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Abstract: The gastrointestinal lumen is a rich source of eukaryotic and prokaryotic viruses which,
together with bacteria, fungi and other microorganisms comprise the gut microbiota. Pathogenic
viruses inhabiting this niche have the potential to induce local as well as systemic complications;
among them, the viral ability to disrupt the mucosal barrier is one mechanism associated with
the promotion of diarrhea and tissue invasion. This review gathers recent evidence showing the
contributing effects of diet, gut microbiota and the enteric nervous system to either support or impair
the mucosal barrier in the context of viral attack.
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1. Introduction

There is an ever-increasing amount of evidence indicating that changes in the gut
lumen affect the host on many physiological levels. In this regard, studies on gut microbiota,
and their effects on local cell systems, such as the intestinal epithelium, gut-associated
immune cells and enteric nerve cells, have gained a lot of momentum as a means to
provide evidence concerning a wide array of diseases, including novel targets for treatment.
Moreover, gut microbiota composition and behavior are susceptible to changes induced by
diet, which can therefore contribute to health and/or disease. In the present review, we
decided to look at another inhabitant of the gut lumen: viruses.

One remarkable feature of the human gut virome is its individuality and permanence
over time. The stability of its composition is associated with a few consortia of viral
genomes that are highly prevalent, persistent, and individual-specific [1]. Whereas these
stable consortia represent a relatively small proportion of the whole gut virome, their
ability to influence the rest of the local microbiota, and therefore the host’s health status, is
certainly worthy of investigation.

2. What Types of Viruses Are Found in the Gut?

The human gut virome consists mainly of (1) bacteriophages that infect bacteria and
archaea and (2) eukaryotic viruses with the ability to replicate in human cells. Small
amounts of plant- and animal-derived viruses that are ingested with food can also be found
in the gut contents [2]. The main families and genera of eukaryotic viruses found in the gut
are summarized in Table 1.
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Metagenomic tools have been valuable in characterizing the great majority of viruses
that are not cultivable. It is now known that the eukaryotic gut virome expands progres-
sively with age [3]. Contrary to what happens with gut bacterial microbiome, which can be
highly coincident between family members, there is remarkable interpersonal variation
of gut viruses, even between twins [4]. In addition, mother-to-infant transmission of the
gut virome is minor when compared to that of gut bacterial microbiome [5]. Intrapersonal
variation of viromes over time, on the other hand, is minimal [1,4]. In addition, the virome
as a whole is able to influence the transcriptional status of non-infected cells (due to release
of interferon and other cytokines by infected ones) without constituting viral disease [6],
suggesting that some eukaryotic viruses could be considered residents of the human gut [4].

Table 1. Eukaryotic viruses of the gastrointestinal microbiota. Adapted from [7–22]. (a) This type of virus is also detected in
healthy/asymptomatic hosts. (b) The etiologic role of this virus in human gastroenteritis remains uncertain.

Family Genus Clinical Manifestation Reference

Adenoviridae Mastadenovirus C, F and others Gastroenteritis [7]

Anelloviridae Anellovirus Enteritis a [8]

Astroviridae Astrovirus Gastroenteritis, meningitis, encephalitis [9]

Caliciviridae Norovirus Gastroenteritis a [10]

Sapovirus Gastroenteritis a [11]

Circoviridae Circovirus Unclear [12]

Cyclovirus Unclear [12]

Coronaviridae Torovirus Gastroenteritis a,b [13]

Parvoviridae Bocavirus Gastroenteritis b [14]

Bufavirus Unclear [15]

Picobirnaviridae Picobirnavirus Gastroenteritis a [16]

Picornaviridae Enteroviruses including
Poliovirus and Echovirus Enteritis, neurologic syndrome [17]

Parechovirus Gastroenteritis, respiratory infection, sepsis-like
illness, CNS infection [18]

Cardiovirus Gastroenteritis, respiratory infection, myocarditis [19]

Salivirus Gastroenteritis [20]

Polyomaviridae Polyomavirus Unclear [21]

Reoviridae Rotavirus Gastroenteritis [22]

3. The Enteric Virus Road

Pathogenic or not, in order to thrive in the gastrointestinal tract, a virus must en-
dure several challenges that begin long before finding its cellular target (see [23] for a
comprehensive review). The interhost phase, when a viral particle is exposed to variable
and potentially aggressive environments, is the first of such challenges. Under optimal
conditions of temperature, moisture and pH, human norovirus and poliovirus, for example,
may persist for months; however, when exposed to more stringent environments, their
stability can drastically drop to a few days [23–25].

