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Abstract

Complex-valued shift-invariant canonical polyadic decomposition (CPD) under a spatial phase 

sparsity constraint (pcsCPD) shows excellent separation performance when applied to band-pass 

filtered complex-valued multi-subject fMRI data. However, some useful information may also 

be eliminated when using a band-pass filter to suppress unwanted noise. As such, we propose 

an alternating rank-R and rank-1 least squares optimization to relax the CPD model. Based 

upon this optimization method, we present a novel constrained CPD algorithm with temporal 

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/
licenses/by/4.0/

(Corresponding author: Li-Dan Kuang, kuangld@csust.edu.cn). 

This article has supplementary downloadable material available at https://doi.org/10.1109/TNSRE.2022.3198679, provided by the 
authors.

HHS Public Access
Author manuscript
IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2022 October 
28.

Published in final edited form as:
IEEE Trans Neural Syst Rehabil Eng. 2022 ; 30: 2630–2640. doi:10.1109/TNSRE.2022.3198679.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


shift-invariance and spatial sparsity and orthonormality constraints. More specifically, four steps 

are conducted until convergence for each iteration of the proposed algorithm: 1) use rank-R 
least-squares fit under spatial phase sparsity constraint to update shared spatial maps after phase 

de-ambiguity; 2) use orthonormality constraint to minimize the cross-talk between shared spatial 

maps; 3) update the aggregating mixing matrix using rank-R least-squares fit; 4) utilize shift-

invariant rank-1 least-squares on a series of rank-1 matrices reconstructed by each column of 

the aggregating mixing matrix to update shared time courses, and subject-specific time delays 

and intensities. The experimental results of simulated and actual complex-valued fMRI data show 

that the proposed algorithm improves the estimates for task-related sensorimotor and auditory 

networks, compared to pcsCPD and tensorial spatial ICA. The proposed alternating rank-R 
and rank-1 least squares optimization is also flexible to improve CPD-related algorithm using 

alternating least squares.

Keywords

Canonical polyadic decomposition (CPD); complex-valued fMRI data; orthonormality; shift-
invariance; source phase sparsity

I. Introduction

Tensor decomposition of multi-subject functional magnetic resonance imaging (fMRI) data 

not only can retain multiway linkages and interactions, but also can extract common 

spatiotemporal information which can be used for studying the brain function and brain 

disease diagnose [1], [2], [3], [4], [5]. Canonical polyadic decomposition (CPD), one of 

the typical tensor decomposition methods, has been increasingly applied to multi-subject 

fMRI data. Different from matrix methods such as independent component analysis (ICA) 

[6], [7], negative matrix decomposition and dictionary learning [8], [9], [10], [11], [12], 

CPD can well retain the high-order structure information of multi-subject fMRI data and 

preserve the uniqueness under some mild conditions [13]. Generally speaking, CPD treats 

multi-subject fMRI data as a three-way tensor in terms of spatial, temporal and subject 

modes [14], and decomposes fMRI data as shared spatial maps (SMs), shared time courses 

(TCs), and subject-specific intensities [15], [16], [17]. However, the complex- valued multi-

subject fMRI data inevitably inherit high noisy nature and high inter-subject spatiotemporal 

variability. Therefore, the complex-valued multi-subject fMRI data do not well conform pure 

CPD model, and CPD without constraint shows unsatisfying separation performance. With 

regard to inter-subject temporal variability caused by the hemodynamic delay, Mørup et 
al. proposed a shift-invariant CPD by incorporating time delays into the CPD model [18]. 

Based on an alternating least squares (ALS) updating rule, the shift-invariant CPD utilizes 

a frequency-domain method to estimate time delays and shared TCs, which costs less 

computation time and is more accurate than the existing time-domain exhaustive searching 

strategy [18].

Complex-valued fMRI data have been demonstrated to contain additional useful information 

beyond the typically-used magnitude-only fMRI data [6], [17]. In addition, the SMs 

extracted from complex-valued fMRI data inherit the small spatial source phase 
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characteristic. More specifically, the phase values of blood oxygenation level dependent 

(BOLD) -related voxels focus on small values in the range of [−4/π, 4/π], while unwanted 

voxels tend to have large phase values in the range of [−π, −4/π) and (4/π, π] [6], [17]. 

Based on this small spatial source phase characteristic, Kuang et al. proposed a complex-

valued shift-invariant CPD with a phase sparsity constraint (shorted as pcsCPD) [17]. The 

pcsCPD first updates shared SMs, shared TCs, subject-specific time delays and subject 

intensities using ALS, and second updates the shared SMs based on the smoothed λ0 

norm model of phase sparsity constraint. The pcsCPD obviously outperformed the complex-

valued shift-invariant CPD, tensorial spatial independent component analysis (T-sICA) and 

CPD when applied to the complex-valued multi-subject fMRI data with a band-pass filter 

[17]. However, some useful low- and high-frequency information may be lost by using the 

filtered fMRI data.

Besides the small spatial source phase characteristic, some studies incorporated spatial 

independence into CPD [13], [15], [16], [20], [21], [22], such as popular T-sICA [15], 

CPD based on a single mode blind source separation [13] and a tensorial decomposition 

method of combining ICA and shift-invariant CPD (shorted as ICA-sCPD) [16]. These 

methods first extracted shared SMs and aggregating mixing matrix using widely-used spatial 

ICA [13], [15], [16], [20], [21], [22]. Subsequently, these methods second obtained the 

shared TCs, subject-specific time delays and intensities (taking ICA-sCPD for example) by 

rank-1 ALS on a series of rank-1 matrices that were constructed by each column of the 

aggregating mixing matrix. Due to relax the strict CPD model of multi-subject fMRI data 

using rank-R ICA (R is number of components) and rank-1 ALS, ICA-sCPD and T-sICA 

obviously achieved better separation performance than shift-invariant CPD and CPD which 

only exploited rank-R ALS. However, these methods relied on ICA and could not fully take 

advantage of structure information of three-way tensor due to different cost functions of ICA 

and rank-1 ALS.

In addition, the spatial orthogonality among components has been taken into account in 

some studies. The spatial orthogonality constraint has been verified reducing the correlation 

and cross-talk between SM components and discard the unimportant information [16], [23], 

[24]. Above all, our contributions are as follows:

1. We first propose a new alternating update rule that combines rank-R least square 

to update shared SMs and a series of rank-1 least squares to update shared TCs 

and subject intensities, named as ARRR1LS. The proposed ARRR1LS that aims 

at minimizing the error squares of CPD model, can relax the strict CPD models 

and outperforms several state-of-the-art CPD methods.

2. Based on ARRR1LS, we propose a novel constrained CPD with shift-invariance 

and spatial phase sparsity and orthonormality constraints (shorted as sARRR1LS-

PO), to comprehensively alleviate the high noise nature and high spatiotemporal 

of complex-valued multi-subject fMRI data.

3. Complex-valued finger-tapping fMRI data experiments verify that the proposed 

sARRR1LS-PO method can well extract task-related sensorimotor and auditory 

components not only in raw fMRI data analysis but also in filtered fMRI data 
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analysis. Besides, sARRR1LS-PO gets better task-related shared SM and TC 

estimates in intact but noisier raw fMRI data analysis than in incomplete filtered 

fMRI data. This indicates that some meaningful information is lost by the band-

pass filter strategy.

