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Abstract

Background: Integrating and analyzing heterogeneous genome-scale data is a huge algorithmic challenge for
modern systems biology. Bipartite graphs can be useful for representing relationships across pairs of disparate data
types, with the interpretation of these relationships accomplished through an enumeration of maximal bicliques.
Most previously-known techniques are generally ill-suited to this foundational task, because they are relatively
inefficient and without effective scaling. In this paper, a powerful new algorithm is described that produces all
maximal bicliques in a bipartite graph. Unlike most previous approaches, the new method neither places undue
restrictions on its input nor inflates the problem size. Efficiency is achieved through an innovative exploitation of
bipartite graph structure, and through computational reductions that rapidly eliminate non-maximal candidates from
the search space. An iterative selection of vertices for consideration based on non-decreasing common
neighborhood sizes boosts efficiency and leads to more balanced recursion trees.

Results: The new technique is implemented and compared to previously published approaches from graph theory
and data mining. Formal time and space bounds are derived. Experiments are performed on both random graphs and
graphs constructed from functional genomics data. It is shown that the new method substantially outperforms the
best previous alternatives.

Conclusions: The new method is streamlined, efficient, and particularly well-suited to the study of huge and diverse
biological data. A robust implementation has been incorporated into GeneWeaver, an online tool for integrating and
analyzing functional genomics experiments, available at http://geneweaver.org. The enormous increase in scalability
it provides empowers users to study complex and previously unassailable gene-set associations between genes and
their biological functions in a hierarchical fashion and on a genome-wide scale. This practical computational resource
is adaptable to almost any applications environment in which bipartite graphs can be used to model relationships
between pairs of heterogeneous entities.
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Background
Bicliques have a long history of applications. The enumer-
ation of maximal bicliques can be traced at least as far
back as the seminal work reported in [1]. There the prob-
lem was defined in terms of rectangles, binary relations
and concept lattices. Subsequent progress on concept
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lattices was surveyed in [2,3]. Algorithms for their identi-
fication were applied to the analysis of gene co-expression
data in [4,5].

A variety of biological challenges can be addressed
by finding maximal bicliques in bipartite graphs. Rep-
resentative applications include biclustering microarray
data [6-8], optimizing phylogenetic tree reconstruction
[9], identifying common gene-set associations [10], inte-
grating diverse functional genomics data [11], analyzing
proteome-transcriptome relationships [12], and discover-
ing patterns in epidemiological research [13]. Statistical
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approaches have been applied to some of these problems,
but in many cases a discrete approach is beneficial or
required because of the structure and diversity of the data
under study.

Let us describe a few specific examples. Bicliques have
been used in the analysis of gene expression data to rep-
resent subsets of genes and subsets of conditions, each
pair with a high similarity score [6]. Graph theoretical
approaches have been proposed in this setting to find
bicliques in the resultant bipartite graphs that model
genes and conditions with vertices, and co-expression lev-
els with edge weights [7,8,14]. Bicliques have been used in
phylogenetics to improve the accuracy of tree reconstruc-
tion [9]. Such a tree denotes evolutionary relationships
among species thought to have a common ancestor. Data
with no fewer than k genes sampled from no fewer than
m species are extracted from sequence databases. This
operation is equivalent to finding maximal bicliques with
partition sizes at least k and m. Bicliques have been used
in epidemiological research to identify sets of individuals
who share common sets of features. Bipartite graphs can
help capture relationships between organisms and a wide
range of factors. Maximal bicliques are particularly useful
in case-control studies involving categorical features such
as genotypes and exposures [13].

Our work has been largely motivated by the compu-
tational demands of systems like GeneWeaver [11], a
web-based software platform for the integration of func-
tional genomics data. GeneWeaver includes a database
containing lists of genes from diverse sources, along with
descriptive metadata associated with these lists. Through
gene homology, the lists can be combined across species
such that genes on the lists are translated to a common ref-
erence. This enables the construction of a bipartite graph,
with vertex partitions representing individual genes ver-
sus the gene lists. A suite of tools built on the enumer-
ation of maximal bicliques and other bipartite analyses
allows the user to identify groups of genes that are asso-
ciated with related biological functions, all without any
prior knowledge or assumption about such group associ-
ations. Efficiency and scalability are paramount, because
real-time maximal biclique enumeration is required for
web-based user-driven analyses, as well as for effective
computations over the entire data repository.