Upon oral ingestion of a virus, there are initial clearance mechanisms that are not
specific to the host. Saliva and enzymes in the mouth, as well as mucus and cilia in the
esophagus are designed to clear and/or inactivate microbial threats. As shown in Figure 1,
the stomach’s low pH, additional digestive enzymes and bile salts are other barriers that
viruses encounter as they navigate the gastrointestinal tract [24]. These chemical weapons
do not affect all viruses the same; while enveloped viruses are known to be inactivated
by bile salts, nonenveloped viruses can resist them [23]. Gastric and intestinal proteases,
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on the other hand, can increase the infectivity of some viruses, as has been shown for the
Reoviridae family [26].

Figure 1. Barriers presented by the host to clear viruses travelling the gastrointestinal tract. Foodborne viruses can encounter
diverse obstacles on their way to a target cell. The mouth, stomach and intestine contain physical, chemical and biological
barriers that decrease viral count in the lumen and reduce accessibility to its target. In addition, intracellular antiviral
mechanisms are designed to destabilize the virus and neutralize its ability to replicate. BE: brush border enzymes, D:
defensins, DC: dendritic cell, EC: enterocyte, GA: gastric acid, GC: goblet cell, IB: intestinal bacteria, Ig: immunoglobulin,
IM: intestinal mucus, PC: parietal cell, SE: soluble enzymes, SN: submucosal neurons, TJ: tight junction, TLR: toll-like
receptor, VP: viral particle, VR: viral receptor, VS: viral sensor.

Viruses that have survived the above barriers must still penetrate a mucus layer that
covers the luminal epithelium of the GI tract. In the stomach and colon, this gel-like
substance is stratified into an external, less dense layer and an internal layer that is firmly
attached to the epithelium and is more resistant to bacteria colonization, whereas in the
small intestine, only one layer of loosely attached mucus has been described [27]. Mucus is
formed by highly glycosylated proteins known as mucins, which, upon release from goblet
cells (see Figure 1), are able to form a crosslinked network with high water-binding capabil-
ity, giving the mucus its characteristic rheological properties [27]. Intestinal mucus contains
a set of host-derived antimicrobial peptides known as defensins. Defensins’ ability to neu-
tralize mucus viruses depends on several mechanisms, including extracellular aggregation,
envelope disruption and receptor blocking [28]. Mucus also contains dimeric IgA and
lactoferrin, which have antiviral properties reported in vitro and in animal models [23,29].

The gastrointestinal epithelium is lined by cells which are joined by tight junctions
in order to prevent nonspecific passage of luminal material through the paracellular
route. Various cell types can be found in this first cell layer; for a virus to enter cells
of epithelial nature, namely enterocytes and goblet cells (see Figure 1), it must bind a
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specific viral receptor and undergo receptor-mediated endocytosis [30]. Consequently, cells
expressing such receptors become potential virus targets. However, the gut epithelium
also contains cells of immune relevance, such as dendritic cells, and M cells that can be
found in specialized epithelium such as the mucosal lymphoid tissue. The latter are able
to sample and transport luminal antigens [31]; therefore, viral uptake and transcytosis
through M cells may occur without the need of viral receptor expression. Recently, it
was reported that some viruses may facilitate tight junction dissociation, in order to bind
additional co-receptor molecules that are located within the junctional complex [32]. Finally,
opportunistic viral entry through gut epithelium that has been disrupted by a lesion or
where tight junctions are destabilized, has been suggested as an additional mechanism of
infection [33,34].