We organize our paper as follows. We firstly describe details of our proposed ARRR1LS 

and sARRR1LS-PO methods in Section II. We secondly introduce the simulated and 

experimental fMRI datasets as well as the performance indices for algorithm evaluation 

in Section III. We thirdly give results of simulated and experimental fMRI data experiments 

to show the advantage of our proposed methods in Section IV. We lastly have conclusion and 

discussion in Section V.

II. The Proposed Methods

Notations:

We denote scalar, matrix, and tensor as italic lower-case letter (e.g., a), bold lower-

case letter (e.g., a), bold upper-case letter (e.g., A), and underlined bold capital letter 

(e.g., A), respectively. We here assume X = xv, j, k ∈ ℂV × J × K as three-way (voxel 

× time × subject) multi-subject fMRI data, S ≜ s1, ⋯, sR = sv, r ∈ ℂV × R as shared 

SMs, B ≜ b1, ⋯, bR = bj, r ∈ ℂJ × R as shared TCs, T ≜ τ1, ⋯, τR = τk, r ∈ ℝK × R

as subject-specific time delays and C ≜ c1, ⋯, cR = ck, r ∈ ℂK × R as subject-specific 

intensities, where V is the number of in-brain voxels, J is the number of time points, 

K is the number of subjects, R is the number of components, and v = 1, . . . , V, j = 

1, . . . , J, k = 1, . . . , K, r = 1, . . . , R. X(k) ∈ ℂV × J(k = 1, …, K) denotes the fMRI data 

of subject k. X(1) ∈ ℂV × JK, X(2) ∈ ℂJ × V K and X(3) ∈ ℂK × V J are the mode-1, mode-2, 

mode-3 matrices of X. ⨀ is the Khatri-Rao product. Re{·}, Im{·}, |·|, and θ{·} are the real, 

imaginary, magnitude and angle parts of a complex-valued variable.

In this section, we first introduce CPD model of multi-subject fMRI data, second present the 

ARRR1LS updating rule, and then narrate the detailed procedure of sARRR1LS-PO.

A. CPD Model of Multi-Subject fMRI Data

We assume the three-way complex-valued multi-subject fMRI data X conforms to the CPD 

model as follows:

X = ∑r = 1
R sr ∘ br ∘ cr + E . (1)

CPD decomposes X into R rank-1 tensors and each rank-1 tensor includes the outer 

product of shared SMs sr = sv, r ∈ ℂV , shared TCs br = bj, r ∈ ℂJ, and subject intensities 

cr = ck, r ∈ ℂK. Calculating R is a NP-hard problem [25]. The classical ALS alternately 

estimates sr, br, and cr by minimizing the following error squares:
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min
S, B, C

∑v, j, k xv, j, k − ∑r = 1
R sv, rbj, rck, r

2
/V JK . (2)

Thus shared SMs S, shared TCs B, and subject intensities C are alternatively updated until 

convergence as follows:

S X(1)(C ⊙ B)†T , (3)

B X(2)(C ⊙ S)†T , (4)

C X(3)(B ⊙ S)†T . (5)

B. Alternating Rank-R and Rank-1 Least Squares (ARRR1LS)

Based on CPD model given in (1), the proposed ARRR1LS firstly updates shared SMs S 

using (3). Secondly, ARRR1LS updates the aggregating mixing matrix M = C ⊙ B ∈ ℂJK × R

which concludes the information of B and C using S by a rank-R least-square fit:

M S†X(1)
T . (6)

Subsequently, each column vector of M denoted as mr ∈ ℂJK × 1 can be transformed as a 

rank-1 matrix Mr ∈ ℂJ × K according to the following rule:

Mr = mr(1:J), ⋯, mr((k − 1)J + 1:kJ), ⋯,
mr((K − 1)J + 1:KJ) , (7)

where mr((k−1)J +1 : kJ) is the vector with the ((k−1)J + 1)th to k J th elements of mr, k = 

1,· · · , K. The Mr can be written as:

Mr = brcrT + Er, (8)

where Er is the crosstalk from other components. The ARRR1LS then updates br and cr by 

rank-1 least-square fits based on Mr (r = 1, . . . , R), and we have:

br MrcrT†,

cr Mrbr
T† .

(9)

The ARRR1LS iteratively updates S based on (1) and B and C using (9) until convergence. 

Due to utilizing the rank-1 least-square fit, the simple but efficient ARRR1LS not only 

relaxes the compact CPD model but also is much faster than classical ALS.
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C. Proposed Constrained CPD Based on ARRR1LS

Based upon ARRR1LS updating rule and shift-invariant CPD model, we propose a 

constrained CPD by incorporating the spatial phase sparsity and spatial othonormality 

constraints into shift-invariant CPD, shorted as sARRR1LS-PO, to decompose complex-

valued multi-subject fMRI data with high noisy and high spatiotemporal variability.

1) The Cost Function: The proposed sARRR1LS-PO assumes the complex-valued 

multi-subject fMRI data conforms to the shift-invariant CPD model as follows [17]:

xv, j, k = ∑r = 1
R sv, rbr j − τk, r ck, r + ev, j, k, (10)

where br(j − τk,r) denotes bj,r with time delay τk,r. More specifically, 

br
(k) = br 1 − τk, r , ⋯, br J − τk, r

T  is obtained by cyclic left shifting br with 

τk,r points if τk,r > 0, otherwise cyclic right shifting br with τk,r 

points. B(k) ≜ [b1
(k), ⋯, bR

(k)] = br j − τk, r ∈ ℂJ × R denotes the TCs of subject k. 

E = ev, j, k ∈ ℂV × J × K is the residual tensor.

Aiming at exploiting the small phase characteristic of shared SMs and eliminating the 

crosstalk between shared SMs, sARRR1LS-PO additionally incorporates the spatial phase 

sparsity and orthonormality constraints into complex-valued shift-invariant CPD model. 

As a whole, sARRR1LS-PO iteratively updates the shared SMs S, the shared TCs B, the 

subject-specific time delays T and intensities C by minimizing the following cost function 

until convergence:

argmin
S, B, T, C

∑
v, j, k

xv, j, k − ∑r = 1
R sv, rbr j − τk, r ck, r‖/V JK

+λ∑v = 1
V ∑r = 1

R fσ sv, r , θ sv, r /V

s . t . STS = I

(11)

where ∑v = 1
V ∑r = 1

R fσ sv, r , θ sv, r  is a smoothed λ0 norm regularization to minimize the 

large-phase values of S, which is defined as [17]:

fσ sv, r , θ sv, r

=
1 − exp − sv, r

2/2σ2 , θ sv, r ≥ θr
tℎ

1, θ sv, r < θr
tℎ

(12)

where exp{·} is the exponential function and θ(sv,r) denotes the phase value of phase-

corrected sv,r and θr
tℎ is a threshold of |θ(sv,r)| ∈ [0, π] for adding sparsity constraint on the 

unwanted voxels. In order to retain more BOLD-related voxels, θr
tℎ is defined to segment the 

largest V/3 values of |θ(sv,r)| as suggested in [17].
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2) First Update of S Based on Rank-R Least-Square Fit Under a Phase 
Sparsity Constraint: In order to reduce voxels with large phase values of shared SMs 

S, we obtain phase-corrected shared SMs by an accurate phase ambiguity based on the 

maximal correlation coefficient between the phase-rotated shared SM component and its 

magnitude, and then present the first update rule of S based on rank-R least-square fit with 

spatial phase sparsity constraint.

