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ABSTRACT: Xestocyclamine A ((−)-1) is featured prominently in a biosynthesis pathway leading to a large family of polycyclic
alkaloids. The first total synthesis now proves that the structure of this compound had originally been misassigned. The route to
(−)-1 is based on a double Michael addition for the formation of the bridged diazadecalin core and a palladium-catalyzed
decarboxylative allylation to install the quaternary bridgehead center. Ring-closing alkyne metathesis allowed a 13-membered
cycloalkyne to be forged, which was selectively reduced during an involved sequence of hydroboration/selective protodeborylation/
alkyl-Suzuki coupling used to close the 11-membered ring. Crystallographic data prove the identity of synthetic (−)-1 with nominal
xestocyclamine, but the spectra differ from those of the authentic alkaloid. To clarify the point, the synthesis was redirected toward
ingenamine (3), which is supposedly a positional isomer of 1. The recorded data confirm the assignment of this particular natural
product and strongly suggest that xestocyclamine A is in fact the enantiomer of ingenamine (+)-3.

A large family of polycyclic alkaloids is thought to derive
from macrocyclic dimers such as A as the biosynthetic

precursors, which are composed of partly reduced 3-
alkylpyridine units (Scheme 1).1 The key step of this
“Baldwin−Whitehead postulate” set forth in 1992 consists of
a transannular Diels−Alder reaction leading to B in the first
place;2 keramaphidin B (2) is the reduced form of this

iminium salt, a natural product that was isolated only after this
intriguing biosynthetic proposition had been made.3 The fact
that both enantiomers of 2 occur in nature might imply that
the critical cycloaddition is not enzyme-dependent; however,
emulation of this biomimetic route in vitro gave only minute
amounts of (±)-2 (0.2−0.3%) despite considerable optimiza-
tion.4,5 A second approach to (±)-2, in which the Diels−Alder
reaction was performed intermolecularly and the macrocycles
were then forged by two concurrent ring-closing metathesis
(RCM) reactions, was also very low-yielding (1−2%).5,6
The closest analogues of 2 are nominal xestocyclamine A

((−)-1)7 and ingenamine ((+)-3)8 as the parent compounds
of two subsets of alkaloids endowed with remarkable biological
properties.1 These compounds are supposedly pseudoenantio-
meric in that they differ in the exact positioning of the double
bond within the 11-membered ring. Their central rank on the
Baldwin−Whitehead pathway notwithstanding,2 no total
syntheses of these prominent targets have been reported in
over 25 years since their discovery. The challenges posed by
the pentacyclic framework, which comprises a 1,4-etheno-
bridged 2,7-diazadecalin core enveloped by two ansa bridges
forming the signature macrocycles, were highlighted by in-
depth studies directed toward 1 by the Danishefsky group
(Scheme 2).9 Those authors reached the core by a
sophisticated Diels−Alder/“stitching” annulation strategy;
they were also able to show that an alkyl-Suzuki coupling10,11

allows the strained 11-membered ring to be closed. However,
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Scheme 1. Biosynthetic Reasoning and Structures of Some
Alkylpyridine-Derived Alkaloids

Communicationpubs.acs.org/JACS

© 2020 American Chemical Society
11703

https://dx.doi.org/10.1021/jacs.0c05347
J. Am. Chem. Soc. 2020, 142, 11703−11708

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhanchao+Meng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alois+Fu%CC%88rstner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.0c05347&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c05347?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c05347?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c05347?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c05347?goto=supporting-info&ref=pdf
https://pubs.acs.org/toc/jacsat/142/27?ref=pdf
https://pubs.acs.org/toc/jacsat/142/27?ref=pdf
https://pubs.acs.org/toc/jacsat/142/27?ref=pdf
https://pubs.acs.org/toc/jacsat/142/27?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c05347?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c05347?fig=sch1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/jacs.0c05347?ref=pdf
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


appropriate handles for the formation of the second macro-
cycle could not be incorporated at the very beginning, and
their late-stage attachment had not been described either.9