Once a virus gains access to the intracellular compartment, expression and replication
stages can take place. In the case of RNA viruses, which are the majority among those
targeting the gut, RNA is released from its coating. (+)RNA viruses are translated by
host ribosomes, whereas (−)RNA viruses must first be transcribed into a positive RNA
strand, which can then be translated. The newly translated polypeptide is then cleaved
by viral proteases, generating a set of proteins required for viral genome replication and
capsid organization. Finally, RNA copies are packaged and released, in a process that is
accompanied by the death of the host cell [30]. Recently, some enterovirus species have been
shown to also undergo non-lytic release [35]. It must be noted that upon contact with the
host cell, the virus encounters a new variety of threats. Among them, viral sensors, which
are surface and intracellular molecules from the host’s innate immune system that lead to
the assembly of antiviral effector responses. They recognize molecular patterns either from
the incoming virus or produced during its replication. In the gut, the sensors RIG-I, MDA-5
and NLRP6 activate type III interferons upon virus detection, which stimulate responses
that act locally on the epithelial layer. TLR3, on the other hand, indirectly activates type I
interferon (IFN) responses, which are active in the lamina propria [36]. IFNs can be released
from infected cells and signal to neighboring cells, inducing an antiviral state that decreases
their susceptibility to infection. In turn, viral proteases have evolved to cleave some pattern
recognition receptors, dampening IFN-mediated responses [30]. Finally, epithelial cells are
characterized by fast renewal which may be especially challenging for viruses heading to
a secondary host tissue. Moreover, viral infection can result in accelerated epithelial cell
turnover by a type I IFN-dependent mechanism [37], a response that may limit microbe
spreading in the gut but also potentially affect tissue functionality.

4. General Effects of Enteric Viruses in Gut Health

Viral infection represents 75% to 90% of childhood acute infectious gastroenteritis
in industrialized nations [38]. In adults, viruses are also the leading cause of foodborne
diarrheal diseases [39]. Although other tissues (e.g., brain, lungs) may also be affected, as
shown in Table 1, pathogenic gut viruses commonly cause gastroenteritis, with symptoms
including vomiting and diarrhea. Infectious diarrhea develops as a result of one or more
of the following mechanisms: hypermotility, enhanced epithelial secretion, decreased
osmolyte absorption or increased epithelial permeability [24].

While there is plenty of evidence indicating the pathogenic effect of intestinal viruses,
researchers are starting to focus on the potentially beneficial effects of some viruses on
overall health. It has been reported that murine norovirus infection is able to revert some
of the architecture loss and immunological disturbances that are observed in germ free
mice or when conventional mice are subjected to antibiotic treatment [40]. Furthermore,
it has been suggested that resident viruses can favor intestinal health by downregulating
inflammation signals. This conclusion was drawn after observing that mice treated with a
cocktail of antiviral drugs display higher pathologic scores to chemically-induced colitis, in
comparison to mice that did not receive antivirals [41]. Moreover, upon activation of TLR3
and 7 (which recognize double-stranded and single-stranded viral RNA, respectively),
dendritic cells release IFN beta, an anti-inflammatory cytokine [41].
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Viral molecules signaling through TLR may potentially protect the gut barrier by de-
creasing epithelial permeability. However, the notion of a microbe that is either completely
pathogenic or always beneficial is probably outdated. For example, we have shown that
Poly(I:C), a synthetic ligand that mimics viral double stranded RNA, reduces colon perme-
ability to macromolecules when administered to rats intrarectally [42]. However, the same
virus-like molecule increased ileal permeability when applied ex vivo (see Reference [42]
and Figure 2 for previously unpublished data). Decreasing inflammation and diarrhea
may be considered an evolutionary trait to extend the stay of a given parasite on the host’s
intestinal tract. On the other hand, enhancement of epithelial permeability may potentially
contribute to induce stronger immunity against the pathogen, a response that is highly
sought after by vaccine developers [43].

Figure 2. Claudin 7 protein in the ileal mucosa upon treatment with a TLR3 agonist. Rat ilea
were treated ex vivo for 2 h with either vehicle (saline) or the TLR3 agonist, Poly(I:C) (200 µg/mL).
Claudin 7 (Cld7), a component of tight junctions but also relevant for cell adhesion, was analyzed
by immunofluorescence. In the graph, each line represents one rat (total n = 6) and connects the
value obtained in the vehicle-treated portion of ileum with the value obtained in the corresponding
Poly(I:C)-treated tissue. There was a loss of specific (lateral) signal in every case. Bar = 25 µm,
* p < 0.05 by paired t test. Original data from Loreto Olavarría-Ramírez.