Firstly, we obtain the current shared SMs by S = X(1) M†T. The aggregating mixing matrix 

M includes the information of shared TCs, subject-specific time delays, and intensities, and 

equals to

M =

b1
(1)c1, 1 b2

(1)c1, 2 ⋯ bR
(1)c1, R

b1
(2)c2, 1 b2

(2)c2, 2 ⋯ bR
(2)c2, R

⋮ ⋮ ⋱ ⋮
b1

(K)cK, 1 b2
(K)cK, 2 ⋯ bR

(K)cK, R

. (13)

We then perform phase de-ambiguity on each shared SM estimate sr(r = 1, . . . , R) based on 

the maximal correlation coefficient between the phase-rotated shared SM component and its 

magnitude |sr|:

θ r = arg max
0 ≤ θ ≤ 2π

corr exp iθr sr ⋅ BM( ± π/4), sr 2, (14)

where θr is the final rotation angle, “corr{·}” is correlation computation and BM(±π/4) is 

the binary mask with phase range [−4/π, 4/π] which can be generated as [19]:

BM( ± π/4) =
1, if θ sv, r ∈ [ − 4/π, 4/π],
0, otherwise.

(15)

By masking the phase-corrected exp{iθr}sr with BM(±π/4), the de-noised SM can be 

achieved. We here let θr = 2π/k, k = 1, . . . K, so there are K rotation angles for detecting, 

i.e., 2π/K, · · ·, 2π. The lager K is, the more accurate the detected rotation angle θr is. We set 

K = 128 in this paper. Therefore, the phase after de-ambiguity for sr is θ sr = θ(exp{iθr}sr).

According to the cost function of the proposed method (i.e., (11)), we use the steepest 

descent method to first update the shared SMs S with phase sparsity constraint:

S X(1)M†T − λΔS MHM −1, (16)

and ΔS = Δsv, r ∈ ℂV × R can be calculated as follows [17]:

Δsv, r = exp θ sv, r fσ′ sv, r , θ sv, r , (17)

where fσ′ sv, r , θ sv, r  is the derivative of fσ{|sv,r|, θ(sv,r)} equaling to [17]:
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fσ′ sv, r , θ sv, r

=
sv, r
σ2 exp − sv, r

2

σ2 , θ sv, r ≥ θr
tℎ,

0, θ sv, r < θr
tℎ .

(18)

The parameter σ should be slowly decreased to escape from local minima and singular 

values [26], [27], thus we here let σiter = γσiter‐1, where ‘iter’ is the iteration index, and γ is 

the decrease rate, and 0.9 < γ < 1 (we set γ = 0.99 here).

3) Second Update of S by Spatial Orthonormality Constraint: We secondly 

update the shared SMs S by adding the spatial orthonormality constraint. We can perform 

the economical singular value decomposition (SVD) on S, and obtain orthonormal S based 

on the following computations:

[U, Σ, D] = svd(S),
S UDH,

(19)

where svd(·) is economical SVD which decomposes S into a left singular matrix U ∈ ℂV × R, 

a diagonal matrix Σ ∈ ℂR × R and right singular matrix D ∈ ℂR × R.

4) Updates of B, T, and C by Complex-Valued Shift-Invariant Rank-1 Least-

Square Fit: After obtaining the shared SMs, we can update the aggregating mixing matrix 

M based on rank-R least-square fit using (6), and obtain a series of rank-1 matrices Mr 

based on (7). We then perform the complex-valued shift-invariant rank-1 least-square fit on 

Mr, and have

mr, k = br
(k)ck, r + er(k), (20)

where mr,k is the kth column vector of Mr. We can have the following updates of br and cr 

based on shift-invariant rank-1 least-square fit by minimizing the norm of er(k) [16]:

br Mr(cr ⋅ exp{−i2πf − 1
J τr})

T†
,

br br/ br ,

ck, r (mr, k)T(br
(k))T†,

k = 1, …, K, and cr cr/ cr ,

(21)

where “·” is dot product, i = −1, br ∈ ℂF  and Mr ∈ ℂF × K are the frequency-domain forms 

of br and Mr.

For the update of τr, the minimization of the least-square error ‖mr, k − br
(k)ck, r‖

2
 in (20) can 

be expanded as
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argmin
τk, r

mr, k − br
(k)ck, r

2

= argmin
τk, r

mr, k
2 + br

(k)ck, r
2 − 2Re{mr, k

T }Re{br
(k)ck, r}

−2Im{mr, k
T }Im{br

(k)ck, r}

(22)

As mr,k and br
(k) are cyclic shifted based on the time delay τk,r, the first and second terms in 

(22) do not vary with τk,r. As such, the update of τk,r maximizes the sum of the third and 

fourth terms in (22) as follows:

argmax
τk, r

2Re{mr, k
T }Re{br

(k)ck, r} + 2Im{mr, k
T }Im{br

(k)ck, r} . (23)

We further expand (23) according to supplementary materials, and thus the τk,r can be 

updated by:

τk, r = argmax
1 ≤ j ≤ J

φk, r(j), τk, r = τk, r − J + 1,
k = 1, …, K .

(24)

For the detail derivation of (24) from (23), please see supplementary materials. The time 

delay τk,r in (24) is integer, which is easier and faster to estimate than non-integer time delay 

[18]. The shared SMs sr, shared TCs br, subject-specific time delays τr, and intensities cr (r 
= 1, . . . , R) are relatively updated until convergence.

The proposed sARRR1LS-PO (the code is available in https://github.com/LidanKuang/

CPD_SARRR1LS-PO) can relax CPD model, capture large spatiotemporal variabilities and 

avoid increasing crosstalk between components of noisy complex-valued multi-subject fMRI 

data. In order to show the difference of pcsCPD, T-sICA, and the proposed sARRR1LS-PO, 

we provide a graphical summary of the three methods in Fig. 1.

III. Experimental Methods

In order to inspect the advantage of the proposed ARRR1LS for decomposing multi-subject 

fMRI data, we compare ARRR1LS with several popular CPD methods for both the following 

simulated and experimental fMRI data analyses. The supplementary materials represent the 

detailed comparison results of ARRR1LS and several CPD methods, and show the obvious 

higher separation performance of ARRR1LS in both simulated and experimental fMRI data 

analyses.

Furthermore, to evaluate the efficacy of the proposed sARRR1LS-PO, we compare 

sARRR1LS-PO with T-sICA and pcsCPD by conducting both simulated and experimental 

complex-valued multi-subject fMRI data experiments. The widely-used complex-valued 

entropy bound minimization (EBM) algorithm [28] was selected for the ICA part of T-sICA. 