Problem
In each of the aforementioned applications involving an
integration of multiple sets of genome-scale data, bipar-
tite graphs can be used to represent relationships across
pairs of heterogeneous data types. An interpretation of
such a relationship is accomplished through an enumer-
ation of maximal bicliques. Let us be precise about what
this means. A bipartite graph is one whose vertices can
be partitioned into a pair of non-empty, disjoint partitions

such that no two vertices within the same partition are
connected by an edge. Let G denote a bipartite graph, let
U and V denote its two vertex partitions, and let E denote
its edge set. A biclique in such a graph is a complete bipar-
tite subgraph, that is, a bipartite subgraph containing all
permissible edges. The notion is formalized as follows:

Definition 1. Let G = (U ∪ V , E) denote a bipartite
graph. A biclique C = (U ′, V ′) is a subgraph of G induced
by a pair of two disjoint subsets U ′ ⊆ U, V ′ ⊆ V , such that
∀ u ∈ U ′, v ∈ V ′, (u, v) ∈ E.

A maximum biclique is a largest biclique in a graph.
Unlike the well-known maximum clique problem, there
are two distinct variants of the maximum biclique prob-
lem: the vertex maximum biclique problem and the edge
maximum biclique problem. The former asks that we
find a biclique with the largest number of vertices, and
can be solved in polynomial time [15]. The latter asks
that we find a biclique with the largest number of edges,
and is NP-complete [16]. In biological applications, the
edge maximum biclique is often desirable because it mod-
els more balanced connectivity between the two vertex
classes. For example, an edge maximum biclique may
group together numerous related biological processes and
a modest set of their common genes, whereas a vertex
maximum biclique may instead group together only a tiny
set of related biological processes with great numbers of
common genes.

A maximal biclique is one not contained in any larger
biclique. Examples of maximum and maximal bicliques
are shown in Figure 1. The enumeration version of our
problem is to find all maximal bicliques in a bipartite
graph. In so doing, it turns out that we actually gener-
ate both edge maximum and vertex maximum bicliques.
Thus, we are chiefly concerned with this enumeration
problem, formalized as follows:

Input : A bipartite graph G = (U ∪ V , E).
Output: All maximal bicliques, or subsets U ′ of U
and V ′ of V, for which the induced subgraph
G[U ′ ∪ V ′] is complete, and there are no subsets
U ′′ ⊇ U ′ and V ′′ � V ′, or U ′′ � U ′ and V ′′ ⊇ V ′,
such that G[U ′′ ∪ V ′′] is also complete.

As observed in [17], the maximal biclique enumera-
tion problem cannot be solved in polynomial time since
the number of maximal bicliques may be exponential in
the graph size. Nevertheless, there remains a demand
for efficiency, because we often need exact solutions to
large-scale instances in real time. The Maximal Biclique
Enumeration Algorithm (MBEA) that we will define here
finds all maximal bicliques. It exploits structure inher-
ent in bipartite graphs. It employs a branch-and-bound
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Figure 1 Maximum and maximal bicliques. A bipartite graph G1 has an edge maximum biclique B1({u1, u2}, {v1, v2, v3}) with 5 vertices and 6
edges, and a vertex maximum biclique B2({u3, u4, u5, u6, u7}, {v5}) with 6 vertices and 5 edges. Both B1 and B2 are maximal.

technique to prune non-maximal candidates from the
search tree. Its pruning is accelerated by directly removing
dominated vertices from the candidate set. Our experi-
mental results demonstrate that the resultant reduction in
search space enables MBEA to scale to the tens of thou-
sands of nodes currently encountered in analyzing large
biological data sets. In addition, we created an improved
version, iMBEA, that selects candidate vertices in the
order of common neighborhood size and that uses an
enhanced version of branch pruning.

