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Abstract: We designed and built a network of monitors for ambient air pollution equipped with
low-cost gas sensors to be used to supplement regulatory agency monitoring for exposure assessment
within a large epidemiological study. This paper describes the development of a series of hourly and
daily field calibration models for Alphasense sensors for carbon monoxide (CO; CO-B4), nitric oxide
(NO; NO-B4), nitrogen dioxide (NO2; NO2-B43F), and oxidizing gases (OX-B431)—which refers to
ozone (O3) and NO2. The monitor network was deployed in the Puget Sound region of Washington,
USA, from May 2017 to March 2019. Monitors were rotated throughout the region, including at two
Puget Sound Clean Air Agency monitoring sites for calibration purposes, and over 100 residences,
including the homes of epidemiological study participants, with the goal of improving long-term
pollutant exposure predictions at participant locations. Calibration models improved when account-
ing for individual sensor performance, ambient temperature and humidity, and concentrations of
co-pollutants as measured by other low-cost sensors in the monitors. Predictions from the final
daily models for CO and NO performed the best considering agreement with regulatory monitors in
cross-validated root-mean-square error (RMSE) and R2 measures (CO: RMSE = 18 ppb, R2 = 0.97;
NO: RMSE = 2 ppb, R2 = 0.97). Performance measures for NO2 and O3 were somewhat lower (NO2:
RMSE = 3 ppb, R2 = 0.79; O3: RMSE = 4 ppb, R2 = 0.81). These high levels of calibration performance
add confidence that low-cost sensor measurements collected at the homes of epidemiological study
participants can be integrated into spatiotemporal models of pollutant concentrations, improving
exposure assessment for epidemiological inference.

Keywords: low-cost sensors; sensor network; hazardous gases; air pollution; exposure assessment;
environmental epidemiology

1. Introduction

Air pollution is a major contributor to the global burden of disease [1]. Gaseous
pollutants—such as carbon monoxide (CO), oxides of nitrogen (NOx), and ozone (O3)—
cause a range of deleterious respiratory and cardiovascular health effects [2]. Low-cost
sensors and multipollutant low-cost monitors (LCMs) equipped with multiple sensors to
measure air pollution are emerging tools that have the potential to change the paradigm in
environmental health—one of a limited number of high-quality measurements, from regu-
latory agency monitors to dense networks of lower-quality sensors and monitors operated

Sensors 2021, 21, 4214. https://doi.org/10.3390/s21124214 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2233-2706
https://orcid.org/0000-0002-5513-8846
https://orcid.org/0000-0003-4058-0313
https://orcid.org/0000-0003-4174-9037
https://doi.org/10.3390/s21124214
https://doi.org/10.3390/s21124214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124214
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124214?type=check_update&version=2


Sensors 2021, 21, 4214 2 of 18

by diverse groups of users [3–9]. However, little work has been done to evaluate the appli-
cation of these sensors—especially gas pollutant sensors—to exposure assessments within
the context of epidemiological human health studies, which have different requirements
than regulatory/non-regulatory community ambient air monitoring applications [10].

Electrochemical sensors are among the most common types of low-cost gas sen-
sors [3,11]; they rely on a chemical reaction (oxidation or reduction) taking place between
a sensor’s working electrode (WE) and a target gas, producing an electrical signal pro-
portional to the gas concentration [12,13]. Like other low-cost sensors, electrochemical
sensors are small, inexpensive, portable, modular, and consume less power compared to
traditional monitoring equipment, allowing for dense, networked deployment [12,14–21].
By increasing spatial coverage, these types of low-cost networks have the potential to
contribute to the assessment of air pollution exposure, and can be used in epidemiological
studies relying on the characterization of exposures at specific times and locations relevant
to the health outcomes observed for study participants [22,23].

To overcome the lower accuracy, precision, sensitivity, and specificity of low-cost sen-
sors, end users must rigorously calibrate them in the field/laboratory [6,12,24]. Many
researchers have described procedures for calibrating electrochemical sensors in the
field [6,13,17,25–29], which has generally been favored over laboratory calibration, be-
cause it is difficult to simulate ambient, real-world conditions—such as low target species
concentrations, co-pollutants, and large ranges of physical parameters, such as temperature
and relative humidity (RH) [23]. Additionally, recent reports advocating for standardized
protocols for testing and evaluating sensor performance highlight the need for increased
confidence in data quality and the demand for low-cost sensors among diverse groups [30].

Recent electrochemical sensor calibration studies have generally found that machine
learning algorithms such as k-nearest neighbors, clustering, random forests, and neural
network models outperform multiple linear regression models [26,31–36]. However, there
is concern that unsupervised machine learning approaches treat these sensors as “black
boxes”, when in fact they are based on electrochemistry and designed to respond linearly
to increasing concentrations of specific pollutant species when controlling for relatively
few environmental covariates [3,12,13]. For this mechanistic reason, and to protect against
model overfitting and a reliance on opaque machine learning algorithms, we favor a
multiple linear regression approach. Additionally, multiple linear regression models offer
several advantages compared to machine learning methods; these include the: (1) ease of
implementation, model building, and parameter interpretation; (2) ability to generalize
beyond the range of the training data; (3) provision of best estimates of offset and gain
calibration terms; (4) lower data requirements; and (5) direct application to raw sensor data
to obtain calibrated concentrations [37].

