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Abstract

We report two siblings with intractable epilepsy, developmental regression, and

progressive cerebellar atrophy due to biallelic variants in the gene CAD. For the

affected girl, uridine started at age 5 resulted in dramatic improvements in sei-

zure control and development, cessation of cerebellar atrophy, and resolution

of hematological abnormalities. Her older brother had a more severe course

and only modest response to uridine started at 14 years old. Treatment of this

progressive condition via uridine supplementation provides an example of pre-

cision diagnosis and treatment using clear outcome measures and biomarkers

to monitor efficacy.

Introduction

The CAD gene encodes the multifunctional enzyme car-

bamoyl phosphate synthetase 2, aspartate

transcarbamylase, and dihydroorotase 2 (abbreviated

CAD), which plays a critical role in the de novo pyrim-

idine synthesis pathway.1 Biallelic CAD variants cause a

severe neurometabolic disorder associated with
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Figure 1. Identification of CAD variants, neuroimaging findings, and response to uridine. (A) Pedigree of CAD variants and disease status. Circle

denotes female, square denotes male, and darkened symbols denote affected status. (B) Schematic of CAD gene transcript (upper), CAD protein

domain architecture (middle) and key reactions in the pyrimidine synthesis pathway (lower). The location of the reported variants in exon 33

(involving DHOase domain) and exon 34 (in a linker region just beyond the DHOase domain) are shown as red lollipops (upper and middle). The

first four reactions of the de novo pyrimidine synthesis pathway are catalyzed by enzymes encoded by CAD including glutamine aminotransferase

(GATase), carbamoyl phosphate synthase (CSPase), aspartate transcarbamoylase (ATCase) and dihydroorotase (DHOase). Additional reactions to

generate uridine monophosphate (uridine monoP) are abbreviated. A salvage pathway (blue rectangle) allows exogenous uridine to contribute to

uridine monoP. (C-E) and (I-K), Neuroimaging from Patients 1 (C-E) and 2 (I-K), demonstrating more severe findings in Patient 2 (J vs C, and K vs

D) for year of life, and stabilization of Patient 1 (D vs E) after initiating uridine at age 5. Images are sagittal T1-weighted magnetic resonance

imaging (MRI). (F–H) Blood smears demonstrate anisopoikilocytosis with occasional tear drop cells (black arrowheads) at 4 years (F) and 5 years

(G) that normalize after uridine treatment at 7 years (H). Acanthocytes (asterisks, H) are believed to be artefactual. (L-M) Image of Patient 1 prior

to uridine treatment (L) and after 9 months of treatment (M).
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developmental delay and epilepsy (known as CAD defi-

ciency, or uridine-responsive epileptic encephalopathy).

Additional features include abnormal gait, progressive

cerebellar atrophy, and hematologic abnormalities.1,2 Fea-

tures of CAD deficiency partly overlap with those of con-

genital disorders of glycosylation (CDG), but

conventional CDG studies are reportedly normal.1,2

Whole exome sequencing is currently the primary means

of identifying CAD deficiency.

Here we report two siblings with novel biallelic CAD

variants, with differences in phenotypic severity, timing of

genetic diagnosis, and response to uridine. We demon-

strate outcomes and biomarkers relevant to CAD defi-

ciency and examine the spatiotemporal expression of

CAD as it relates to key features of this disorder.

Case presentations

Patient 1 (proband)

Patient 1, a girl, is the third child born to nonconsan-

guineous parents (Fig. 1A). She has an affected older

brother (Patient 2, below) and healthy older sister.

Patient 1 had delayed fine motor and language develop-

ment, normal gross motor development, and a diagnosis of

autism spectrum disorder at 2 years. Seizures began at

3.5 years with generalized tonic-clonic (GTC) seizures. She

later developed myoclonic seizures, focal motor seizures

with secondarily generalized tonic-clonic activity and pos-

tictal paresis (3-4/week), and frequent atonic and absence

seizures (up to 100/day). After a prolonged seizure at

4 years 8 months, she displayed low tone, could no longer

ambulate independently, and plateaued in language skills.

She had poor growth with head circumference 103 cm

(�0.69 standard deviation [SD] for age) and weight 15.6 kg

(�0.88 SD) at age 4 years 9 months. Trials of antiseizure

medications (ASMs) did not reduce seizure frequency.

Brain MRI, normal at 3 years 4 months, showed mild

cerebellar atrophy by 4 years 9 months (Fig. 1C-D).

Serum testing for CDG, including N-glycan testing and

transferrin isoelectric focusing, was normal. Urinary oro-

tic acid and urinary pyrimidine panel were normal. Initial

laboratory testing revealed mild macrocytosis without

anemia, with red blood cell distribution at the upper limit

of normal. Blood smear, evaluated after identification of

CAD variants, showed moderate anisocytosis and poikilo-

cytosis (Fig. F-G).