While contemplating various alternative blueprints for the
synthesis of (−)-1 as our first target, we were guided by the
following considerations: (i) The poor outcome of the double-
RCM route toward (±)-25 suggested that consecutive closure
of the two macrocycles by chemically orthogonal method-
ologies is preferable. (ii) If the successful alkyl-Suzuki reaction
was to be retained in some format (Scheme 3),9 it would be

better allied with ring-closing alkyne metathesis (RCAM)12−14

than with olefin RCM; while modern RCAM catalysts leave all
kinds of double bonds untouched, RCM might fail to
discriminate the two (Z)-alkenes in the target and hence
result in scrambling.15 (iii) Ideally, the chosen building blocks
should already carry handles for the macrocyclization events;
this boundary condition is difficult to meet with an approach
based on a [4 + 2] cycloaddition for the formation of the
diazadecalin core, as clearly documented in the prior art.9,16

(iv) Whatever alternative method was chosen, it had to provide
control over the stereocenters on the rim, including the
quaternary bridgehead position. (v) A transannular strategy,
though intellectually appealing,4,5 would be handicapped on
entropic and steric grounds (see above) and therefore likely
inadequate.
With these caveats in mind, a Michael/Michael cascade

using synthons of type H and I was deemed to be promising
(Scheme 3).17,18 These partners exhibit matching reactivity
profiles that should result in proper orchestration: Specifically,
the high electrophilicity of H is expected to power the first C−
C bond formation under stereochemical control by the
adjacent stereogenic center. This first critically important

step in turn generates an excellent Michael donor G, which
should engage with the less electrophilic partner and forge a
suitably functionalized bridged diazadecalin segment F.
Access to 6 as an adequate incarnation of H requires nine

steps if one commences by a literature-known route;19

therefore, a considerably shorter entry was developed (Scheme
4). O-Silylation of 4 and subsequent regioselective C−H

oxidation with RuO2 cat./NaIO4 furnished lactam 5 in 55%
yield (>99% ee) over the two steps on a >18 g scale.20

Deprotonation with excess LiHMDS was followed by
sequential addition of allyl chloroformate and PhSeCl; the
resulting product was treated with H2O2 under strictly neutral
conditions to give product 6 in high yield, again on a
multigram scale. The fact that the mild selenation/oxidation
chemistry21 worked better than conceivable alternative
methods is tentatively attributed to the pronounced electro-
philicity of this sensitive product.
A suitable partner 9 was prepared by acylation/alkylation of

7. Product 8 thus formed underwent decarboxylative
dehydrogenation upon treatment with Pd2(dba)3·CHCl3 as
the catalyst.22 Only this phosphine-free procedure proved to be
selective and scalable (>2 g, single largest batch), whereas
alternative Pd sources furnished mixtures of little preparative
utility.
In contrast to what had been anticipated, the double Michael

reaction did not proceed as a cascade23 because the second
step turned out to be reversible in the presence of a strong base
such as LiHMDS; this result suggests that the enolate derived
from the 1,3-dicarbonyl unit is too good a leaving group.
Gratifyingly, however, a change of the base allowed product 11
to be reached in a very practical manner (Scheme 5).
Specifically, 9 was deprotonated with LiHMDS, and the
resulting enolate reacted with acceptor 6. Spectral evidence
suggested that product 10 was formed as mixture of isomers at
C2, but with excellent stereocontrol of the critically important
C1 position (xestocyclamine numbering). When this crude
mixture was exposed to K2CO3 in refluxing MeCN, the second,
now intramolecular Michael addition took place: the desired
caged compound 11 was easily separated from the C2-isomeric
product at this stage, thus opening entry into the diazadecalin
core of xestocyclamine A on a gram scale. The subsequent Pd-
catalyzed decarboxylative allylation24−26 allowed the challeng-
ing quaternary center C6 in 12 to be set and an appropriate