In this study, we used regulatory monitoring data from the Puget Sound region (en-
compassing the Seattle–Tacoma, WA metropolitan area) to develop and evaluate field cali-
bration models for Alphasense carbon monoxide (CO), nitrogen monoxide (NO), nitrogen
dioxide (NO2), and ozone (O3) B4 series gas sensors built into networked, multipollutant
LCMs. We demonstrate and offer practical strategies to approach and evaluate sensor
calibration, specifically for an audience of epidemiological researchers, who are familiar
with multiple linear regression methods. In future works, we plan to incorporate these
LCM network predictions into spatiotemporal models of air pollution that will be used in
the exposure assessment of participants in two long-term epidemiological studies.

2. Materials and Methods
2.1. Study Context

This calibration study takes place within the context of two large epidemiological
cohorts exploring relationships between air pollution and deleterious health effects: the
“Adult Changes in Thought Air Pollution” (ACT-AP) study [38] and the “Multi-Ethnic
Study of Atherosclerosis and Air Pollution” (MESA Air) study [39]. The ACT-AP study
investigated the associations between chronic exposure to air pollution and the effects on
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brain aging and the risk of Alzheimer’s disease, and was based in the Puget Sound region.
The MESA Air study investigated the relationships between exposure to air pollutants and
the progression of cardiovascular disease in cities in New York, Maryland, North Carolina,
Minnesota, Illinois, and California. The LCMs used in both the ACT-AP and MESA Air
studies shared key parts of their calibration in the Puget Sound, even though there are
no MESA Air cities within the region. In both of these studies, the health outcomes are
thought to be, in part, related to ambient air pollution exposure, and the goal of the exposure
assessment was to obtain time-averaged air pollution concentrations incorporating data
from calibrated low-cost gas sensors at the residential locations of study participants—a
typical approach in air pollution epidemiological studies.

The focus of this analysis is on the Puget Sound findings, where most of our data
were collected, while in Appendix A, we also provide results from one of the MESA Air
cities—Baltimore, MD. Baltimore has very different environmental conditions compared to
the Puget Sound, and the goals of that analysis were to (1) determine whether calibration
procedures carried out in the Puget Sound region translated well to Baltimore, given their
environmental differences; and (2) explore calibration options with limited co-location data,
using data from both the Puget Sound and Baltimore co-location periods.

2.2. Low-Cost Monitor Deployment

From May 2017 to March 2019, we deployed 54 low-cost monitors for the ACT-
AP and MESA Air studies, rotating the monitors in at least two seasons to among over
100 residential locations for the ACT-AP study (many at ACT-AP participant homes) and
two regulatory agency monitoring sites measuring gas pollutants in the Puget Sound
region. (Additional details about the MESA Air co-location in Baltimore are presented in
Appendix A). All LCMs were periodically co-located at Puget Sound Clean Air Agency
(PSCAA) sites throughout the study, and air pollutant reference data collected during
periods of co-location form the basis for the sensor calibration. LCMs calibrated in this
study were also rotated out of the Puget Sound region in order to collect data in other
MESA Air cities.

2.3. Low-Cost Monitor and Sensor Descriptions

The LCMs were designed and constructed at the University of Washington. Each
LCM was built with four electrochemical gas sensors—CO-B4, NO-B4, NO2-B43F, and
OX-B431 (Alphasense Ltd., Great Notley, UK)—which detect CO, NO, NO2, and O3 +
NO2, respectively (Table 1). These gas sensors were selected because of their price (USD
~200), availability of sensors for gases of interest, performance, and ease of use compared
to other sensor types (e.g., metal oxide sensors). The LCMs were also equipped with
sensors for temperature and RH (HumidIcon HIH6130-021-001, Honeywell International
Inc., Charlotte, NC). We did not include ambient air pressure sensors in the LCMs (nor did
we investigate the inclusion of pressure in our calibration models), since electrochemical
sensors do not meaningfully respond to changes in ambient air pressure [12,40]. The
LCMs also had pairs of two different types of particulate matter sensors (Shinyei PPD42NS
and Plantower PMS A003); in previous work, we have reported on the calibration and
performance of these particulate matter sensors during the 2017–2018 time period [41].
Ancillary and supporting hardware included a thermostatically controlled heater, a fan, a
memory card, a modem, and a microcontroller running custom firmware to sample, save,
and transmit LCM data every five minutes to a secure server. Additional information about
the design, specifications, and construction of the LCMs is provided in the Supplementary
Materials.
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Table 1. Summary of Alphasense Ltd. (Great Notley, UK) gas sensors used in the low-cost monitor
network.

Model Analyte(s) Sensor Noise (ppb) 1 Range (ppm) 2 Reference

CO-B4 CO 4 1000 [42]
NO-B4 NO 15 20 [43]

NO2-B43F NO2 12 20 [44]
OX-B431 O3, NO2 4 20 [45]

1: Statistical uncertainty described by the manufacturer as ±2 standard deviations of measurements expressed in
ppb. 2: Limit of performance warranty.

To address the well-known issue of NO2–O3 cross-sensitivity, in our LCMs we im-
plemented an industry strategy where a pair of similar oxidizing gas-type sensors is
deployed—one with an O3 filter between the sensor and the atmosphere that permits the
detection of NO2 only (NO2-B43F), and one unfiltered sensor that detects both NO2 and
O3 (OX-B431). The filter, composed of manganese dioxide (MnO2), acts as a catalyst in the
decomposition of O3 to O2 [46]. By determining the NO2 concentration via the NO2-B43F
sensor, the OX-B431 sensor signal can be used to calculate the O3 concentration [46]. The
electrochemical sensors in our LCMs were also equipped with an auxiliary electrode (Aux),
which provides a method of accounting for sensor drift, because it ages in the same way
as the WE, but is not permitted to interact with the environment, including the target gas,
temperature, and RH.