The estimated time delays range from −10~10 points. For pcsCPD and sARRR1LS-PO, the 

parameters σ0 and λ are respectively set to be 2 and 4 for both simulated and experimental 
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fMRI data as suggested in [17]. We de-noise each shared SM estimate sn via the phase 

de-noise method in [19]. We set εiter_min = 10−6 and itermax = 200 for each method. We 

repeat each algorithm 20 times for each case.

To show the advantage of complex-valued fMRI data analysis, we also compare our 

proposed method to the real-valued ICA-sCPD [16]. We also conduct real-valued ICA-sCPD 

on residual fMRI data after filtering to inspect the missing information. We choose real-

valued Infomax algorithm [29] for ICA part of real-valued ICA-sCPD.

A. Simulated fMRI Data

We here extend real-valued simulated multi-subject fMRI datasets in [16] into complex-

valued forms. The simulated multi-subject fMRI datasets are generated by simulation 

toolbox SimTB at https://trendscenter.org/software/simtb/ [30], [31]. We modify SimTB to 

create the complex-valued fMRI datasets. For the activated voxels of SMs, we uniformly 

range their phase values from −π/18 to π/18 since the phase difference induced by task 

activation is typically less than π/9 [32], [33]. In contrast, the phase values of non-activated 

voxels for each SM range uniformly from −π to π. Each dataset contains 10 subjects, 

and each subject has 30 components. For each component, the SM contains 100 × 100 

voxels (7688 in-brain voxels), and the TC includes 160 time points with TR = 2 seconds. 

Thus, after removing the out-brain voxels, the size of simulated multi-subject fMRI data is 

7688 × 160 × 10. There is a task-related component for each subject as shown in Fig. 5, 

which is generated by a block design (40 seconds on, 30 seconds off) with a hemodynamic 

response function. We further change the SM activations and add shifted TCs with different 

time delays for each subject to simulate the spatiotemporal variability across subjects. 

Specifically, the SM activation changes include x and y translation changes with a uniform 

distribution U ( − 3, 3) (i.e., the maximal horizontal or vertical translation 3 voxels), rotation 

changes were with U ( − 30, 30) (i.e., the maximal rotation 30 degrees in a counter-clockwise 

or clockwise direction) and spread changes with U (1 − 0.12, 1 + 0.12) (i.e., the maximal 

contraction or expansion 0.12). To investigate the noise effect, we also add the Gaussian 

noise with different signal noise ratio (SNR) levels. The SNR is defined as 20lg σs/σn dB , 

where σs and σn are respectively the temporal standard deviations of the source signal and 

Gaussian noise. We set the number of component to be 30 (i.e., ground truth) for each 

algorithm.

B. Experimental fMRI Data

The experimental fMRI datasets used in our paper were collected from 16 subjects 

performing a finger-tapping motor task while receiving auditory instructions, and have been 

studied in [6], [16], [17], and [19]. All participants signed IRB-approved informed consent 

at the University of New Mexico. The experiments were performed on a 3T Siemens TIM 

Trio system with a 12-channel radio frequency (RF) coil, and used a standard Siemens 

gradient-echo EPI sequence to store real and imaginary data separately. The block design in 

the experimental paradigm is set to be alternating periods of 30 seconds on (finger tapping) 

and 30 seconds off (rest). Each participant was collected with 165 whole head fMRI images. 

We used the following parameters: field-of-view = 24 cm, slice thickness = 3.5 mm, slice 
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gap = 1 mm, number of slices = 32, matrix size = 64 × 64, TE = 29 ms, TR = 2 s, flip angle 

= 70 degrees. We preprocessed the data using the SPM software package, co-registered 

the data using INRIAlign to compensate for movements in the fMRI time series images, 

and spatially normalized images into the standard Montreal Neurological Institute space. 

After spatial normalization, the data (originally acquired at 3.75 × 3.75 × 4.5 mm3) were 

slightly sub-sampled to 3 × 3 × 3 mm3, resulting in 53 × 63 × 46 voxels. Then, the images 

were spatially smoothed with a 10 × 10 × 10 mm3 full width at half-maximum Gaussian 

kernel. Subsequently, we also eliminated noise by performing an 8~150 mHz band-pass 

filter process on raw complex-valued fMRI data [17] to comprehensively investigate our 

proposed method and compared methods on both raw and filtered complex-valued fMRI 

data. When analyzing the experimental fMRI data, we show the separation performance of 

our proposed method for both the task-related sensorimotor and auditory components. We 

choose the number of components to be 50 for all methods in complex-valued experimental 

fMRI data analysis as suggested in [17].

C. Performance Indices

For the separation performance evaluation of simulated and experimental fMRI data, we 

utilize the widely-used absolute Pearson correlation coefficient ρ between an estimate and its 

reference. The simulated data include references as the ground truth. For the experimental 

fMRI data, we use a group general linear model (GLM) map (performing one sample 

t-test on subject-specific GLM results and p < 0.05 for magnitude-only fMRI data) as 

task-related sensorimotor component in Fig. 2(a), which also has been used in [6], [16], [17], 

and [19]. Besides, we generate the task-related sensorimotor TC references by convolving 

the stimuli with the canonical SPM hemodynamic response functions in Fig. 2(b). The ρ 
values between magnitude parts of shared SMs and TCs and corresponding references are 

evaluated. Moreover, in order to evaluate the phase quality of SM and TC estimates, we 

calculate the ρ value between source phase mask BM(±π/4) of shared SM estimate and its 

SM reference and the ρ value between phase of TCs and its TC reference.

Furthermore, in order to inspect the activation of shared SMs more precisely, we denote 

the number of total activated voxels, the number of activated voxels inside SM reference 

mask, the number of activated voxels outside SM reference mask respectively as Vall, Vin, 

and Vout in experimental fMRI data analysis. The ratio of Vin and Vall (i.e., Vin/Vall) is also 

calculated. Higher Vall, Vin, and Vin/Vall and lower Vout, better separation performance.

IV. Results

A. Simulated fMRI Data

We examine noise effects of different SNR levels on T-sICA, pcsCPD, and sARRR1LS-PO 

in simulated fMRI data analysis, as shown in Fig. 3. The proposed sARRR1LS-PO has 

the highest average ρ values of magnitude and phase parts of task-related shared SMs 

and TCs as displayed in Fig. 3, followed by pcsCPD. Due to not considering time delays 

among subjects and spatial phase sparsity constraints, T-sICA ranks the last, especially for 

phase parts of shared SMs and TCs. The average ρ differences between sARRR1LS-PO and 

other two methods are obviously larger for shared TCs than for shared SMs. The standard 
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deviations of shared SMs and TCs for these three methods become larger when SNR levels 

decrease.

The detailed results of typical task-related shared SMs, shared TCs, time delays, and subject 

intensities estimated by T-sICA, pcsCPD, and sARRR1LS-PO under SNR = −10 dB are 

exhibited in Fig. 4. For shared SMs as displayed in Fig. 4(1), sARRR1LS-PO gets not only 

the highest ρ values of magnitude and phase but also has the least crosstalk from other 

components. The magnitude and phase waveforms of shared TCs estimated by sARRR1LS-

PO also are most similar to ground truth (see Fig. 4(2)). In addition, the number of correctly 

estimated time delays of sARRR1LS-PO is greater than that of pcsCPD (4 vs. 3), as shown 

in Fig. 4(3). In reality, sARRR1LS-PO also has higher ρ value of estimated time delays and 

ground truth than pcsCPD (0.973 vs. 0.019). Finally, sARRR1LS-PO acquires the highest ρ 
value between the magnitude of subject intensities and ground truth in Fig. 4(4), compared 

with T-sICA and pcsCPD.