Patient 2

Patient 2 is the older brother of Patient 1 (Fig. 1A). He

presented with delayed language and normal gross motor

Table 1. Clinical details of Patients 1 and 2

Patient 1, F Patient 2, M

Early developmental

abnormalities

Delayed fine motor and language; esotropia; poor growth Delayed language; esotropia

Epilepsy history

Onset 3.5 years 2 years

Seizure types (frequency) GTCS, myoclonic, focal motor seizures with postictal

paresis (3-4/wk); atonic and absence (100s/day)

GTCS (5-10/day), atonic, status epilepticus

Electroencephalographic

(EEG) abnormalities

Diffuse background slowing, generalized spike-and-slow

wave (4y)

Disorganized background, focal onset seizures, tonic

seizures correlating with paroxysmal fast activity

Hematologic testing at presentation

MCV (range, 75-87 fL) Elevated (94.9 fL) Reported normal

Hemoglobin (range,

11.5–15.5 g/dL)

Normal (13.1 g/dL) Reported normal

RDW (range, 11.5-15) Upper limit of normal (14.7%) Reported normal

Blood smear Moderate anisocytosis, poikilocytosis Not assessed

CDG testing Normal Not assessed

MRI abnormalities Mild cerebellar atrophy (4 years, 9 months) Cerebellar atrophy (3.5 years)

Uridine supplementation

Initiation 5 years 14 years

Development Motor activity, weight/HC -- normalized Eye contact and expression -- improved

Seizures GTCS/myoclonic/focal seizures – resolved.Absence seizures

-- improved (few per day)

GTCS -- improved (0-3 daily)

EEG Improved background organization, ongoing focal sharps

and generalized spike-and-slow-wave discharges

Not assessed

Blood smear Normalized Not assessed

MRI Stabilized Stabilized
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development. At 2 years, he had an onset of intractable

GTCs (0-2 per day). Atonic seizures began at 3 years. An

episode of febrile status epilepticus (SE) at 3.5 years led

to a 6-month hospitalization that included pentobarbital

coma, focal temporal lobe resection, and ventriculoperi-

toneal shunt placement. Subsequently, he showed sub-

stantial deterioration and remains nonverbal and

tracheostomy-dependent. Seizure control remained poor

despite multiple ASM trials.

Brain MRI from 2 years old was normal (Fig. 1I); cere-

bellar atrophy was present at 3.5 years old (Fig. 1J). MRI

at 4 years showed prominent hydrocephalus and ex vacuo

changes with supratentorial and cerebellar atrophy

(Fig. 1K). Routine laboratory testing was unremarkable,

including normal CBC (Table 1).

Genetic testing and identification of CAD variants
as disease-relevant

Whole exome sequencing revealed biallelic variants in

CAD in both siblings (Table 2). The paternally inherited

heterozygous c.5296_5308del13 deletion in CAD causes a

13-base pair deletion resulting in a frameshift in the

DHOase domain and a prematurely truncated protein

lacking the last 455 of 2225 amino acids; it is predicted

pathogenic by American College of Medical Genetics

(ACMG) criteria.3 The maternally inherited heterozygous

c.5429G > A missense variant causes an arginine to glu-

tamine substitution within the DHOase domain (Fig A,

B) and is classified as likely pathogenic.

The phenotype of Patients 1 and 2 is consistent with

that reported in association with CAD.1,2,4,5 An unbiased

serum metabolomic screen (Global Metabolomic Assisted

Pathway Screen, Baylor Genetics) later demonstrated sig-

nificantly reduced orotic acid (�3.4, Z-score) and oro-

tidine (�2, Z-score) in Patient 1, consistent with

disruption in the pyrimidine synthesis pathway (Fig. 1B),

providing additional biochemical confirmation of CAD

deficiency.

The patients also share variants of uncertain signifi-

cance (VUS) in genes not known to be associated with

their phenotype (Table 2). Chromosomal microarray was

normal.

Spatiotemporal expression profile of CAD in adult
and developing humans

To better understand the role of CAD function in the

brain, we surveyed the spatiotemporal expression profile

of CAD using publicly available human RNA sequencing

data (Fig. 2; Supplemental Methods).

In adults, CAD expression is highest in sex-specific tis-

sues and peripheral nervous system (Z-score, 1.0) andT
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lowest in heart, muscle, and whole blood (Fig. 2A). In

the central nervous system (CNS), CAD expression is

highest in cerebellum (Z-score, 0.6), with levels in the top

30th percentile (9th of 31) of queried tissues. All other

queried regions of CNS have low CAD expression (overall

Z-score, �1.5; bottom 10th percentile, 28th of 31).

In developing humans, CAD expression in five tissues

(cerebrum, cerebellum, heart, kidney, liver) is highest

during early embryogenesis (Fig. 2B) and gradually falls

over time. Its highest level overall is in cerebrum at

4 weeks postconception (w.p.c.) (Z-score, 1.97; top 97th

percentile across all tissues and timepoints). Postnatally,

CAD expression in cerebrum falls over time (Z-score

range, �0.59 to �1.34), while expression in the cerebel-

lum falls less drastically, becoming more highly expressed

than in the cerebrum (Z-score range, �0.11 to 0.21), sug-

gesting sustained function in cerebellum compared to

other organs. We did not observe sex-specific differences

in CAD expression in the cerebellum (Fig. 2C).