Related work
With widespread applications such as those just discussed,
one would expect a plethora of algorithms targeting max-
imal bicliques on bipartite graphs. Most algorithms that
achieve this purpose, however, are either not tailored for
bipartite graphs or not designed specifically for maximal
biclique enumerations. Most existing graph algorithms
for solving this problem fall into two main categories: (i)
those designed for bipartite graphs but that either place
undue restrictions on the input or require reduction to

other problems, and (ii) those designed for general graphs
and are thus unable to take advantage of bipartite graph
structure. Table 1 lists these algorithms, their inputs and
outputs (with restrictions, if any), and the methods they
use.

Algorithms for bipartite graphs

Existing algorithms for finding maximal bicliques in
bipartite graphs are further divided into the following
three approaches: exhaustive search with restrictions on
outputs, reduction to the clique enumeration problem
on general graphs, and reduction to the frequent itemset
mining problem in transaction databases.

The most intuitive approach entails exhaustively build-
ing all subsets of one vertex partition, finding their inter-
sections in the other partition, and checking each for
maximality. Algorithms based on exhaustive search must
generally place one or more restrictions on the problem to
reduce its enormous search space. Moreover, exhaustive
search requires storing generated bicliques to determine
their maximality. An iterative algorithm is presented in

Table 1 Previously presented graph algorithms for maximal biclique enumeration

Algorithms Inputs Outputs Methods

Sanderson et al. [9] Bipartite graph Maximal bicliques of Exhaustive search by iterative biclique
bounded minimum size building

Mushlin et al. [13] Bipartite graph Maximal bicliques of Exhaustive search with a priority queue
bounded sizes and
figure-of-merit values

Zaki et al. [21] Bipartite graph Maximal bicliques Frequent closed itemset mining in
(one partition) transaction databases

Uno et al. [25] (LCM/LCM2) Bipartite graph Maximal bicliques Frequent closed itemset mining
(one partition)

Li et al. [26] (LCM-MBC) Bipartite graph Maximal bicliques Frequent closed itemset mining

Makino & Uno [18] Bipartite graph Maximal bicliques Maximal clique finding in general graphs

Tomita et al. [30] General graph Maximal cliques Maximal clique finding in general graphs

Eppstein [17] General graph of Maximal bicliques Exhaustive search
bounded arboricity

Alexe et al. [27] (MICA) General graph Maximal bicliques A consensus algorithm

Liu et al. [28] (MineMBC) General graph Maximal bicliques of A divide-and-conquer approach
bounded minimum size
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[9] to build subsets progressively, from pairs of vertices to
collections of larger and larger sizes. It limits the sizes of
both biclique vertex partitions, yet still requires enormous
amounts memory to store the lists used to generate sub-
graphs and decide maximality. The algorithm described
in [13] builds bicliques based on set expansion and exten-
sion operations. It employs a hash table that determines
maximality to avoid pairwise biclique comparisons, and a
queue to maintain bicliques prioritized by figure-of-merit
values (e.g., p-values). Users can specify constraints on the
figure-of-merit values to filter out bicliques of insufficient
interest.

The second approach relies on graph inflation. As
observed in [18], the enumeration of maximal bicliques in
a bipartite graph can be transformed into the enumera-
tion of maximal cliques in a general graph by adding all
possible edges between vertices within the same partition,
thereby transforming each of the two disjoint vertex sets
into a clique. This approach is neither practical nor scal-
able, however, due to the enormous number of edges that
may be needed and the concomitant increase in problem
difficulty that is incurred. Given a bipartite graph G =
(U ∪ V , E) where |U| = m, |V | = n, |E| = e, the number
of edges needed to transform G to a corresponding graph
Ĝ is

(n
2
) + (m

2
)
. Thus, this method transforms the problem

of finding maximal bicliques in a bipartite graph with edge
density d(G) = e

m × n
to the problem of finding maximal

cliques in a graph Ĝ with density d(Ĝ) = e + (n
2
) + (m

2
)

(m+n
2

) .

Note that Ĝ might be dense even if G is sparse. When
G has two vertex sets of equal size and no edges (i.e.

|U| = |V | = n, |E| = 0), Ĝ has a density
n2 − n

2n2 − n
� 50%.