2.4. Co-Location of LCMs with Air Quality System Monitors

The US Environmental Protection Agency (EPA) collects and reports air quality and
air pollution data from monitors operated by federal, state, local, and tribal air pollution
control agencies through their Air Quality System (AQS). The principles of operation of
AQS direct-reading instruments for gaseous pollutants vary for different gases [47], and in
the Puget Sound region, instruments employ gas nondispersive infrared radiation (CO),
chemiluminescence (NO, NO2), and ultraviolet absorption (O3) spectroscopy. Regulatory
data were obtained from the EPA’s AQS server and the PSCAA website [48,49]. The
locations of regulatory agency monitoring sites (hereafter referred to as “agency sites”)
and a description of their setting are shown in Table 2. The data quality objectives (DQOs)
for agency measurements require that the bias and percentage coefficient of variation be
within (±) 10%, 15%, 15%, and 7% for CO, NO, NO2, and O3, respectively. A summary of
agency DQOs for Beacon Hill for the study period is provided in Supplementary Table S1;
the agency met its DQOs during all quarters of this calibration study. A schematic of the
main LCM co-location site, Beacon Hill, is provided in Supplementary Figure S1. Note
that 10th and Weller is a near-roadway site downwind of a major interstate highway and,
thus, has higher concentrations of traffic pollution (CO, NO, and NO2) than Beacon Hill.
Furthermore, 10th and Weller does not measure O3, because it typically forms further
downwind of roadways.

Table 2. Summary of agency site characteristics, co-colocation statistics, and average gas concentrations during co-location
with LCMs, temperature, and relative humidity.

Agency Site Site Type # LCMs Ever
Co-Located

Co-Location
Monitor-Days

(Weeks)

CO
(ppb)

Mean ± SD 1

NO
(ppb)

Mean ± SD 1

NO2
(ppb)

Mean ± SD 1

O3
(ppb)

Mean ± SD 1

Avg Temp
(◦C)

Mean ± SD 2

Avg RH
(%)

Mean ± SD 2

Beacon Hill Suburban 54 204,498 (99) 223 ± 89 6 ± 10 11 ± 5 20 ± 9 11 ± 4 76 ± 12
10th and
Weller Urban 1 3 525 (89) 422 ± 131 27 ± 18 20 ± 7 — 4 13 ± 5 72 ± 11

1: The average concentration, temperature, and RH values were averaged across daily observations at the site when both LCM and agency
reference data were available, and therefore depend on co-location schedule, which differs across sites. 2: The average temperature and RH
values were estimated based on the LCM sensors, and then were calibrated with reference temperature and RH data from the Beacon Hill
site in order to provide standard units. 3: The LCM co-located at 10th and Weller was also briefly co-located at Beacon Hill. 4: Ozone was
not measured at 10th and Weller station.
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2.5. Sensor Quality Assurance and Data Exclusion Criteria

Automated weekly reports were created to identify data quality issues from LCMs and
allow for timely replacement of broken sensors. Sensor data were flagged for several quality
criteria, including data completeness, departure from a typical range of values or daily
variation, and correlation with nearby LCMs. Flags were developed with multiple levels
of severity for each quality criterion, and then a weighting of flags was used to prioritize
which sensors were most important to replace. Reports were developed with R markdown
and CSS/HTML in a 3-panel format designed for clear and efficient communication of
large amounts of information: a flag table panel clearly identified the highest priority
issues; a navigation panel allowed for easy navigation to further information on any issue,
and the main panel included the complete plots and tables for all sensors (Figure S2).

Throughout the study period we excluded data from malfunctioning sensors identified
in our automated weekly reports and data from the first eight hours after LCMs were
moved to a new location (giving LCMs time to warm up). Errors and malfunction that led
to missing data included a broken sensor, data failing to be recorded, clock-related errors
(e.g., no valid time recorded by the LCM), LCM power loss (e.g., LCM was unplugged),
and data transmission failure. We also identified periods of high air pollution associated
with the wildfire season and holiday fireworks (4 and 5 July) and excluded sensor data
during model fitting to prevent high outlier concentrations from having undue influence on
our calibration models, and for consistency with PM sensors in the network. In sensitivity
analyses, the inclusion/exclusion of these potentially higher concentration periods had a
negligible effect on LCM calibration models.

2.6. Calibration Models

Calibration models were developed using data between May 2017 and March 2019.
LCMs recorded and reported data every five minutes, which were then averaged to the
hourly and daily time scales. After data exclusions, we required a minimum of 75% data
completeness on the five-minute timescale before averaging to the hourly or daily scales
(i.e., at least 9 out of 12 5-min data points were required to include the hourly average in
our analysis).

We started by estimating pollution concentrations using the manufacturer’s provided
calibration terms:

Gas Concentration =
[(WE − V0,WE)− (Aux − V0, Aux)]

sensitivity ∗ gain
, (1)

The manufacturer provides both sensor-specific values of Vo and sensitivity upon
purchase, as well as “typical” values for each type of sensor in its documentation [50]—
both of which we investigated.