B. Experimental fMRI Data

In fact, the filter scheme adopted in [17] can effectively and largely reduce the noise 

of experimental complex-valued multi-subject fMRI data. However, some meaningful 

information may be lost using the filter scheme. Therefore, we evaluate separation 

performance of proposed sARRR1LS-PO with comparison to T-sICA and pcsCPD in both 

experimental raw and filtered complex-valued multi-subject fMRI data analyses. The task-

related sensorimotor and auditory components are analyzed. Due to limited space, the 

comparison results of auditory component are given in supplementary material which can 

further verify the evident outperformed separation performance of the proposed sARRR1LS-

PO in both experimental raw and filtered fMRI data analyses than T-sICA and pcsCPD.

Fig. 5 shows the comparison of T-sICA, pcsCPD, and sARRR1LS-PO in terms of means and 

standard deviations of ρ values of magnitude and phase parts of sensorimotor shared SMs 

and TCs in raw and filtered fMRI data analyses. The sARRR1LS-PO (marked by red color) 

obtains the highest average ρ values of magnitude and phase parts of sensorimotor shared 

SMs and TCs in two analyses (see Fig. 5), followed by pcsCPD and T-sICA. Moreover, the 

gap of average ρ values between sARRR1LS-PO and other two methods is obviously larger 

in raw fMRI data analysis than in filtered fMRI data analysis, under all cases as shown 

in Fig. 5. T-sICA and pcsCPD exhibit lower average ρ values of shared SMs and TCs in 

raw fMRI data analysis than in filtered fMRI data analysis (see Fig. 5). Meanwhile, due to 

incorporating the temporal shift-invariance, pcsCPD and sARRR1LS-PO present obviously 

higher average ρ values of magnitude and phase parts of shared TCs than T-sICA in both 

two analyses as shown in Figs. 5(3)~(4). In terms of magnitude and phase parts of shared 

SMs and magnitude parts of shared TCs, T-sICA gets higher standard deviations of ρ 
values than pcsCPD and sARRR1LS-PO, and sARRR1LS-PO shows the lowest standard 

deviations of ρ values. Above results imply the better separation performance and robustness 

of sARRR1LS-PO than pcsCPD and T-sICA for extracting sensorimotor components in both 

raw and filtered fMRI data analyses.

The typical shared SMs estimated by T-sICA, pcsCPD, and sARRR1LS-PO in raw and 

filtered fMRI data analyses are further presented in Fig. 6. The Vall, Vin, Vout, and Vin/Vall 
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values of shared SM estimates are listed in Table I. In raw fMRI data analysis as shown 

in Fig. 6A, the shared SM estimated by sARRR1LS-PO not only has the highest ρ values 

for magnitude and phase parts, but also apparently gets the largest activation region in 

left primary motor areas (LPMA), right primary motor areas (RPMA) and supplementary 

motor areas (SMA), compared with those of T-sICA and pcsCPD. The highest Vall, Vin, and 

Vin/Vall values of sARRR1LS-PO in Table I also reflect the highest number of task-related 

sensorimotor voxels for sARRR1LS-PO. On the other hand, in filtered fMRI data analysis 

as shown in Fig. 6B, the proposed sARRR1LS-PO still shows the higher ρ values for 

magnitude and phase parts of shared SM, and has higher Vin value (see Table I), compared 

with T-sICA and pcsCPD. T-sICA and pcsCPD show better shared SMs (i.e., larger spatial 

sensorimotor activated voxels) in filtered fMRI data analysis than in raw fMRI data analysis. 

This further verifies that the filter scheme can effectively reduce unwanted noise. However, 

on the premise of good separation performance, sARRR1LS-PO extracts better shared SM 

estimates in raw fMRI data analysis than in filtered fMRI data analysis. This implies that 

some meaningful information may be lost by exploiting the filter scheme.

Besides sensorimotor shared SM estimates, we also exhibit Fig. 7 to comprehensively 

compare T-sICA, pcsCPD, and sARRR1LS-PO in terms of the typical sensorimotor 

shared TC magnitude and phase estimates, time delay estimates, and subject intensity 

estimates. The sARRR1LS-PO obviously extracts the sensorimotor TC magnitude and phase 

waveforms closest to TC reference as shown in Figs. 7(1)~(2). Consistent with results of 

shared SMs, T-sICA and pcsCPD have better shared TC estimates in lower-noisy filtered 

fMRI data analysis than in raw fMRI data analysis. While sARRR1LS-PO is robust to noise 

(i.e., best shared TC estimates in both two analyses) and extracts better shared TC estimates 

for intact raw fMRI data. In addition, the inter-subject response time or hemodynamic delay 

differences are reflected in time delays. Compared to pcsCPD, sARRR1LS-PO has higher 

number of correctly estimated time delays in both raw (4 vs. 9 in Fig. 7A(3)) and filtered (6 

vs. 7 in Fig. 7B(3)) fMRI data analyses. Finally, for the curves of subject intensity estimates 

in Fig. 7(4), pcsCPD is closer to sARRR1LS-PO than T-sICA in both two analyses, that is, 

the ρ values are 0.775 vs. 0.712 in raw fMRI data analysis and 0.884 vs. 0.755 in filtered 

fMRI data analysis.

C. Comparison of Complex-Valued sARRR1LS-PO and the Magnitude-Only Method

Fig. 8 shows the comparison of the shared sensorimotor SM estimates of our proposed 

sARRR1LS-PO and the real-valued ICA-sCPD in the magnitude-only fMRI data analysis, 

to verify the advantage of complex-valued fMRI data analysis. The shared SM estimates of 

real-valued ICA-sCPD at N = 35 (same with the model order in [16]) and N = 50 (same 

with the model order of the proposed method) are showed in Fig. 8. Our proposed method 

not only has higher ρ value but also gets higher Vin, and Vout than real-valued ICA-sCPD 

at N = 35 and N = 50. The real-valued ICA-sCPD at N = 50 has the higher ρ value and 

the number of activated voxels than at N = 35. We further show the SM difference between 

the proposed method and two cases of real-valued ICA-sCPD, as shown in Fig. 8(4). The 

proposed method additionally extracts 30.7% more number of activated voxels (3427 vs. 

2623) than real-valued the LPMA areas and right pallidum, putamen, insula, and cerebellum 
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areas that also are found in task-related sensorimotor SM reference, see the red color areas 

in Fig. 8(4).

In addition, since residual fMRI data after filtering are very noisy, we conduct real-valued 

T-sICA on the magnitude of residual fMRI data after filtering as shown in Fig. 9 to inspect 

the missing information for filtered fMRI data. Though the shared SMs extracted by T-sICA 

at N = 35 and N = 50 are nosier and have lower ρ and Vin values than ICA-sCPD in 

magnitude-only raw fMRI data analysis (see Fig. 9), the shared SMs still show obvious 

activations in RPMA, SMA, and LPMA areas. Moreover, the shared SM at N = 50 has 

higher ρ and Vin values as well as extracts more meaningful activations in RPMA, SMA, 

and LPMA areas than at N = 35. This indicates the residual fMRI data after filtering require 

higher number of components to extract interested components.