Figure 2(a,b) illustrates the correspondence between these
two problems.

A third approach comes from the field of data mining. It
was observed in [19] that a transactional database can be
represented by a bipartite graph, with a one-to-one corre-
spondence between frequent closed itemsets and maximal
bicliques. A subset of items is defined as a frequent itemset
if it occurs in at least one transaction. On one hand, a
frequent itemset and the set of transactions containing
the frequent itemset form a biclique. On the other hand,
the adjacency lists of a bipartite graph can be viewed as
a transaction database by treating each vertex in one set
as an item and each vertex in the other set as a transac-
tion that contains a subset of items. A biclique can thus
be mapped to a frequent itemset. A maximal biclique cor-
responds to a frequent closed itemset, where a frequent
itemset I is said to be closed if the set of transactions
containing I do not contain a superset of I. The support
of a frequent itemset is the number of transactions in
which the set occurs. Enumerating all maximal bicliques

is equivalent to enumerating all frequent closed itemsets
with support at least 1. Figure 2(a,c) shows a mapping
between these two problems. A correspondence between
maximal bicliques of a general graph and frequent closed
itemsets has been shown [20], leading to the sugges-
tion that FPclose and similar frequent itemset mining
methods [21-25] may be helpful in enumerating maximal
bicliques. Implementations of this approach require a
post-processing step to obtain the transaction set for
each frequent closed itemset, as described in [26]. This is
because the published methods output only the frequent
itemsets (which correspond to half bicliques). Although
this post-processing step is straightforward enough, it
can be prohibitively time-consuming when the number
of maximal bicliques is large. Moreover, known methods
take the support level as an input parameter, and find only
frequent closed itemsets above the given support. (In gen-
eral, the lower the support, the longer the algorithms take.
A support of 1 is the most difficult, since at this level all
frequent closed itemsets must be found.)

Algorithms for general graphs
Maximal bicliques can also be found with algorithms
designed for general graphs. Such algorithms of course
lack any efficiency gains that might be accrued from
utilizing bipartite graph structure. The maximal biclique
enumeration problem was studied from a theoretical
viewpoint in [17], where the focus was on graphs of
bounded arboricity. It was proved that all maximal
bicliques in a graph of order n and arboricity a can be
enumerated in O(a322an) time. This approach is not prac-
tical for large graphs, however, because it is unrealistic
to expect that arboricity would be limited in practice
[19]. A suite of consensus algorithms was presented in
[27] for finding complete bipartite (but not necessarily
induced) subgraphs. Unfortunately, these algorithms need
to keep all maximal bicliques in memory. The Modular
Input Consensus Algorithm (MICA), the most efficient
among them, has space complexity O(B) and time com-
plexity O(n3B), where B denotes the number of maximal
bicliques. An algorithm (MineLMBC) based on divide-
and-conquer was proposed in [28] to mine large maximal
bicliques from general graphs by putting size constraints
on both vertex sets to iteratively prune the search space.
The algorithm reduces the space complexity to O(n2)
and the time complexity to O(n2B). The algorithm on
dense graphs from 2nd DIMACS Challenge benchmarks
outperforms MICA when minimum biclique sizes are
constrained by certain thresholds.

To solve the biclique enumeration problem, restrictions
on either inputs or outputs have been proposed to reduce
the search space. These include bounding the maximum
input degree [7], bounding an input’s arboricity [17], and
bounding the minimum biclique size [9,28] or figure-
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Figure 2 Bicliques, cliques, and frequent closed itemsets. The relationship between bicliques in a bipartite graph, cliques in a general graph,
and frequent closed itemsets in a transaction database is exemplified. In (a), the bipartite graph G2 has a maximal biclique B = ({u1, u2}, {v2, v3}). In
(b), G2 has been transformed into Ĝ2 by adding edges (dashed lines) between every pair of nodes in the same partition. The vertices of B now form
a maximal clique in Ĝ2. In (c), a transaction database is built from G2 by treating V as the transaction set and U as the item set. B can now be viewed
as a frequent closed itemset in this database.

of-merit [13]. Naturally, no algorithm relying on these
restrictions can solve arbitrary bipartite instances.