Patients’ responses to uridine treatment

After genetic diagnosis, we initiated oral uridine supple-

mentation (off-label), which has been used safely for

CAD1,5 and related metabolic conditions.6

Patient 1

Oral uridine (100mg/kg/day) was initiated at 5 years old.

Within 6 months, gross motor development improved

dramatically (Fig. 1M). She could run, somersault, and by

age 7 swim independently. Her cognitive and language

abilities improved; she recognizes letters and speaks short

phrases. Fine motor skills also improved. Weight normal-

ized: at 7 years 3 months she weighed 25kg (+0.53 SD).

Seizure control markedly improved. She had a single

GTC soon after starting uridine and none since. At

8 years old, she remains free of GTCs and atonic sei-

zures. Nondisabling absence seizures became less fre-

quent but still occur daily. Clobazam and rufinamide

had been added coincident with uridine; no further

modifications to her regimen have been required. Uri-

dine was increased step-wise, guided in part by initial

incomplete resolution of blood smear abnormalities, to

2700mg daily (~108 mg/kg/day). Blood smear now shows

resolution of anisocytosis and poikilocytosis (Fig. 1H).

Brain MRI at 7 years 2 months (Fig. 1E) demonstrated

stabilization of infratentorial atrophy with no change in

a 2.5-year interval.

Patient 2

Oral uridine (100 mg/kg/day) was initiated at 14 years

old. Seizure frequency decreased from 5-10 daily GTCs

to 0-3 daily GTCs. Baseline health improved, with fewer

infections and hospitalizations. He remains nonverbal

and 100% dependent on care but is more engaged with

family with regard to eye contact and emotional expres-

sion.

Discussion

Our report of dramatic response to uridine treatment in

Patient 1 demonstrates that CAD deficiency is treatable,

providing the longest follow-up reported to date

(3 years). Earlier studies of patients with CAD deficiency

have reported improvement up to 7 months following

oral uridine supplementation1,5, while two additional

reports2,4 do not provide details regarding the uridine

response.

Despite sharing the same variants in CAD, Patient 2

presented with earlier and more severe seizures, earlier

cerebellar atrophy (Fig. 1C,J), and more advanced cere-

bral and cerebellar atrophy (Fig. 1D,K) compared to his

sister. Another study also reports a more severe male phe-

notype between two siblings.1 At the same time, late oral

uridine supplementation in Patient 2 has resulted in less

improvement than in Patient 1, suggesting that early diag-

nosis leading to early treatment is more effective.

The spatiotemporal profile of CAD expression suggests

a role for CAD function in cerebellar development and

function, which may have implications for disease patho-

physiology. The gait dysfunction and cerebellar degenera-

tion in patients with CAD deficiency may relate to a high

demand for CAD in cerebellar tissue. How CAD function

of the cerebellum relates to epilepsy in these patients, if at

all, remains a mystery. There is no evidence of a sex-

specific difference in CAD expression to explain the

observed male–female difference in severity between sib-

lings with shared CAD variants.

Figure 2. Spatiotemporal profiles of CAD expression in adult and developing humans. (A) CAD expression in adults. (upper) Heatmap of z-scored

normalized RNA-seq expression estimates from the GTEx Project computed with respect to log2(TPM + 1) across 31 tissue types. (lower) Violin

plots of normalized RNA-seq expression estimates (transcripts per kilobase million plus one; log scale) by brain region. ****, adjusted p-

value < 0.0001. Tukey’s multiple comparison test. (B) CAD expression in developing humans. Heatmap of z-scored normalized RNA-seq

expression estimates computed with respect to log2 (TPM + 1) across five tissue types assayed at 14 time-points7. wpc, weeks postconception. (C)

No significant differences in CAD expression by sex in adult (left) or developing (right) cerebellum. Student’s t-test, two-tailed
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We demonstrate that seizure frequency, developmental

progress, MRI stabilization, and RBC normalization are

appropriate measures for trials of uridine therapy for

CAD deficiency. We recommend documentation of sei-

zure frequency and formal developmental assessment at

regular intervals, and MRI and blood smear evaluation to

monitor disease stabilization and biochemical response to

treatment. Our report underscores the urgency for CAD

deficiency to be included in early diagnostic efforts, such

as newborn screening. Abnormally low serum orotic acid

and orotidine may be specific markers of CAD deficiency,

particularly in patients whose presentations suggest CDG

with negative biochemical testing, or in affected patients

whose genetic work-up reveals biallelic variants of uncer-

tain significance in CAD. Given its imminently treatable

nature, CAD deficiency should be considered early in the

evaluation of epilepsy and developmental delay with

regression.
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