V. Conclusion and Discussion

In the framework of ARRR1LS, the proposed constrained sARRR1LS-PO method takes 

advantage of temporal shift-invariant multiway structure, the spatial orthonormality, and 

the small spatial source phase character of BOLD-related voxels to simultaneously cope 

with high-noisy nature and inter-subject spatiotemporal variability of complex-valued multi-

subject fMRI data. We perform both simulated and experimental fMRI data experiments, 

and conclude that ARRR1LS shows better separation performance than several state-of-

the-art CPD methods, and the proposed sARRR1LS-PO shows improved estimates of task-

related sensorimotor and auditory components than pcsCPD and T-sICA, and extracts better 

sensorimotor components for noisier but intact raw fMRI data than for filtered fMRI data. 

Furthermore, the complex-valued sARRR1LS-PO extracts 30.7% more interesting activated 

voxels than real-valued ICA-sCPD in the magnitude-only fMRI data analysis.

Compare with sARRR1LS-PO and pcsCPD, T-sICA shows the worst sensorimotor shared 

SM and TC estimates for both simulated and experimental fMRI data analyses. The reason 

is that T-sICA combines two different cost functions (i.e., ICA and rank-1 ALS) which 

may lead to divergence. Moreover, the separation performance of T-sICA relies on ICA. 

However, the ARRR1LS used in sARRR1LS-PO which minimizes the squares of errors 

for each iteration to avoid algorithm divergence. On the other side, the pcsCPD utilizes 

rank-R ALS to update all loading matrices, i.e., shared SMs, shared TCs, subject-specific 

time delays and intensities. Due to incorporating the shift-invariance and spatial phase 

sparsity constraint, pcsCPD shows better separation performance than T-sICA in terms of 

sensorimotor shared SMs and TCs as shown in Figs. 5~7 and auditory shared SMs and 

TCs in filtered fMRI data analysis as shown in Figs. S3~S5 (see supplementary materials 

for details). However, pcsCPD gets obviously declined separation performance of auditory 

component in nosier raw fMRI data analysis than in filtered fMRI data analysis. Moreover, 

the lower computation complexity of the proposed method than pcsCPD is discussed in 

supplementary materials. Meanwhile, the accALS and enALS based on rank-R ALS exhibit 

worse separation performance than ARRR1LS as shown in Fig. S1 and Table SI. This 

implies that the ARRR1LS can relax the strict CPD model and is more appropriate for 

tensors that do not well conform CPD model.
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The excellent efficacy of the small phase property of BOLD- related voxels and spatial 

orthogonality for complex-valued fMRI data are further demonstrated in this paper. In 

fact, we conducted ablation experiments on sARRR1LS-PO, and concluded that the spatial 

phase sparsity constraint and spatial orthonormality constraint both obviously improve the 

separation performance and the combination of these two constraints can further promote 

the separation performance. Since the complex-valued shared SMs contain huge number 

of unwanted high-magnitude noise voxels. Therefore, directly incorporating sparsity on 

magnitude part of shared SMs is not suggested. Thanks to the small phase property of 

BOLD-related voxels, we can gradually add sparsity on the voxels that have large phase 

values after phase de-ambiguity for each iteration. The separation improvement of the 

proposed sARRR1LS-PO and pcsCPD attributes to the phase sparsity constraint, which 

facilitates sparse representation of complex-valued fMRI data. Besides, we further verify 

improved performance of proposed method with orthonormality than without orthonormality 

especially for raw fMRI data (see supplementary materials). Due to allowing subject-

specific time delays, the proposed sARRR1LS-PO and pcsCPD all present higher average ρ 
values of sensorimotor and auditory shared TCs than T-sICA in both raw and filtered fMRI 

data analyses (see Figs. 5 and S3). Besides, sARRR1LS-PO can more accurately estimate 

time delays than pcsCPD (see Figs. 7(3) and S5(3)), especially for time delay equaling to 0 

and large values for both sensorimotor and auditory components.

The pcsCPD utilizes the phase de-ambiguity method based on the maximization of the 

real-part power of each column of aggregating mixing matrix. However, the length of 

aggregating mixing matrix is generally longer than the number of time points (JK vs. J). 

This may lead to obtain a wrong angle for phase de-ambiguity. Therefore, we here propose 

an accurate phase de-ambiguity method based on the maximal correlation coefficient 

between the phase-rotated shared SM component and its magnitude. We also compared 

these two phase de-ambiguity methods on sARRR1LS-PO in raw and filtered fMRI data 

analyses, and summarized better performance of the proposed accurate phase de-ambiguity 

method.

Due to the lower noise level of filtered fMRI data than raw fMRI data, ICA-sCPD and 

pcsCPD all show better sensorimotor and auditory shared SM and TC estimates in filtered 

fMRI data analysis than in raw fMRI data analysis. However, some meaningful information 

is also removed for the filtered fMRI data. We can see from Fig. 9 that the interesting 

LPMA, RPMA, and SMA of sensorimotor shared SM estimates can be extracted when 

conducting real-valued T-sICA on residual fMRI data after filtering. Fortunately, on the 

premise of the best separation performance, the proposed sARRR1LS-PO in raw fMRI 

data analysis acquires not only higher ρ values of task-related sensorimotor shared SMs 

and TCs but also more meaningful task-related sensorimotor contiguous activations than 

those in filtered fMRI data analysis (see Figs. 5~7 and Table I). Therefore, the proposed 

sARRR1LS-PO is robust to noise and can well extract the task-related sensorimotor 

contiguous activations even for noisy complex-valued fMRI data. In addition, compared 

with ICA-sCPD in magnitude-only analysis, sARRR1LS-PO can additionally extract 30.7% 

more useful interesting activations in complex-valued analysis. In practice, subject-specific 

components are often needed in addition to the shared components in the analysis of multi-

subject fMRI data. For example, a shared and subject-specific dictionary learning method 
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simultaneously extracts shared and subject-specific components [12] by using intrinsic 

spatial sparsity of fMRI data [11]. In the future, we will apply back-projection [34] to 

the proposed method to also extract the subject-specific information, taking advantages of 

efficient shift-invariance, spatial orthonormality and phase sparsity constraints. In consider 

of satisfying separation performance of task-related fMRI data, we will apply the proposed 

method to resting-state fMRI data in the future work and try to classify healthy controls and 

patients of brain disease by exploiting complex-valued shared spatial and temporal features 

[35], [36] extracted by the proposed method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61901061, 
Grant 61871067, Grant 61379012, and Grant 61972056; in part by the Natural Science Foundation of Hunan 
Province under Grant 2020JJ5603; in part by the Research Foundation of Education Bureau of Hunan Province 
under Grant 19C0031; in part by NSF under Grant 1539067, Grant 0840895, Grant 1539067, and Grant 
0715022; in part by NIH under Grant R01MH104680, Grant R01MH107354, Grant R01EB005846, and Grant 
5P20GM103472; and in part by the Fundamental Research Funds for the Central Universities, China, under Grant 
DUT20ZD220.