Next, we built a series of stepwise multiple linear regression calibration models for
each gas on both the hourly and daily timescales, including WE and Aux values as separate
independent terms. Additional terms included sensor ID (categorical), temperature (linear),
RH (linear), interactions between the WE and temperature and WE and RH, and co-
pollutant concentrations. We explored including sensor-specific slopes and sensor-specific
intercepts as well as sensor-specific intercepts and common slopes, because each sensor
could potentially have its own unique calibration slope and intercept. Sensor-specific
intercepts were estimated by calculating baseline adjustments through an algorithm that
leveraged co-location periods shared by different sensors, and assumed that the difference
in baseline between sensors remained constant.

The simplest multiple linear regression model we developed (Model 1 for each gas)
included terms for WE, Aux, and sensor ID; using O3 as an example, it took the form:

Yt = β0 + β1 × I(ID) + β2 × WEOX−B431
ID,t + β3 × AuxOX−B431

ID,t + εID, t, (2)
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where Yt = observation of the agency O3 measurement (ppb) at time t co-located with
OX-B431 sensor ID; β0 and the vector β1 allow for sensor-specific intercepts; β2 and β3 =
regression coefficients for WE and Aux sensor signals, respectively; I(ID) = unique sensor
ID coded as n-1 (53) indicator (i.e., factor) variables—one for each LCM other than the
reference LCM; WEOX−B431

ID,t = signal from the working electrode in mV; AuxOX−B431
ID,t =

signal from the auxiliary electrode in mV; and εID,t = random error. The final calibration
models for each gas were more complex, and in addition to WE, Aux, and sensor ID,
important terms in our model building included temperature, RH, interactions between
the WE and temperature and WE and RH, and co-pollutants. For example, the final model
for O3 (Model 4) was:

Yt = β0 + β1 × I(ID) + β2 × WEOX−B431
ID,t + β3 × AuxOX−B431

ID,t

+β4 × NO2
cal

ID,t + β5 × Tempspl−1
ID,t + β6 × Tempspl−2

ID,t + β7 × Tempspl−3
ID,t

+β8 × RHspl−1
ID,t + β9 × RHspl−2

ID,t + β10 × Tempspl−1
ID,t × WEOX−B431

ID,t

+β11 × Temp spl−2
ID,t × WEOX−B431

ID,t + β12 × Temp spl−3
ID,t × WEOX−B431

ID,t

+β13 × RHspl−1
ID,t × WEOX−B431

ID,t + β14 × RHspl−2
ID,t × WEOX−B431

ID,t + εID,t

(3)

where Yt, β0, β1, I(ID), WEOX−B431
ID,t , AuxOX−B431

ID,t , and εID,t have the same definitions as in
Equation (2) above; β2–β14 = regression coefficients; NO2

cal
ID,t is the previously calibrated

concentration of NO2 determined by the NO2-B43F sensor in the same monitor as OX-B431
sensor ID; Tempspl−k

ID,t = kth basis functions of the temperature b-splines (knots at 4 and

21 ◦C), based on the temperature sensor in the same monitor; and RHspl−j
ID,t = jth basis

functions of the relative humidity b-splines (knot at 60%), based on the RH sensor in the
same monitor. Interaction terms between the temperature, RH, and working electrodes are
also included for more flexible adjustment for temperature effects on the low-cost sensors.
If multiple sensors (ID1, ID2, . . . , IDm) are co-located at an agency site at the same time t,
then the observed agency measurements Yt will be the same. Final calibration models for
each gas are presented in the Supplementary Materials (Equations (S1)–(S4)).

In addition to the calibration models developed for the Puget Sound region, in Appendix A,
we briefly discuss models specific to Baltimore (one of the MESA Air study cities).

2.7. Cross Validation and Model Evaluation

We evaluated models with a 10-fold cross-validation (CV) technique, following prior
methods used for PM sensors [41]. Model performance was evaluated with cross-validated
summary measures, including the root-mean-square error (RMSE) and R2, as well as with
residual plots with reference concentration measurements, temperature, RH, and time.
The 10-fold CV approach randomly partitions weeks of monitoring with co-located LCM
and agency reference data into 10 folds. Typically, 10-fold CV partitions data based on
individual observations. However, using data from adjacent days to both fit and evaluate
models could result in artificially inflated performance measures. To minimize the effects
of temporal correlation on our CV evaluation measures, we disallowed data from the same
calendar week from being used to both train and test the models.

To assess sensor baseline drift over time, we modeled changes in residuals—between
low-cost sensor predictions fitted with final calibration models and agency reference
measurements—against deployment time. We used the slope of this best fit of residuals
over time to estimate drift, focusing on sensors that were co-located with agency reference
instruments over a period of at least one year, for at least 20% of the time. For the sensor
of each type that had the longest duration of co-location at an agency site, we plotted the
residuals between low-cost sensor predictions from the final calibration model and agency
reference measurements over time.

All statistical analyses were carried out with R version 3.6.2.
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3. Results
3.1. Site Descriptive Characteristics and LCM Co-Location

Measures of LCM co-location, including the number of monitor days and number of
unique weeks with co-located LCMs, temperature, RH, and gas pollutants measured by
reference instruments at each of the two agency sites are summarized in Table 2. Automated
weekly reports identified malfunctions and led to replacement of 1, 9, 3, and 9 sensors for
CO, NO, NO2, and O3, respectively. The Beacon Hill site had reference instruments for each
of the gases under study, was co-located with each of 54 LCMs over the course of the study,
and served as our primary calibration site. Beacon Hill is described as a “suburban” site by
the agency, though it is located within the Seattle city limits, and is generally thought of as
capturing “typical urban air quality impacts” for the region [51]. This site also generally
had lower average pollutant concentrations compared to the 10th and Weller site, which
had one co-located LCM for the study period (this LCM was also briefly co-located at
Beacon Hill). The PSCAA considers the 10th and Weller site to be an “urban center” and
a “near-road” site, located adjacent to an eight-lane highway with six additional on- and
off-ramps (the distance from the station to the middle of these 14 lanes is ~60 m, and 6 m
from the nearest on-ramp).

