distributions of the obtained nanostructures,
the crystal phase structure was investigated by XRD pattern (Figure 2a), high-resolution
TEM (Figure 2b,c), EDS analysis (Figure S4), and selected area mapping (Figure 3). The
diffraction peaks were assigned to the (1 1 1), (2 0 0), (2 2 0), (3 1 1), and (2 2 2) crystal planes
of the face-centered cubic Au [JCPDS 04-0784] and Ag [JCPDS 04-0783] with nearly the same
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standard patterns. The selected area electron diffraction (SAED) image (Figure 2b inset)
also indicated the crystal planes of gold and silver. In addition, the facet had lattice fringes
with interplanar space of 0.231 nm, corresponding to the (1 1 1) planes of a faced-centered
cubic Au-Ag alloy structure [47,48]. These confirmed the nanostructure constitution of gold
and silver. Moreover, the EDS spectrum furtherly confirmed the compositions of silver and
gold in nanostructures (Figure S4), and Au-Ag alloy long spiky nanostructure (Figure 3a).
The Au and Ag distribution was furtherly analyzed using EDS line scan and area mapping.
The whole spiky nanostructure mapping furtherly confirmed the components of Au and
Ag (Figure 3a–c). In addition, the line scanning from top spiky branch to bottom showed
different Au/Ag molar ratios. Ag concentrations were gradually decreased from brunch
top to bottom, while Au increased for both lines 1, and 2 (Figure 3a,d,e). Moreover, the
area scanning results showed different Au-Ag concentration distributions at different
nanostructure positions (Figure 3a, Table S1). The Au/Ag elements distributions were
determined by the nanostructure formation and growth process, which from the inhibiting
effect of reduced Ag on Au nanoparticles. In detail, Au3+ ions were firstly reduced by
ascorbic acid, and Au nanoparticles were formed due to higher reduction potential than
that of Ag+ ions [48]. Then, reduced Ag clusters were gradually formed and attached
to Au nanoparticles, which impeded the further growth of Au nanoparticles. The Au
nanoparticles could furtherly grow from the active sites, resulting in the formation of multi-
branched star shape and inhomogeneous element distributions. Moreover, long spiky
nanostars formation was due to linear LSB molecular as nanostructure growth skeleton.
Higher Ag content at spiky brunch top potentially resulted in stronger LSPR electric field
intensity and better SERS performance.

The electromagnetic field distribution of synthesized long spiky nanostars under
633 nm laser excitation was simulated using finite difference time domain (FDTD) analysis.
The 3D model was constructed following the TEM image (Figure 1b), with a 40 nm core
diameter and 100 nm spiky brunch length, and individual, colliding tip-top, top, and
intersecting forms (Figure S2). The laser-induced electric field was along with the x-axis.
The results indicated that the strongest electric field was at the closed corner of the nanostars
due to the nano-gap effect [49] In addition, an intense electric field also was found at the top-
tip of the brunch (Figure 4a). For colliding tip-top nanostars, the maximum electric intensity
could reach 38.8 V/m, at closed brunch tips gap and nanostar corners (Figure 4b). Moreover,
a strong electric field was found at the space of the vertex angles of the two nanostars
(Figure 4c), as well as the nanostar corners. The strong electric field intensity and larger
distribution area indicated intense and more LSPR hot-spot for better SERS performance.
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3.2. SERS Performance of Fiber Probes

The optical microscope images of uncoated fiber showed transparency (Figure S5a) and
smooth terminal end surface (Figure S5b), while being dark for Au-Ag spiky nanostructures
coated fiber (Figure 5a) from the scattering and absorption from nanostructures, which
indicated the presence of nanostructures on the fiber walls. Furthermore, SEM images
showed the nanostructures homogeneously and densely coated on the fiber end facet
(Figure 5b,c) by surface silanization and electrostatic adsorption. The Raman peaks at
1619 cm−1 intensities distributions using 10−4 M CV as analyte on the fiber end facet
showed a Gaussian-like change from the center to the edge in the fiber core (Figure 6a),
which was similar with the intensities from blank fiber using 0.1 M CV as analyte (Figure 6b).
Therefore, fiber core centers were chosen for following Raman performance characterization
as focused incident beam input positions.
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Figure 6. Raman intensities distribution mapping of SERS fiber probe terminal end (a) and Raman
intensities distribution mapping of blank fiber terminal end (b).

The SERS behaviors of fabricated fiber probes were characterized using CV and R6G
as analyte molecules, with different concentrations ranging from 10−4 to 10−9 M. The
Raman spectra of CV (Figure 7a) showed that the five main peaks centered at 920, 1171,
1305, 1390, and 1619 cm−1 could be assigned to out-of-plane vibration of ring C-H, ring
skeletal vibration of radical orientation, in-plane vibration of ring C-H, N-phenyl stretching
vibration, and ring C-C stretching vibration, respectively, from the CV molecules [50]. The
Raman intensities decreased with a decrease in the concentration until the CV concentration
was 10−9 M. The lowest detectable concentration or detection limit could be as low as
10−8 M for long spiky Au-Ag nanostar-based fiber probe, following the signal and noise
ratio larger than three standards. This detection limit was similar or lower than that of
recently reported fiber probes [51–53]. There were no obvious Raman peaks found with
10−3 M CV using glass fiber directly (Figure 7a). The relationship between CV molecule
concentrations and Raman intensities at 1619 cm−1 was linear (Figure 7b), which indicated
promising potential quantitative analysis using these fiber probes. The Raman spectra
of R6G showed six main peaks (Figure 7c) centered at 1651, 1509, 1361, 1310,1187, and
774 cm−1 which could be assigned to ring C-C stretching, N-H bending vibration, and out-
of-plane vibration of ring C-H, respectively, from R6G molecules [54]. The 10−8 M lowest
detectable limit and the linear R6G concentrations and Raman intensities at 1361 cm−1