Scheme 2. Major Literature Precedent: The Danishefsky
Model Study9a

Scheme 3. Retrosynthetic Analysis

Scheme 4a

aReagents and conditions: (a) TBSCl, imidazole, DMF; (b) RuO2 (6
mol %), NaIO4, EtOAc/H2O, 55% (over two steps); (c) LiHMDS,
allyl chloroformate, THF, then PhSeCl, −78 °C → RT; (d) aqueous
H2O2 (35% w/w), CH2Cl2, 0 °C, 76%; (e) ClCOOMe, K2CO3,
THF/H2O, quant.; (f) LiHMDS, allyl chloroformate, toluene, −78 °C
→ 0 °C, 50%; (g) 1-iodo-3-pentyne, K2CO3, acetone, reflux, 36%; (h)
Pd2(dba)3·CHCl3 (10 mol %), MeCN, reflux, quant.
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handle for the projected ring closure to be installed in
essentially quantitative yield. This rewarding outcome reflects
the rigorous stereocontrol imposed by the rigid tricyclic
scaffold. Reduction of the ketone with NaBH4 gave the
corresponding alcohol as a single diastereomer.27 The
subsequent elimination proved to be surprisingly difficult and
failed under a variety of conditions.28 Finally, it was found that
treatment of the derived mesylate 13 with lutidine at 170 °C
furnished alkene 14 in good yield; the concomitant cleavage of
the N-Boc protecting group was a favorable side effect of these
harsh conditions.
Compound 14 was N-alkylated with 7-iodo-2-heptyne, and

the resulting diyne was subjected to RCAM. Use of the two-
component catalyst system comprising complex 17 and
trisilanol ligand 18 cleanly furnished the 13-membered ring
in a reaction time of <10 min.29,30 The structure of the
resulting cycloalkyne 16 was confirmed by X-ray diffraction
(see the Supporting Information (SI)). Cleavage of the methyl
carbamate with excess L-Selectride31 followed by reductive N-
alkylation32,33 set the stage for the formation of the 11-
membered ring.
The successful implementation of an alkyl-Suzuki coupling

into the model study by the Danishefsky group9 inspired us to
pursue a more involved scenario (Scheme 6). Specifically,
treatment of compound 20 with excess 9H-9-BBN led to
hydroboration of the terminal alkene and non-regioselective
hydroboration of the internal alkyne but left the trisubstituted
olefin and the iodoalkene untouched. Since a Csp

2−BBN
moiety is substantially more labile than a Csp

3−BBN group,
addition of dilute HOAc resulted in selective protonolysis of
the alkenylborane site of 21; this maneuver unveiled the
signature Δ12,13 (Z)-alkene moiety of the target while keeping
the donor at C-24 intact for the projected cross-coupling.34

Excess acid was then quenched with NaHCO3, and the mixture

was diluted with THF. The resulting solution of 22 was slowly
added to a solution of [(dppf)PdCl2] cat., AsPh3 cat., and
Tl2CO3 in THF/DMF/H2O to close the yet missing 11-
membered ring. This intricate but convenient tactic merged
stereoselective alkyne semireduction with macrocycle forma-
tion and gave 23 in very reproducible 48% overall yield. Final
lactam reduction and deprotection was achieved in one step
with Dibal-H followed by a MeOH quench.
The constitution and stereostructure of our samples,

including the correct positions and Z configurations of the
two olefins embedded in the macrocycles, were rigorously
proven by spectroscopic means and X-ray diffraction: synthetic
(−)-1 is definitely nominal xestocyclamine A (Figure 1).

However, the NMR spectra of the free base and the derived
salt (−)-1·2HCl (and any stage in between) slightly differ from
the literature data.7 In consideration of the proposed
biosynthesis (Scheme 1), the misalignment of the Δ22,23 olefin
by the isolation team was deemed the most likely reason for
the mismatch: xestocyclamine A might either be identical with
or enantiomeric to ingenamine (+)-3 (just as keramaphidin
occurs in both forms in nature).