Methods
The algorithm we shall now describe achieves efficiency
without I/O or other restrictions. Performance testing
on both synthetic and biological graphs demonstrate that
it is markedly superior to MICA [27], the best known
algorithm for finding bicliques on general graphs, and to
LCM-MBC [26], a state-of-the-art frequent itemset algo-
rithm that improves upon and adds a post-processing
step to LCM [25]. The Maximal Biclique Enumeration
Algorithm (MBEA) combines backtracking with branch-
and-bound techniques to prune away regions of the search
tree that cannot lead to maximal bicliques. MBEA is
inspired by the classic maximal clique-finding method of
[29], which was refined and shown to have optimal time
complexity in [30]. The search space for MBEA is limited
to disjoint vertex sets because, in a biclique, vertices in one
set determine those in the other.

Algorithmic basics
Let G = (U ∪ V , E) be a bipartite graph and assume,
without loss of generality, that |U| ≥ |V |. MBEA operates
on the (potentially smaller) set V, utilizing the following
four dynamically changing sets of vertices: (i) R, a sub-
set of V, (ii) L, a subset of U containing all the common
neighbors of R, (iii) P, a subset of V containing candidate
vertices that may be added to R, and (iv) Q, a subset of V
containing former candidates, that is, vertices that were
previously considered for R. The sets R, L, P and Q are
employed in a depth-first traversal of a recursion tree to
form maximal bicliques. R and L are used to form such
a biclique, where R determines L. P is used for biclique
expansion. Q is used to determine maximality. P, Q and R
are required to satisfy the following two conditions:

• (P ∩ Q) ∪ (P ∩ R) ∪ (Q ∩ R) = ∅. That is, P, Q, R
are pairwise disjoint.

• P ∪ Q = {v | v ∈ V\R, ∃ u ∈ L, (u, v) ∈ E}. That is, P
and Q contain every vertex in V but not R that is
adjacent to at least one vertex in L.

Observation 1. The subgraph induced by (L, R) is a
biclique.

For simplicity, and since G is bipartite, we henceforth
drop the reference to induced subgraph, and simply say
that (L, R) is a biclique. Note that (L, R) is maximal iff there
is no vertex in U\L that is adjacent to all vertices in R
and no vertex in V\R that is adjacent to all vertices in L.
Because L is defined by R, only the maximality of R need
be considered.

Observation 2. (L, R) is maximal iff no vertex in V\R is
adjacent to every vertex in L.

If P contains a vertex that is adjacent to all vertices in L,
then (L, R) is not maximal. Thus that vertex may as well
be moved from P to R. This process can be iterated until
no more vertices can be so moved. On the other hand, if
none of the elements of V\R is a common neighbor of all
vertices in L, then (L, R) is maximal because L and R are
the largest set of common neighbors of each other.

Observation 3. Let S denote {v | v ∈ P & (u, v) ∈ E ∀u ∈
L}. Then (L, R ∪ S) is a maximal biclique.

If Q contains a vertex that is adjacent to all vertices in L,
then not only (L, R) is not maximal, but also there can be
no S as defined above for which (L, R ∪ S) is maximal. We
can actually say slightly more than this, as follows.

Observation 4. Let T denote {v | v ∈ Q & (u, v) ∈ E ∀u ∈
L}, L′ denote any subset of L, and S′ denote any subset of P.
Unless T is empty, (L′, R ∪ S′) is not a maximal biclique.

Observation 4 is used to prune unproductive subtrees
in a branch-and-bound style exploration of the maximal
biclique search space. As Observation 2 shows, if Q con-
tains a vertex v adjacent to all vertices in L, it means that
biclique (L, R) is not maximal. We further observe that
none of the bicliques extended from R contains v, since R
does not contain v. However, v is adjacent to all vertices in
any subset of L. Thus, no bicliques extended from such a
node is maximal and its subtrees can be pruned away. The
utility of these observations is explicated in Figure 3.
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Figure 3 Algorithmic observations. Examples are shown to illustrate (a) Observation 1, (b) Observation 2, (c) Observation 3, and (d) Observation 4.