References

[1]. Glomb K, Ponce-Alvarez A, Gilson M, Ritter P, and Deco G, “Stereotypical modulations in 
dynamic functional connectivity explained by changes in BOLD variance,” NeuroImage, vol. 
171, pp. 40–54, May 2018. [PubMed: 29294385] 

[2]. Al-Sharoa E, Al-Khassaweneh M, and Aviyente S, “Tensor based temporal and multilayer 
community detection for studying brain dynamics during resting state fMRI,” IEEE Trans. 
Biomed. Eng, vol. 66, no. 3, pp. 695–709, Mar. 2019. [PubMed: 29993516] 

[3]. Chatzichristos C, Kofidis E, Morante M, and Theodoridis S, “Blind fMRI source unmixing via 
higher-order tensor decompositions,” J. Neurosci. Methods, vol. 315, pp. 17–47, Mar. 2019. 
[PubMed: 30553751] 

[4]. Song Y, Li J, Chen X, Zhang D, Tang Q, and Yang K, “An efficient tensor completion method 
via truncated nuclear norm,” J. Visual Commun. Image Represent, vol. 70, Jul. 2020, Art. no. 
102791.

[5]. Han Y et al. , “Low-rank Tucker-2 model for multi-subject fMRI data decomposition with spatial 
sparsity constraint,” IEEE Trans. Med. Imag, vol. 41, no. 3, pp. 667–679, Mar. 2022.

[6]. Yu M-C, Lin Q-H, Kuang L-D, Gong X-F, Cong F, and Calhoun VD, “ICA of full complex-valued 
fMRI data using phase information of spatial maps,” J. Neurosci. Methods, vol. 249, pp. 75–91, 
Jul. 2015. [PubMed: 25857613] 

[7]. Calhoun VD and Adali T, “Multisubject independent component analysis of fMRI: A decade of 
intrinsic networks, default mode, and neurodiagnostic discovery,” IEEE Rev. Biomed. Eng, vol. 
5, pp. 60–73, 2012. [PubMed: 23231989] 

[8]. Lv J et al. , “Sparse representation of whole-brain fMRI signals for identification of functional 
networks,” Med. Image Anal, vol. 20, no. 1, pp. 112–134, Feb. 2015. [PubMed: 25476415] 

[9]. Shen H et al. , “Making group inferences using sparse representation of resting-state functional 
mRI data with application to sleep deprivation,” Hum. Brain Mapping, vol. 38, no. 9, pp. 4671–
4689, Sep. 2017.

[10]. Xie J, Douglas PK, Wu YN, Brody AL, and Anderson AE, “Decoding the encoding of functional 
brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), 

Kuang et al. Page 16

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



independent component analysis (ICA), and sparse coding algorithms,” J. Neurosci. Methods, 
vol. 282, no. 17, pp. 81–94, 2017. [PubMed: 28322859] 

[11]. Iqbal A, Nait-Meziane M, Seghouane A-K, and Abed-Meraim K, “Adaptive complex-valued 
dictionary learning: Application to fMRI data analysis,” Signal Process., vol. 166, Jan. 2020, Art. 
no. 107263.

[12]. Iqbal A, Seghouane A-K, and Adali T, “Shared and subject-specific dictionary learning 
(ShSSDL) algorithm for multisubject fMRI data analysis,” IEEE Trans. Biomed. Eng, vol. 65, 
no. 11, pp. 2519–2528, Nov. 2018. [PubMed: 29993508] 

[13]. Zhou G and Cichocki A, “Canonical polyadic decomposition based on a single mode blind 
source separation,” IEEE Signal Process. Lett, vol. 19, no. 8, pp. 523–526, Aug. 2012.

[14]. Andersen AH and Rayens WS, “Structure-seeking multilinear methods for the analysis of fMRI 
data,” NeuroImage, vol. 22, no. 2, pp. 728–739, Jun. 2004. [PubMed: 15193601] 

[15]. Beckmann CF and Smith SM, “Tensorial extensions of independent component analysis for 
multisubject FMRI analysis,” NeuroImage, vol. 25, no. 1, pp. 294–311, 2005. [PubMed: 
15734364] 

[16]. Kuang LD, Lin Q-H, Gong X-F, Cong F, Sui J, and Calhoun VD, “Multi-subject fMRI 
analysis via combined independent component analysis and shift-invariant canonical polyadic 
decomposition,” J. Neurosci. Methods, vol. 256, pp. 127–140, Dec. 2015. [PubMed: 26327319] 

[17]. Kuang L-D, Lin Q-H, Gong X-F, Cong F, Wang Y-P, and Calhoun VD, “Shift-invariant 
canonical polyadic decomposition of complex-valued multi-subject fMRI data with a phase 
sparsity constraint,” IEEE Trans. Med. Imag, vol. 39, no. 4, pp. 844–853, Apr. 2020.

[18]. Mørup M, Hansen LK, Arnfred SM, Lim L-H, and Madsen KH, “Shift-invariant multilinear 
decomposition of neuroimaging data,” NeuroImage, vol. 42, no. 4, pp. 1439–1450, Oct. 2008. 
[PubMed: 18625324] 

[19]. Kuang L-D, Lin Q-H, Gong X-F, Cong F, and Calhoun VD, “PostICA phase de-noising for 
resting-state complex-valued fMRI data,” in Proc. IEEE Int. Conf. Acoust., Speech Signal 
Process. (ICASSP), Mar. 2017, pp. 856–860.

[20]. De Vos M, Nion D, Van Huffel S, and De Lathauwer L, “A combination of parallel factor and 
independent component analysis,” Signal Process, vol. 92, no. 12, pp. 2990–2999, Dec. 2012.

[21]. Gong X-F, Wang C-Y, Hao Y-N, and Lin Q-H, “Combined independent component analysis and 
canonical polyadic decomposition via joint diagonalization,” in Proc. IEEE China Summit Int. 
Conf. Signal Inf. Process. (ChinaSIP), Jul. 2014, pp. 25–29.

[22]. Liang J, Zou J, and Hong D, “Non-Gaussian penalized PARAFAC analysis for fMRI data,” 
Frontiers Appl. Math. Statist, vol. 5, p. 40, Aug. 2019.

[23]. Sen B and Parhi KK, “Constrained tensor decomposition optimization with applications to fMRI 
data analysis,” in Proc. 52nd Asilomar Conf. Signals, Syst., Comput, Oct. 2018, pp. 1923–1928.

[24]. Peng P et al. , “Group sparse joint non-negative matrix factorization on orthogonal subspace for 
multi-modal imaging genetics data analysis,” IEEE/ACM Trans. Comput. Biol. Bioinf, vol. 19, 
no. 1, pp. 479–490, Jan. 2022.

[25]. Li W, Ding Y, Yang Y, Sherratt RS, Park JH, and Wang J, “Parameterized algorithms of 
fundamental NP-hard problems: A survey,” Human-Centric Comput. Inf. Sci, vol. 10, no. 1, pp. 
1–24, Dec. 2020.

[26]. Mohimani GH, Babaie-Zadeh M, and Jutten C, “Complex-valued sparse representation based on 
smoothed ℓ0 norm,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 
2008, pp. 3881–3884.