Scheme 5a

aReagents and conditions: (a) LiHMDS, THF, −78 °C; (b) K2CO3,
MeCN, reflux, 43% (over two steps); (c) Pd(PPh3)4 (10 mol %),
toluene, 50 °C, quant.; (d) NaBH4, MeOH, 0 °C; (e) MsCl, Et3N,
DMAP, CH2Cl2, 81% (over two steps); (f) 2,6-lutidine, 170 °C, then
TBSOTf, CH2Cl2, RT, 72%; (g) NaH, 7-iodo-2-heptyne, DMF, 0 °C,
91%; (h) 17 (25 mol %), 18 (25 mol %), toluene, 110 °C, 85%.

Scheme 6a

aReagents and conditions: (a) L-Selectride, THF; (b) 19, CH2Cl2,
NaBH(OAc)3, 89% (over two steps); (c) (i) 9H-9-BBN, THF; (ii)
H2O, HOAc, THF; (iii) THF, NaHCO3; (iv) [(dppf)PdCl2] cat.,
AsPh3 cat., and Tl2CO3, THF/DMF/H2O (6:3:1), 48%; (d) Dibal-H,
THF, then MeOH, 57%.

Figure 1. Structure of nominal xestocyclamine A ((−)-1) in the solid
state. H atoms have been omitted for clarity.
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Since the spectra of the natural products were recorded in
different solvents and authentic samples of neither alkaloid
were available any longer for reinspection, a total synthesis of
ingenamine was necessary to obtain material for comparison.
As the most pragmatic approach toward this end, the route to
xestocyclamine A was diverted at the stage of compound 15
(Scheme 7). Selective hydroboration/oxidation of the terminal

alkene35 opened access to aldehyde 24, which was subjected to
Wittig reaction with the nonstabilized ylide derived from the
commercial salt [Ph3P(CH2)4COOH]Br (25). Cleavage of the
carbamate with L-Selectride furnished amino acid 26 in
readiness for macrolactamization with Mukaiyama’s reagent
(27).36 For polarity reasons, this sequence was carried out
without rigorous characterization of the intermediates; it
furnished 28 in 39% yield over three steps. The subsequent
RCAM reaction under the conditions described above
proceeded smoothly to give cycloalkyne 29 (the structure in
the solid state is contained in the SI). Semireduction of this
compound with nickel boride37 was followed by concomitant
reduction of the two amides and cleavage of the silyl ether with
excess AlH3. The X-ray structure shown in Figure 2 confirms
the structural integrity of synthetic ent-ingenamine ((−)-3).
Gratifyingly, the NMR spectra of (−)-3 thus formed in

MeOH-d4 matched those of rigorously acid-free natural
ingenamine in the same solvent.38 Because the spectra in
CDCl3/DMSO-d6 were found to be very sensitive to the exact
solvent ratio and even trace acid in the medium, any direct
comparison is difficult.39 However, in the presence of 0.4 equiv
of trifluoroacetic acid, the 1H and 13C NMR spectra of
synthetic (−)-3 reproduce well those of xestocyclamine A
reported in the literature. Therefore, and in consideration of
the sign of the optical rotation of the samples, we firmly
conclude that xestocyclamine A had originally been misas-
signed: in all likelihood it is the enantiomer rather than a
pseudoenantiomer of ingenamine, even though only authentic
material from the natural source can provide ultimate proof.40

Since these compounds are featured prominently on the

Baldwin−Whitehead biosynthesis pathway, the total syntheses
reported above provide an essential clarification.
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Scheme 7a

aReagents and conditions: (a) 9H-9-BBN, THF, then NaBO3·H2O;
(b) PDC, 4 Å MS, CH2Cl2, 74% (over two steps); (c) [Ph3P-
(CH2)4COOH]Br (25), NaHMDS, THF, 0 °C, then 24, −90 °C →
0 °C; (d) L-Selectride, THF, 40 °C; (e) 27, (iPr)2NEt, CH2Cl2, 39%
(over three steps); (f) 17 (30 mol %), 18 (30 mol %), toluene, 100
°C, 82%; (g) Ni(OAc)2·4H2O, NaBH4, ethylenediamine, EtOH, then
H2 (1 atm), 86%; (h) LiAlH4, AlCl3, THF, 58%.

Figure 2. Structure of ent-ingenamine ((−)-3) in the solid state. H
atoms have been omitted for clarity.
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