Algorithmic description
To aid discussion, we refer the reader to pidgin pseu-
docode for Algorithm: MBEA. (For the time being
we shall ignore starred lines that describe subsequent
improvements.) Overall, a depth-first search tree traver-
sal is performed recursively using the core function
biclique_find(). Initially, all vertices are biclique
candidates (P = V , L = U), while the biclique and for-
mer candidate sets are empty (R = Q = ∅). As the
computation proceeds, R grows but L and P shrink. At
each node of the search tree, biclique_find takes as
input a 4-tuple 〈L, R, P, Q〉 and selects a candidate x from
P. An extension step augments R with x to form R′, and
forms L′ from L by removing all vertices not connected
to x. This makes L′ a set of common neighbors for R′. P′
and Q′ are then formed by eliminating vertices not con-
nected to L′. P′ also loses vertices connected to all of L.
These are added to R. If no vertex in Q′ is connected to
all of L′, then a maximal biclique (L′, R) has been found.
A recursive call is made with 〈L′, R′, P′, Q′〉. x is removed
from P and added to Q. The process stops when either
P is empty or a vertex in Q is connected to all of L. An
example of the search performed by MBEA is depicted in
Figure 4.

Theorem 1. MBEA finds all maximal bicliques in a
bipartite graph.

Proof. MBEA explores the entire search space of all
the subsets of one vertex set and finds all the bicliques
by Observation 1. It checks their maximality by Obser-
vation 2. It eliminates only those that cannot lead to
other maximal bicliques by Observations 3 and 4. There-
fore, upon termination, MBEA has found all maximal
bicliques.

Improvements to MBEA
We seek to improve MBEA in two ways: by an early
removal of vertices from the candidate set, and by a selec-
tion of candidate set vertices in non-decreasing order of
common neighborhood size. Both actions tend to help
prune the recursion tree by avoiding the generation of
non-maximal nodes.
Tree Pruning
Recall Observation 3, which asserts that if P contains a
subset S of vertices that are adjacent to all vertices in L,
then (L, R ∪ S) is a maximal biclique. Our first modification
is based on an extension of this observation. Although it
suggests the addition of candidates whose neighborhoods
contain that of x, upon recursive return MBEA treats

Figure 4 The MBEA recursion tree. The MBEA recursion tree T1 for a bipartite graph G3. The vertices in parentheses on the paths are those added
by Observation 3.
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vertices in S just as it does other vertices in the candidate
set. That is, every vertex in S is still selected for expansion,
even though some will lead to non-maximal subsets only.
The generation of such branches can be avoided if we sub-
divide S into two subsets as follows. For any v ∈ S, either
the neighborhood of v is a proper superset of the neigh-
borhood of x (i.e., NL(v) ⊃ NL(x)), or its neighborhood is
exactly the same as that of x (i.e., NL(v) = NL(x)).

Vertices of the second group can thus be moved directly
to Q upon recursive return, because any biclique that
excludes x but includes v is a subgraph of a biclique
including both x and v. See Figure 5 for an example.

This construction is formulated as follows:

Observation 5. Any vertex in P with neighborhood L
must be an element of the current biclique, and thus can be
added to R. Otherwise, any biclique in the current subtree
is non-maximal.

Candidate selection
Observe that MBEA chooses candidates in given (arbi-
trary) order. The second modification we consider was
inspired by noticing that leftmost branches, which are
explored earlier, generally have more candidates to gener-
ate sub-branches than do rightmost branches, which are
searched later, as long as the selected candidates have the
same number of connections to L.

Consider for example a connected bipartite graph G4 =
(U ∪ V , E) where |U| = 4, |V | = 3 and vertex v1 ∈ V is
adjacent to all vertices in U (Figure 5(b)). If v1 is the first
selected candidate, then both v2 and v3 are candidates at
the same level because both connect to at least one ver-
tex in U. Both {v2} and {v3} are non-maximal, however,

since they are subgraphs of bicliques including v1. On the
other hand, if v1 is the last selected candidate, then there
is no vertex left in the candidate set because v2 and v3
have been explored earlier. Vertex v1 is thus directly added
to all bicliques according to Observation 3, since v1 is
adjacent to all vertices in L. We conclude that selecting
candidates in non-decreasing order of common neighbor-
hood size may avoid generating numerous non-maximal
subsets. Moreover, it can lead to more balanced recursion
trees, which is an important property in load-balanced
parallelization.