[27]. Mohimani H, Babaie-Zadeh M, and Jutten C, “A fast approach for overcomplete sparse 
decomposition based on smoothed ℓ0 norm,” IEEE Trans. Signal Process, vol. 57, no. 1, pp. 
289–301, Jan. 2009.

[28]. Li X-L and Adali T, “Complex independent component analysis by entropy bound 
minimization,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 7, pp. 1417–1430, Jul. 
2010.

[29]. Bell AJ and Sejnowski TJ, “An information-maximization approach to blind separation and blind 
deconvolution,” Neural Comput, vol. 7, no. 6, pp. 1129–1159, Nov. 1995. [PubMed: 7584893] 

Kuang et al. Page 17

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[30]. Allen EA, Erhardt EB, Wei Y, Eichele T, and Calhoun VD, “Capturing inter-subject variability 
with group independent component analysis of fMRI data: A simulation study,” NeuroImage, 
vol. 59, no. 4, pp. 4141–4159, Feb. 2012. [PubMed: 22019879] 

[31]. Erhardt EB, Allen EA, Wei Y, Eichele T, and Calhoun VD, “SimTB, a simulation toolbox for 
fMRI data under a model of spatiotemporal separability,” NeuroImage, vol. 59, pp. 4160–4167, 
Feb. 2012. [PubMed: 22178299] 

[32]. Hoogenraad FGC, Reichenbach JR, Haacke EM, Lai S, Kuppusamy K, and Sprenger M, “In vivo 
measurement of changes in venous blood-oxygenation with high resolution functional MRI at 
0.95 Tesla by measuring changes in susceptibility and velocity,” Magn. Reson. Med, vol. 39, no. 
1, pp. 97–107, Jan. 1998. [PubMed: 9438443] 

[33]. Calhoun VD, Adalı T, Pearlson GD, van Zijl PCM, and Pekar JJ, “Independent component 
analysis of fMRI data in the complex domain,” Magn. Reson. Med, vol. 48, no. 1, pp. 180–192, 
Jul. 2002. [PubMed: 12111945] 

[34]. Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, and Calhoun VD, “Comparison of 
multi-subject ICA methods for analysis of fMRI data,” Hum. Brain Mapping, vol. 32, no. 12, pp. 
2075–2095, 2011.

[35]. Zhou S, Zhang F, and Zou W, “Focusing on shared areas for partial person re-identification,” 
Appl. Artif. Intell, vol. 36, no. 1, 2022, doi: 10.1080/08839514.2022.2031818.

[36]. Zhang J, Huang B, Ye Z, Kuang L-D, and Ning X, “Siamese anchor-free object tracking with 
multiscale spatial attentions,” Sci. Rep, vol. 11, no. 1, Dec. 2021, Art. no. 22908. [PubMed: 
34824320] 

Kuang et al. Page 18

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The graphical summary of T-sICA, pcsCPD, and our proposed sARRR1LS-PO method.
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Fig. 2. 
The SM and TC references of task-related sensorimotor components for experimental fMRI 

data. The sensorimotor SM reference (a) is the GLM map obtained from magnitude-only 

fMRI data. The TC references (b) are obtained by convolving the stimuli with the canonical 

SPM hemodynamic response functions.
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Fig. 3. 
Comparison of the noise effects (from SNR = −20 dB to SNR = 0 dB with interval 2 dB) on 

the T-sICA, pcsCPD, and sARRR1LS-PO in terms of the means and standard deviations of ρ 
values between the task-related shared SM magnitude (1), SM phase (2), TC magnitude (3), 

and TC phase (4) estimates and their ground truths. The true component number N = 30.
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Fig. 4. 
Summary of results estimated by T-sICA, pcsCPD, and sARRR1LS-PO at SNR = −10 dB 

for simulated multi-subject fMRI data, including magnitude and phase parts of shared SMs 

(1), magnitude and phase parts of shared TCs (2), time delays (3), and subject intensities (4). 

The phase correction and de-ambiguity are performed on shared SMs, and thus the phase 

values of phase maps range from −π/4 to π/4.
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Fig. 5. 
Comparison of T-sICA, pcsCPD, and sARRR1LS-PO for analyzing the experimental raw 

and filtered complex-valued multi-subject fMRI data over 20 runs in terms of the means and 

standard deviations of ρ values for the task-related sensorimotor shared SM magnitude (1), 

SM phase (2), TC magnitude (3), and TC phase (4) estimates.
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Fig. 6. 
Typical task-related sensorimotor shared SMs estimated by T-sICA, pcsCPD, and 

sARRR1LS-PO for analyzing experimental raw (A) and filtered (B) complex-valued 

multi-subject fMRI data. The magnitude (a) and phase images (b) of shared SMs and 

corresponding ρ values are showed. The largest ρ values are bold. The phase correction and 

de-ambiguity are performed on shared SMs, and thus the phase values of phase maps range 

from −π/4 to π/4.
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Fig. 7. 
Comparison of T-sICA, pcsCPD, and sARRR1LS-PO for analyzing the experimental raw 

(A) and filtered (B) experimental complex-valued fMRI data in terms of typical task-related 

sensorimotor shared TC magnitude parts (1), shared TC phase parts (2), time delays (3), and 

subject intensities (4). The ρ values of shared TC magnitude and phase parts and the number 

of correct time delays are calculated.
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Fig. 8. 
Comparison of real-valued ICA-sCPD in magnitude-only fMRI analysis and sARRR1LS-PO 

in complex-valued fMRI analysis: (1) the shared sensorimotor SM estimated by real-valued 

ICA-sCPD at N = 35; (2) the shared sensorimotor SM estimated by real-valued ICA-sCPD 

at N= 50; (3) the magnitude image of shared sensorimotor SM estimated by sARRR1LS-PO; 

(4) the SM difference between real-valued ICA-sCPD at N = 50 and the proposed method 

(the voxels detected by the both, by ICA-sCPD, or by proposed approach are respectively 

marked in blue, in green, and in red). The ρ, Vall, Vin, and Vout values are calculated.
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Fig. 9. 
The shared sensorimotor SM estimates by real-valued T-sICA for the magnitude-only 

residual fMRI data after filtering under two differences number of components N : (1) 

N = 35; (2) N = 50. The ρ, Vall, Vin, and Vout values are calculated.
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TABLE I

COMPARISON OF T-SICA, PCSCPD, AND SARRR1 LS-PO FOR ANALYZING THE EXPERIMENTAL RAW AND FILTERED 

COMPLEX-VALUED MULTI-SUBJECT FMRI DATA IN TERMS OF Vall, Vin, Vout AND Vin/Vall OF SHARED SMS ESTIMATES 

IN FIG. 6. THE BOLD VALUES ARE THE LARGEST VALUES OF Vall, Vin, AND Vin/Vall AND THE LOWEST Vout FOR 

EACH CASE

Raw fMRI data analysis Filtered fMRI data analysis

Vall Vin Vout Vin/Vall Vall Vin Vout Vin/Vall

T-sICA 3631 1254 2377 0.345 5277 2319 2958 0.439

pcsCPD 6010 1805 4205 0.300 8910 3437 5473 0.386

sARbRiLS-PO 9335 4136 5199 0.443 8559 3788 4771 0.443
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