(Figure 7d) indicated highly sensitive fiber probes for both qualitative and quantitative
molecules detection.
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Figure 7. Raman spectra of CV molecules with concentrations from 10−4 M to 10−9 M, using SERS
fiber probes, under 633 nm laser excitation (a), and the relationship between CV concentrations and
1619 cm−1 peak intensities (b), Raman spectra of R6G molecules with concentration from 10−4 to
10−9 M (c), and the relationship between R6G concentrations and 1361 peak intensities (d). The
optical fiber in (a,c) indicated Raman spectrum of 10−3 M CV or R6G using naked fiber.

The enhancement factor (EF) of fiber probe could be calculated using Equation (1)
from Gupta [55].

EF = (ISERS/NSERS)/(Ineat/Nneat) (1)

Here, ISERS and Ineat represent Raman signal intensities from SERS fiber probe and
silica fiber, and NSERS, and Nneat are the molecules numbers involved in Raman signal
generation from SERS fiber probe and silica fiber. The Raman intensities could be obtained
from Raman spectra of 1.0 × 10−8 M CV using an SERS fiber probe and 0.1 M CV using
silica fiber (Figure S6). The I SERS and I neat were evaluated following the detailed processes
provided by Liu et al. [56], with single-layer molecules assumption. The calculated EF was
6.23 × 106, using CV analyte. Detailed calculation process is provided in the Supporting
Information section.

The reproducibility of SERS fiber probes was characterized by the comparison of
the intensities of Raman peaks from the same batch fiber probes fabricated with identical
parameters using 10−5 M CV as an analyte. All of the Raman peaks could be assigned to
different vibrations from CV and showed similar intensities (Figure 8a). The intensities
of 1619 cm−1 peaks were around 690, albeit with a small difference. The related standard
deviation was 4.93% for 10−5 CV, which indicated high reproducibility of the fabricated
fiber probes and potential large-scale analysis applications.
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batch fiber probes.

The stability of the fiber probes was characterized by exposed fiber probes in the air
for 30 days at 25 ◦C and measured Raman spectra using 10−6 M CV every 10 days with the
same parameters. The Raman peak intensities decreased with extended exposure durations
(Figure 9a). The 1619 cm−1 peak intensities decreased from 210 to 160, or around 20%
(Figure 9b). The fiber probes showed better stability than other silver nanostructure-based
probes [57] for both the Au component and the special structure.
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4. Conclusions

In conclusion, long spiky Au-Ag alloy nanostar-based fiber probes were fabricated, and
SERS performances of the fiber probes were investigated in this paper. The nanostars were
synthesized using the metal ions reduction method. The geometries, core sizes, and brunch
tip length were controlled by LSB concentrations (as the nanostructure growth skeleton).
The Au, and Ag element distributions in long spiky nanostars were inhomogeneous and
there was a higher Ag content at the brunch tip top. The fiber probes were fabricated by fiber
silanization and electrostatic adsorption. The detection limit of the fiber probes could reach
10−8 M for both CV and R6G molecules. The enhancement factor could be 6.23 × 106 using
CV as analyte. The relationship between analyte concentrations and Raman intensities
was linear, which is beneficial for potential quantitative analysis. Moreover, the 4.93%
related standard deviation for the same batch fiber probes indicated good reproducibility,
and 20% Raman signal decay for 30-day exposure in air showed good stability of the fiber
probes. The long spiky Au-Ag alloy nanostar-based fiber probes could be applied in low
concentration substance detection.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15041498/s1. Figure S1. The diagram of SERS fiber probe
fabrication. Figure S2. The 3D model of individual Au-Ag nanostar (a), colliding tip top nanostars (b),
and two intertwined nanostars (c), Figure S3. The diagram of Raman measurement setup for SERS
optical fiber probes, Figure S4. EDS spectrum of synthesized Au-Ag nanostars. The carbon, copper,
and molybdenum were from copper mesh, carbon film and molybdenum ring for measurement.
Table S1. The concentration of Au and Ag at different parts of nanostar in Figure 3a, Figure S5. The
digital image of side view of silica fiber (a) and SEM image of fiber terminal facet (b), Figure S6.
Raman spectrum of 10-8 M CV measured with SERS probe of long spiky Au-Ag alloy nanostars (a),
Raman spectrum of 1.0 M CV measured with common multimode fiber (b). The peak centered at
1619 cm-1 was selected for EF calculation.
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