Improved algorithmic details
To distinguish the basic method from the improved, we
shall denote the latter by iMBEA, the version incorporat-
ing the two modifications just discussed. In Algorithm:
MBEA, these executable additions are indicated with
starred lines. The vagaries of data are important, natu-
rally, and so improvements may not always be what they
seem. For example, an effective way to create and main-
tain a candidates list ranked by common neighborhood
size is simply to insert a vertex into its proper place in the
list. Although well-suited to this particular task, such a use
of insertion sort may actually create a tradeoff between
the potential time saved in searching versus that spent
inserting. To see this, consider that overall time is proba-
bly saved in the case of real or synthetic graphs with vari-
able degree distributions. We may actually do better, on
the other hand, to turn off this feature on highly contrived
instances, especially those such as regular graphs in which
all vertices have the same degree. See Figure 6, which
shows differences between recursion trees produced by
MBEA and iMBEA on a sample bipartite graph.

Figure 5 Improved MBEA (iMBEA). Examples of MBEA improvements: (a) a recursion tree T2 using Observation 5 on G3 of Figure 4, and (b) the
recursion trees T3 and T4 without and with the candidate selection method on G4.
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Algorithm: MBEA (Starred lines apply to iMBEA)
procedure biclique_find(G, L, R, P, Q);
G: a bipartite graph G = (U ∪ V , E);
L: set of vertices ∈ U that are common neighbors of
vertices in R, initially L = U ;
R: set of vertices ∈ V belonging to the current biclique,
initially empty;
P: set of vertices ∈ V that can be added to R, initially
P = V , sorted by non-decreasing order of common
neighborhood size;
Q: set of vertices used to determine maximality, initially
empty;
* i ← 0; // Position of selected candidate

in P
while P �= ∅ do

* x ← P[i + +]; // Select next candidate
from P in order

R′ ← R ∪ {x};
L′ ← {u ∈ L | (u, x) ∈ E(G)};

// Observation 1: extend biclique

* L′ ← L \ L′; C ← {x};
P′ ← ∅; Q′ ← ∅; // Create new sets
// Observation 2: check maximality
is_maximal ← TRUE;
forall the v in Q do

N[v] ← {u ∈ L′ | (u, v) ∈ E(G)};
// Observation 4: end of branch
if |N[v] | = |L′| then

is_maximal ← FALSE;
break;

else if |N[v] | > 0 then Q′ ← Q′ ∪ {v};
if is_maximal = TRUE then

forall the v in P, v �= x do
N[v] ← {u ∈ L′ | (u, v) ∈ E(G)}; // Get the

neighbors of v in L′
if |N[v] | = |L′| then

R′ ← R′ ∪ {v};
// Observation 3: expand
to maximal

* S ← {u ∈ L′ | (u, v) ∈ E(G)};
* if |S| = 0 then C ← C ∪ {v};

// Observation 5: further
pruning

* else if |N[v] | > 0 then
* P′ ← P′ ∪ {v} // Insert v into P′

in non-decreasing order of
common neighborhood size

PRINT(L′, R′); // Report maximal
biclique

if P′ �= ∅ then biclique_find(G, L′, R′, P′, Q′);
// Move C from candidate set to former

candidate set
* Q ← Q ∪ C; P ← P \ C;

Algorithmic complexity
We first consider the time complexity of a brute-force
algorithm that examines all subsets of the smaller ver-
tex partition. Let G = (U ∪ V , E) denote a bipartite
graph, with |U| = m, |V | = n, and m ≥ n. There are
2n subsets of V. It takes O(mn) time to find each sub-
set’s common neighbors in U. It also takes O(mn) time to
decide maximality. Thus, the worst-case time complexity
of this simple scheme is O(2nmn).