Based on the LCMs’ total deployment time (i.e., the sum of co-located and non-co-
located days), the percentage of time with co-located LCM-agency reference measurements
was 16% (O3), 20% (CO), and 21% (NO, and NO2). LCM deployment for each gas is dis-
played in Figure S3. Co-located times were used for calibration (black points of Figure S3).
Data from times when LCMs were not co-located with agency monitors but were deployed
at volunteers’ or study participants’ houses are represented by red points of Figure S3.
These LCM measurements at residential locations will be input into regional spatiotemporal
pollutant models in order to improve estimates of gas pollutant exposure for participants
in the ACT-AP study. One LCM remained co-located at each agency site for all or nearly
all of the study period; all other LCMs were relocated throughout the study region, and
included brief co-location periods at agency sites for calibration purposes. Due to QA/QC
exclusions, downtime for movement or maintenance, and periods when LCMs were rotated
outside of the Puget Sound region to other MESA Air cities, there were times when LCMs
did not contribute to calibration or measurement data (times with neither black nor red
points in Figure S3).

3.2. Evaluation of Calibration Models

Summaries of daily scale models for each gas with their performance measures are
presented in Table 3 and Table S2. The NO2 sensor showed the greatest improvement in CV
performance statistics, from a basic model—which included terms for the WE, Aux, and
sensor ID (Model 1: CV-RMSE = 5 ppb; CV-R2 = 0.35)—to the final model, which included
additional terms for temperature, RH, interactions between the WE and temperature splines
(knots at 4 and 21◦C) and WE and RH spline (knot at RH = 60%), and CO concentration from
the CO-B4 sensor (Model 4: CV-RMSE = 3 ppb; CV-R2 = 0.79). In contrast, CO benefitted
the least from the inclusion of additional terms from the basic model—which included
terms for WE, Aux, and sensor ID (Model 1: CV-RMSE = 29 ppb; CV-R2 = 0.94)—to the
final model selected, which included additional terms for temperature, RH, and interaction
terms between the WE and temperature and WE and RH (Model 3: CV-RMSE = 18 ppb;
CV-R2 = 0.97). To gauge sensor-specific variability, we estimated the variation of the sensor-
specific intercepts across sensors for both the simplest model (Model 1) and the final model
for each gas (Table S3). The final model standard deviations were 40, 24, 24, and 62 ppb for
CO, NO, NO2, and O3, respectively.

Comparisons of daily LCM predictions using final daily calibration models and agency
reference measurements are shown in Figure 1 and, overall, are in good agreement, with
most data falling near and distributed evenly about the 1:1 line, as highlighted by the best
fit LOESS smoother in blue. Residuals of low-cost sensor predictions calculated from final
calibration models versus agency reference concentrations, temperature, and RH for CO,
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NO, NO2, and O3 are shown in Figure 2. Generally, the residuals were centered around
zero, and did not exhibit trends with reference concentrations, temperature, or RH. Results
from calibration models built and evaluated on the hourly scale generally followed those
on the daily scale, and are presented in the Supplementary Materials (Table S2).

Table 3. Summary of daily model terms and performance measures for the manufacturer’s calibration, a simple calibration
model, and the final calibration model for CO, NO, NO2, and O3.

Gas Terms Model Number CV-RMSE (ppb) CV-R2

CO
Manufacturer’s sensor-specific slope and intercept 1 0 150 0.49
WE, Aux, and sensor ID 1 29 0.94
WE, Aux, sensor ID, temperature, RH, and WE–temperature and WE–RH
interactions 3 18 0.97

NO
Manufacturer’s sensor-specific slope and intercept 1 0 36 0.41
WE, Aux, and sensor ID 1 2 0.97
WE, Aux, Sensor ID, and temperature and RH splines 2 with WE interactions 4 2 0.97

NO2

Manufacturer’s sensor-specific slope and intercept 1 0 24 0.08
WE, Aux, and sensor ID 1 5 0.35
WE, Aux, Sensor ID, temperature and RH splines 2 with WE interactions, and
[CO]CO-B4

3 4 3 0.79

O3

Manufacturer’s sensor-specific slope and intercept 1 0 41 0.04
WE, Aux, and sensor ID 1 5 0.66
WE, Aux, Sensor ID, temperature and RH splines 2 with WE interactions, and
[NO2]NO2-B43F