5. Mucosal Barrier Changes under Viral Infection

A dynamic entity such as the mucosal barrier, readily adapts some of its features in
response to the environment and viruses have taken advantage of this plasticity in diverse
ways. While the ability of rotavirus to suppress IFN-mediated responses facilitates its
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infective process without inducing substantial inflammation of the bowel mucosa [44],
noroviruses have deleterious effects on the intestinal epithelium, disturbing both cell
function (i.e., increased turnover and enhanced apoptosis of enterocytes), as well as tissue
architecture and physiology which results in reduced absorptive surface and increased
permeability. The later was associated with reduced tight junction protein expression [45].
Also, increased numbers of intraepithelial lymphocytes were observed upon duodenal
norovirus infection [46]. Murine astrovirus, on the other hand, is able to selectively infect
the mucus-secreting goblet cells and functionally modify mucus in a way that suggests an
alteration in host susceptibility to infection [47].

Some viruses (e.g., poliovirus) induce alterations of protein traffic and impact secretory
pathways. This can result in a reduced expression of MHC class I molecules, as shown
in vitro using a chimpanzee lymphoblastoid cell line [48]. In addition, a non-structural
protein found in picornaviruses which, like viroporins, can induce the formation of pores
in the host’s cell membrane, disrupt ion homeostasis [49], thus potentially interfering with
vesicle-dependent secretory function.

The gut mucosal barrier function is strongly influenced by environmental stressors
including dietary changes and dysbiosis. Similarly, alterations of the enteric nervous
system, a local regulator of intestinal physiology, can resonate on the gut barrier function.
We will discuss the impact of viral infection on these three elements, but also how they
may influence the mucosal susceptibility to viral attack.

6. Interactions between Gut Bacteria and Potentially Pathogenic Viruses

Healthy gut microbiota has been generally syndicated as protective against pathogens.
Bacteria are the most studied component of gut microbiota and their contribution to the
host’s defense against pathogen invasion has been extensively shown. The mechanisms
involved in protection against other bacteria, a phenomenon known as colonization resis-
tance, can be indirect, such as displacement of noxious microbes due to competition for
space and nutrients and/or enhancement of mucosal immune responses [50]. In addition,
some commensal (as well as probiotic) bacteria have the ability to directly kill pathogenic
entities [50].

Remarkably, a few viruses, including certain poliovirus and norovirus, require the
presence of bacteria in order to become infective or to enhance their infectivity; others can
be further benefited by these prokaryotic organisms (see [51–53] for a few comprehensive
reviews). Bacterial surface products, such as lipopolysaccharides and other glycans, can
act as stabilizers for viral particles, increasing their thermostability and resistance to
disinfectant solutions containing bleach. Lipopolysaccharides also enhance poliovirus
ability to attach to their eukaryotic cell targets [51]. In vitro studies suggest that viral
genetic recombination can be facilitated by commensal bacteria acting as a reservoir for
genetic material derived from multiple viruses [53]. Clinical evidence that point to (but
do not discriminate between) the above mechanisms include the following: (1) the gut
bacterial composition of patients affected by norovirus-related gastroenteritis was different
from the one reported for asymptomatic norovirus carriers [54]; (2) a group of elderly
residents from a health care facility who ingested a probiotic drink daily during at least
two months displayed significantly less persistent fever upon winter season infection with
norovirus, compared to elderly patients who did not ingest the probiotic bacteria [55]. The
probiotic drink, containing Lactobacillus casei strain Shirota, was later shown to decrease
the risk of infection, as well as the cell numbers of noxious bacteria including Clostridium
difficile in elderly patients [56]; (3) children affected by gastroenteritis associated with
viral-bacterial mixed infections had a significantly higher disease severity score than those
children experiencing virus-only infection [57]. These reports support the notion that
bacterial context has a clinically relevant impact on virus pathogenicity. This observation
may also be true for other organs that are susceptible to viral infection, such as the liver [58].