4 4 4 0.81

1: RMSE and R2 summary measures not cross-validated. 2: Spline knots: temperature = 40, 70 ◦F, RH = 60%. 3: Previously calibrated CO
concentration from the CO-B4 sensor. 4: Previously calibrated NO2 concentration from the NO2-B43F sensor.
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We observed drift in each type of sensor in our network over the deployment period.
The modeled changes in residuals from daily sensor predictions fitted with the final
calibration models, which are an estimate of average drift, are summarized in Table S4.
The mean drift (range) for each type of sensor was –11 (–21, 18); –1 (–4, 2); 1 (–3, 5); and –6
(–11, 2) ppb for CO, NO, NO2, and O3, respectively. Examples of this estimate of sensor
drift over time are shown in Figure 3; we chose to display LCM ACT7 located at 10th and
Weller for CO, NO, and NO2, and LCM ACT2 at Beacon Hill for O3, because these were the
LCMs that spent the most amount of time co-located with an agency reference instrument
(O3 was only monitored at Beacon Hill).
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Figure 3. Examples of low-cost sensor residuals between final daily model predictions and agency reference measurement
for: (a) CO, (b) NO, (c) NO2, and (d) O3 over the study period. Residuals over time are a proxy for drift that may also
capture sources of variation not completely adjusted for in calibration. The dashed line is y = 0; the solid blue line is the
LOESS smoother; and the solid black line is a least squares fit, the slope of which corresponds to the estimates provided in
Table S4, while the shaded area indicates the range of the manufacturer’s estimate of sensor noise provided in Table 1 (Note:
axis was restricted for CO, omitting two outlying data points below –100 ppb).

4. Discussion

In this study, we demonstrated the successful deployment, field calibration, and cross-
validation of a low-cost sensor network for multiple gaseous pollutants over multiple
seasons and a wide range of pollutant concentrations representative of the study area. We
considered multiple calibration models on the hourly and daily time scales, and showed the
gains in sensor prediction performance that can be achieved by building a series of multiple
linear regression models, starting with the primary variables WE, Aux, and sensor ID.

The CV-RMSE and CV-R2 of our final daily calibration models met or exceeded the
performance measures reported in other recent studies [19,28,52], providing evidence that
a high level of performance compared to agency reference measurements can be attained
with rigorous calibration procedures (CO: RMSE = 18 ppb, R2 = 0.97; NO: RMSE = 2 ppb,
R2 = 0.97; NO2: RMSE = 3 ppb, R2 = 0.79; O3: RMSE = 4 ppb, R2 = 0.81). For CO, NO,
and O3, the biggest performance gains in terms of the CV-RMSE and CV-R2 were made
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between the manufacturer’s calibration model and a basic multiple linear regression model
that included terms for the working and auxiliary electrodes and sensor ID. For NO2, the
improvement in CV-R2 between measurements using the manufacturer’s calibration model
and the basic model, and between the basic and final models, were comparable.

The results for the range of multiple linear regression models constructed exhibits the
value of adding additional calibration terms; however, additional terms did not necessarily
result in improved performance (Table S2). For example, for models that implemented an
algorithm to calculate sensor-specific intercepts by making baseline adjustments to the WE
and Aux during co-location periods shared by different sensors (Models 6 and 7), perfor-
mance was not improved in the Puget Sound region. The algorithm did, however, improve
model performance in another MESA Air city (Baltimore, MD), where there were more
limited co-location data on which to perform a field calibration (details from Baltimore are
provided in Appendix A). The models with the highest CV-RMSE and CV-R2 were not nec-
essarily chosen as final models, because we also considered simplicity of implementation,
a trade-off of added modeling complexity for the marginal improvements observed, our
desire to align model forms across pollutants for consistency, and caution of overfitting
(the latter specifically relevant to Models 5–7). Our series of models provides a guide on
the nature and complexity of the calibration required for a given level of performance.

Our results confirm the importance of inter-sensor differences, particularly calibration
intercept terms, and the effects of temperature and RH on sensor response, consistent with
previous studies [52,53], and justify their inclusion in calibration models. For two of the
gases (NO2 and O3), we observed that sensor performance was dependent on inclusion of
other gases in the calibration model, although the reasons differed. For example, we found
that including the low-cost CO sensor predictions in the NO2 sensor calibration model
may have improved calibration performance because the two gases share a common traffic-
related source, and the concentration of CO can provide information on the calibration of
NO2. In contrast, creating the best O3 model depends on the inclusion of NO2 concentration
due to the function of the OX-B431 sensor, since its output is the combination of the signal
from NO2 and O3, and therefore requires the concentration of NO2, which is determined
using the previously calibrated NO2-B43F sensor. In other words, the order in which
sensors are calibrated matters.

Even though our low-cost sensors were equipped with auxiliary electrodes to counter
the effects of aging, we still observed changes in sensor drift over time. The potential
effects of this drift differed by gas, given the noise of the sensors’ signals and the low
mean pollutant concentrations in the study region. For example, the observed mean drift
(range) among 10 CO sensors was –11 (–21, 18) ppb, highly variable, greater than the
sensor noise, and between 3 and 5% of the mean pollutant concentrations measured by
agency monitors. In contrast, the observed mean drift (range) among 12 NO2 sensors was
1 (–3, 5) ppb, more uniform, less than the sensor noise, and approximately 10% of the
typical concentrations. While the range of calibration models we built addressed several of
the well-documented challenges of these low-cost gas sensors (including sensor-specific
calibration slopes and intercepts, physical parameters such as temperature and RH, and
cross-sensitivity with co-pollutants), we chose not to account for the effects of baseline
drift that were not captured in other variables. Instead, we characterized the drift using
the residuals of predictions from our final models. While an imperfect proxy for drift (for
example, because our final models may not perfectly capture seasonal fluctuations or other
unaccounted for factors), the results are easily converted to and interpreted as changes in
gas concentration.

We faced several logistical and methodological challenges in calibrating and deploying
these gas sensors for epidemiology. The LCMs in our network were generally limited
in their co-location with agency reference instruments, because extended periods of co-
location prevented an LCM from being deployed elsewhere in the study region at the homes
of ACT-AP study participants for pollutant exposure predictions. These competing interests
forced a compromise between duration of co-location in order to achieve better calibration
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and deployment for epidemiological purposes. Because of sensor-specific responses, each
low-cost sensor would have ideally been repeatedly co-located with agency reference
instruments at the same time, in order to avoid differences in calibration conditions, and
for enough time to be exposed to the full ranges of pollutant concentration, temperature,
and RH. Multiple simultaneous co-location periods would also assist in quantifying sensor
drift. In practice, this ideal scenario was not possible due to space and logistical constraints
at agency sites; however, a compromise involving groups of sensors with shared schedules
may have been better than our less rigorously designed timing.

A compromise design may have allowed for more convenient adjustment of sensor-
specific differences, thus improving our ability to address other calibration challenges. In
contrast with our previous experience with low-cost PM sensors, which did not exhibit
such prominent sensor-specific differences, the same sensor co-location design was not as
problematic because the PM sensors did not require sensor-specific adjustments [41]. In
hindsight, our study design was better suited for low-cost PM sensor calibration rather
than gas sensors, because it allowed for both long and continuous periods with agency
reference instruments for calibration and deployment at many other sites in and beyond
the Puget Sound region. Another challenge we encountered in the Puget Sound region
using these low-cost sensors was that typical pollution levels were often lower than the
noise of the sensors’ signals, which is often used in the estimation of the limit of detection.
For example, the sensor noise for NO reported by the manufacturer is 15 ppb, and 66% of
all agency NO measurements were below 15 ppb (92% at Beacon Hill and 25% at 10th and
Weller). With typical NO concentrations less than 15 ppb (Table 2), it is not surprising that
12% of NO sensor predictions were below zero.

In this study all of our calibration procedures to produce low-cost sensor predictions
were completed post-deployment, and only retrospectively did we predict gas concen-
trations with LCMs. While this procedure suits our ultimate epidemiological objectives,
where long-term average pollutant concentrations are required for exposure assessment,
this may not be practicable for end users who require more immediate or “real-time” pre-
dictions from low-cost sensors. The potential for sensors to serve as real-time direct-reading
instruments is compelling; however, the error associated with those predictions may be
higher if the sensors undergo a less rigorous or extensive calibration procedure.

5. Conclusions

This paper demonstrates the field calibration of low-cost electrochemical gas sensors
in an LCM network with regulatory agency monitoring data. Models using manufacturer-
provided calibration terms performed poorly. However, the performance of the sensors
improved substantially with rigorous multiple linear regression calibration procedures.
We found that the inclusion of environmental factors—such as temperature and RH, co-
pollutants, and terms for sensor ID—was important, contributing to performance gains.
Increasing the duration of sensor co-location with regulatory agency instruments to im-
prove calibration models is at odds with deployment for measurement purposes, and these
competing interests must be managed. Calibrated low-cost electrochemical gas sensor data
can provide measurements of ambient air pollution that have the potential to improve
exposure assessment in environmental epidemiology studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21124214/s1: Materials and Methods: Low-cost monitor and sensor descriptions; Equations
(S1–S5): Final calibration models for CO, NO, NO2, and O3; Table S1: Summary of quarterly agency
data quality indicators for the study period at the Beacon Hill site. Target data quality objectives
are provided for each gas; Table 2: Descriptions of calibration models with summary performance
statistics of sensor predictions. Models were fitted and predictions were generated on the same
timescales (hourly or daily); Table S3: Estimates of intercept variability across sensors for simple
and final daily scale calibration models (in ppb); Table S4: Estimated sensor drift for monitors
co-located with agency reference instruments over at least one year, estimated in ppb by estimating
the slope of a best fit least squares regression of residuals over time; Figure S1. Schematic of the

https://www.mdpi.com/article/10.3390/s21124214/s1
https://www.mdpi.com/article/10.3390/s21124214/s1
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main low-cost monitor calibration site, Beacon Hill, in Seattle, WA; Figure S2: Example of automated
weekly QA/QC reports to identify sensor errors and exclude data; Figure S3: Deployment of low-cost
monitors in the Puget Sound region for CO, NO, NO2, and O3. Black indicates days LCMs were
co-located with an agency reference instrument, and red indicates days they were not co-located.
Monitors at the top of each panel were MESA Air monitors and located outside of the Puget Sound
region for much of the study period, and during those times contributed neither calibration data nor
data characterizing pollutant concentrations in the Puget Sound; Data S1: Daily calibration dataset.
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Appendix A

This appendix presents background, methods, and results for the MESA Air city
Baltimore, MD.

Appendix A.1. Background

As part of the MESA Air study, LCMs were deployed in six metropolitan areas between
spring 2017 and winter 2019: New York, NY; Baltimore, MD; Chicago, IL; Los Angeles,
CA; Minneapolis and Saint Paul, MN; and Winston Salem, NC. Within each city except
Baltimore, five to seven LCMs were deployed, with half co-located at regulatory agency
monitoring sites. In Baltimore, we deployed 30 LCMs, providing the most data and the best
opportunity to explore various calibration approaches for the CO, NO2, and NO low-cost
gas sensors. The goals of this analysis were to (1) determine whether calibration procedures
carried out in the Puget Sound region translated well to Baltimore, a city with very different
environmental conditions compared to the Puget Sound region; and (2) explore calibration
options with limited co-location data using data from both the Puget Sound and Baltimore
co-location periods.