Studies addressing the effects of viruses on commensal microbiota are still scarce. Gut
dysbiosis has been reported in patients infected with HIV, HCV and HBV, although the
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main target of these pathogens is not the intestine [53]. Regarding gastrointestinal viruses,
a study found a small cohort of norovirus-infected patients that displayed gut dysbiosis,
consisting of significant loss of Bacteroidetes with an increase of Proteobacteria [59]. In
the same investigation, it was found that a single operational taxonomic unit of Escherichia
coli partially contributed to the increase in Proteobacteria [59]. A later study demonstrated
the ability of human norovirus to efficiently bind the cell membrane and bacterial pili of
certain species from the Proteobacteria phylum [60]. In a different context, the interaction
of influenza virus and bacteria (i.e., Streptococcus pneumoniae) enhances pathogen in vivo
fitness and translocation to the mouse middle ear, resulting in higher tissue bacterial burden
and higher mortality than the observed without having pre-mixed the bacteria and the
virus [61]. Whether commensal, non-pathogenic gut bacteria acquire infective features
upon interaction with viruses remains to be investigated.

7. Malnutrition and Gut Viral Infections

The notion of an interaction between undernutrition and infection, initially proposed
by Scrimshaw et al. in 1959 and later published as a World Health Organization monograph
in 1968 [62], remained relatively unchanged throughout several decades. Here, the pair of
infection and malnutrition was associated to impaired immunity and increased mortality.
In this vicious cycle, individuals debilitated by infection (including gastroenteritis with
diarrhea) were less likely to provide for their families and communities. Malnourished
children were predisposed to an early death from infectious diseases [62]. Although
the current status of food supply, as well as the life expectancy, have improved almost
worldwide and infection is no longer the first cause of death in the majority of continents,
with the exception of Africa [63], just a decade ago more than a third of deaths in children
under five could still be associated with inadequate nutrition [64].

While severe malnutrition is often associated with higher rates of infection or wors-
ening of symptoms, this is not the case for all types of enteric viruses. This was shown in
an analysis data retrieved from the Global Enteric Multicenter Study, in which children
with moderate-to-severe diarrhea were compared with age-matched healthy controls and
classified as having acute malnutrition or better nutritional status [65]. Here, an inverse
interaction was found between the association of norovirus with diarrhea and nutritional
status, meaning that norovirus had a 28% weaker association with diarrhea in malnour-
ished children than in those with better nutritional status [65]. Moreover, fatality associated
with presence of every pathogen included in the study was higher among malnourished
children, but in children with norovirus this increase was less pronounced [65]. A potential
reduction in the expression of surface proteins required for viral access to the target cell is
worthy of investigation, as it would contribute to clarify the association of malnutrition
and decreased efficacy of oral vaccines, that is still a subject of controversy [66].

Today, in addition to protein-energy malnutrition, micronutrient supply is a focus
of research for those investigating susceptibility to enteric infection as well as potential
treatments. For example, an association between vitamin D deficiency (in the form of
serum 25-hydroxy vitamin D3) and rotavirus-induced diarrhea was reported for Turkish
pre-school children [67]. In vitro experiments using porcine intestinal epithelial cells have
shown that vitamin D is able to inhibit the replication of porcine rotavirus through the
retinoic acid-inducible gene I (RIG-I) signaling pathway [68], which is known to promote
antiviral responses in the intestinal epithelium, including expression of type I interferons
(IFN-β) [69]. Another study showed a prevalence of zinc deficiency in a population of
Nigerian children suffering from diarrhea, whose stools were positive for enteric viral
pathogens in 62% of cases [70].

Malnutrition is a broad term that currently includes both undernutrition as well as
excess energy intake. In this regard, relatively few studies have investigated the association
between the combination of energy-rich diets/obesity/overweight and susceptibility to
viral infection. It has been shown that obese and overweight children and adolescents
present rotavirus infection at approximately twice the rate than their lean counterparts [71].
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Moreover, in children and adolescents experiencing type-1 diabetes, the onset of this
metabolic disease is accompanied by enterovirus infections in 79% of cases [72].

Prolonged consumption of an energy-rich diet can impact gut microbiota composition,
with distinct bacterial genera and species being more strongly affected (for a review,
see [73]). Adding to the many effects of diet-induced dysbiosis, reductions in “good gut
bacteria” could in turn, lead to opportunistic viral attack; to our knowledge, this has
not been tested directly. However, we and others have found a reduction in members
of the Lactobacillaceae family in the gut content of rodents fed a high-fat diet (see [74,75]
and Figure 3). Lactic acid bacteria have been shown to protect both human and animal
intestinal epithelium from virus infection through diverse mechanisms, including induction
of ROS release and competition for attachment sites on the epithelium [76]. On the contrary,
patients experiencing viral diarrhea have fewer Lactobacillus than healthy volunteers [77].