Appendix A.2. Methods

Compared to the Puget Sound, where there were 205,023 monitor-days of co-location
for calibration and evaluation, the number of monitor-days was much more limited in
Baltimore, with 498 (CO), 1604 (NO), and 2092 (NO2). In addition, as shown in Figure A1,
only a subset of the 30 Baltimore LCMs was co-located in Baltimore (4 for CO and 13 for
NO and NO2), limiting our ability to conduct calibration co-location in Baltimore and
account for inter-sensor differences. We therefore explored two options for calibration: (1)
fitting models in the Puget Sound region, then evaluating those models with data from the
limited amount of co-location data with agency reference instruments in Baltimore; and (2)
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pre-adjusting the WE and Aux values based on co-location in Puget Sound, then fitting and
evaluating models without sensor-specific intercepts using co-location data in Baltimore.
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The first strategy took advantage of the larger number of monitors that were co-
located with agency reference instruments (in theory providing an opportunity to adjust
for inter-sensor variability), but suffered from a low number of co-location monitor days,
and ignored important environmental/climactic differences between the Puget Sound
and Baltimore that could affect calibration. The second strategy offered the advantage of
using Baltimore co-location data while still accounting for inter-sensor differences as an
alternative to fitting sensor intercepts. In this Appendix, we present the results for both of
these approaches.

The first model, B1, was comparable to Model 1 for each gas presented in the main text
of this paper for the Puget Sound, including terms for WE, Aux, and sensor ID, and was
fit in the Puget Sound and evaluated in Baltimore. For the rest of the models developed
for Baltimore, we pre-adjusted the WE and Aux of each sensor based on co-location in
the Puget Sound, then created a series of multiple linear regression models with different
covariates (B2–B8, approximately following the progression of Models 1–7 in the Puget
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Sound). The pre-adjustment algorithm we developed to address inter-sensor differences
had the following steps:

1. Consider all pairwise comparisons for sensors that were ever co-located, and create a
matrix for both WE and Aux that records these pairwise average differences.

2. Fill in missing data using a weighting scheme based on the time of co-location and
relying on multiple degrees of separation.

3. After several iterations, the sensor differences relative to a single reference sensor are
obtained, which can be used to adjust the sensor signal (mV).

We calculated the CV RMSE and R2 with respect to agency reference measurements
to assess the performance of the Baltimore models, similar to our methods in the Puget
Sound.

Appendix A.3. Results and Discussion

The calibration models developed in the Puget Sound performed worse than the
LCMs that remained in the region for the duration of the study (discussed in the main
text of this paper), and did not translate well to Baltimore (Table A1). For CO and NO,
the CV-RMSE increased and the CV-R2 decreased when evaluating models fit in the Puget
Sound. For NO2, the performance was poor in the Puget Sound, and remained poor when
applied in Baltimore.

Table A1. Summary of model B1 with terms for WE, Aux, and Sensor ID. Model B1 was fit in the Puget Sound and evaluated
in Baltimore, MD on the daily timescale.

Fit in Puget Sound Evaluated in Baltimore

#
Co-Location

Sites

# Monitor
Days

Co-Location

CV-RMSE
(ppb) CV-R2

#
Co-Location

Sites

# Monitor
Days

Co-location

CV-RMSE
(ppb) CV-R2

CO 1 494 19 0.97 2 498 56 0.51
NO 1 520 5 0.89 4 1604 8 0.45
NO2 1 507 6 0.22 4 2029 6 0.20

The Baltimore models with pre-adjusted terms for WE and Aux (based on co-location
in the Puget Sound), then fit and evaluated on Baltimore co-location, are presented in
Table A2. The models that included pre-adjusted WE and Aux terms had the advantage of
using Baltimore-specific data, while still adjusting for sensor differences calculated during
co-location periods in the Puget Sound. In effect, we approximated sensor calibration
intercepts based on co-location in the Puget Sound, where each sensor had co-location
data, then generalized calibration coefficients for the remaining model terms based on the
limited number of LCMs with Baltimore co-location data.

While the pre-adjustment improved performance slightly in this study, this algorithm
may not translate well to other regions, and reproduction of the technique should be
approached cautiously, because it is not a well-established method. Baltimore calibration
models had worse CV performance measures compared to those developed in the Puget
Sound region, and we attribute this to the more limited co-location data available for
calibration. Generally, the Baltimore CV performance measures were poor, and did not
meet our acceptance criteria.
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Table A2. Descriptions and prediction performance statistics of calibration models with each sensor pre-adjusted in the
Puget Sound, then fit and evaluated in Baltimore, MD. Models were fit and predictions were generated on the daily
timescale.

CO NO NO2

Model Terms CV-RMSE
(ppb) CV-R2 CV-RMSE

(ppb) CV-R2 CV-RMSE
(ppb) CV-R2

B2 Pre-adjusted WE, pre-adjusted Aux 51 0.53 7 0.61 5 0.33
B3 Model B2 with temperature and RH 39 0.73 7 0.58 5 0.40

B4 Model B3 with WE–temperature and WE–RH
interactions 36 0.76 7 0.62 5 0.36

B5 Model B3 with WE– and Aux–temperature
and WE– and Aux–RH interactions 37 0.75 7 0.64 5 0.29

B6 Model B2 with WE–temperature spline and
WE–RH spline interactions 41 0.70 7 0.63 5 0.41

B7 Model B4 with WE–Aux interaction 37 0.74 7 0.62 5 0.45
B8 Model B4 with WE spline 38 0.74 7 0.61 5 0.36
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