Figure 3. Relative abundance of Lactobacillaceae family in the caecal contents of rats under high fat
(HF) diet. Rats received a diet containing 62% calories from fat from postnatal day 30 onwards.
Age-matched controls were fed regular chow containing only 14% calories from fat. Bacterial DNA
isolated from caecal contents was subjected to sequencing directed against the V3-V4 region of 16S
rRNA gene, using an Illumina MiSeq platform. * p < 0.05 by PERMANOVA, n = 5. Original data
from Alejandra Lopez-Aguilera and Johana Eyzaguirre-Velásquez.

8. Enteric Neurons and Mucosal Barrier under Viral Attack

The intestinal tissue is innervated by two main types of neurons, both of which can
undergo viral infection: a first division, characterized by their anatomical connection with
distant tissues, are called intestinofugal neurons; a second subset of neurons are entirely
contained within the gut tissue; these, and the glia supporting them, constitute the enteric
nervous system (ENS) [78,79].

Viral effects on ENS that lead to gastrointestinal dysmotility, and therefore of concern
to the myenteric plexus, have been significantly more investigated than those effects
on secretion and permeability, which are functions regulated by the submucosal plexus.
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The investigations of Lundgreen et al. were key to demonstrate the significance of the
submucosal plexus on the establishing of viral diarrhea [80]. They performed Ussing
chamber experiments to measure the changes on potential difference across the gut wall,
which represent electrolyte secretion and were more pronounced in tissues taken from
rotavirus-infected mice, compared to healthy ones. This difference was less noticeable
when tetrodotoxin or lidocaine, drugs that block nerve function, were used. The authors
estimated that at least two-thirds of the mucosal secretory response to this virus could
be attributed to the ENS [80]. Electrical conductance (i.e., permeability) of the gut tissue
was also significantly increased by rotavirus, however in this case, pharmacological nerve
blockade did not affect tissue conductance [80].

In addition, the intestine is a reservoir of neurotropic viruses, which are not necessarily
classified as enteric viruses but find refuge within cells of the enteric nervous system (ENS).
For example, varicella zoster virus targets human gut enteric nerves, which then become a
source of latent virus able to reactivate and produce disease [81,82]. There is also evidence
of duodenal submucosal and myenteric ganglia infected by herpes simplex virus type
1 [83]. Most commonly, enteric glial cells are the main targets for neurotropic viruses
including HIV and adenovirus 41 [84]. The presence of such viral toxins and antigens
in the ENS, in particular the submucosal plexus, could potentially disturb the mucosal
barrier via over-activation of the immune response. Finally, the gut-brain axis has been
implicated in SARS-CoV-2 infection. It has been proposed that the virus travels along the
neurons [85]. In this sense, inhaled SARS-CoV-2 virions could access the olfactory tract,
and by anterograde multisynaptic transport, potentially infect the gut through vagal fibers.
The extent of interaction between the virus and the vagus/ENS remains to be unraveled.

9. Concluding Remarks

The interaction between enteric viruses, gut bacteria and the intestinal tissue is com-
plex and remains an open field of scientific research. Gaining knowledge about the mecha-
nisms implicated in virus interaction with other components of the gut ecosystem could
lead to a better understanding of the pathogenesis of gastrointestinal infections and may
allow for improvement of the current therapeutic strategies. The high inter-individual
variability of the gut virome should be considered as a key factor for determining how the
incidence of infection and the intensity of gastrointestinal symptoms can vary within a
population. Even, the type/extent of interaction that the host’s cells and bacteria sustain
with a potentially pathogenic virus could determine individual susceptibility to intestinal
disease. In addition, studying the virus-ENS interaction and its influence on the gut-brain
axis could expand our knowledge regarding (1) the impact of viral invasion on gastroin-
testinal mucosal functions and (2) the use of nerve pathways by pathogenic viruses from
the gut in order to target the brain and vice versa.
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