Similarly, the worst case number of nodes in a recursion
tree for MBEA is 2n, again bounded by the total number
of subsets of V. At each such node, the time complexity
of biclique_find is O(dn), where d is the maximum
degree of any vertex in V (the maximum number of ver-
tices in L is d, and the maximum number of vertices in
P and Q is n). Thus, the worst case time complexity of
MBEA is O(2ndn). The total number of subsets examined
by MBEA is considerably less than 2n, however, because
branch-and-bound prunes the recursion tree. We shall
therefore note that the number of nodes in a recursion tree
is at least as large the total number of maximal bicliques,
and analyze time complexity in a fashion similar to that
performed in [17,27]).

Lemma 1. Every intermediate node in the recursion
tree for MBEA represents a distinct maximal biclique.

Proof. Nodes on MBEA’s recursion tree represent
maximal or non-maximal bicliques. Without pruning, a
non-maximal node may be formed only when a candidate
or a former candidate’s neighborhood is a (not necessar-
ily proper) superset of the current set L. In the former
case, candidate vertices (from P) whose neighborhoods
contain L are automatically added to R by Observation 3.
Furthermore, if a candidate’s neighborhood exactly equals
L, then no branching is needed based on Observation 5.
The biclique at any intermediate node is thus maximal
because further candidate additions would reduce the size
of L and lead to another maximal biclique. In the latter
case, a former candidate whose neighborhood contains L
leads to no more maximal bicliques from that branch. A
non-maximal node with a former candidate connected to
all vertices in its L is therefore a leaf. We conclude that all
intermediate nodes in the recursion tree are maximal.

Theorem 2. Given a bipartite graph G = (U ∪ V , E)

where |U| = m, |V | = n, m ≥ n, and |E| = e, the time com-
plexity of the Maximal Biclique Enumeration Algorithm
for finding all maximal bicliques in G is O(eB), where B is
the number of maximal bicliques. The time complexity per
maximal biclique is O(e).

Proof. As proved in Lemma 1, MBEA expands only the
nodes that are maximal bicliques on the recursion tree,



Zhang et al. BMC Bioinformatics 2014, 15:110 Page 9 of 18
http://www.biomedcentral.com/1471-2105/15/110

Figure 6 Recursion trees of MBEA versus iMBEA. The recursion trees T5 of MBEA and T6 of iMBEA for bipartite graph G5.

which means it creates only maximal bicliques as inter-
mediate nodes on the tree and non-maximal bicliques can
only be leaf nodes. In other words, the number of non-
maximal bicliques created on the tree is at most the total
number of the leaf nodes. For any intermediate node on
the recursion tree, the number of its children that are
leaf nodes representing non-maximal bicliques is less than
n − 1. In the worst case, the number of intermediate

nodes is B =
(d−1)∑

i=0
(n − 1)i, and the number of leaves is

(n − 1)d = O(B), where d is the maximum degree of
any vertex in V. Thus, the total number of nodes on the
recursion tree is O(B). We showed that the time complex-
ity of biclique_find() is O(dn). It can be restated
as O(e), since MBEA must scan all edges for maximality
and biclique expansion in the worst case. Combining time
complexity O(e) at each node with the total number of
nodes in the recursion tree O(B), we obtain a time com-
plexity of O(eB) for the overall algorithm, and a time
complexity per maximal biclique of O(e).

To understand the algorithmic complexity a little
deeper, we view MBEA under the concept of delay time,
which we define as in [31] as the running time between
the output of two consecutive maximal bicliques. In this
framework, MBEA is a “polynomial delay time algorithm”
because the elapsed time between the output of any two
consecutive bicliques is polynomial in d and n.

Theorem 3. MBEA is a polynomial delay time algorithm
with delay complexity O(d2n2).

Proof. MBEA takes O(dn) time to explore any single
node in its recursion tree. A maximal (intermediate) node
can have at most n − 1 non-maximal neighbors (leaves).
Even in the worst case, MBEA must traverse no more than
back to the root of the tree to find the next maximal node.
The depth of the tree is at most d. From this it follows that
the delay complexity is O(d2n2).

Theorem 4. Given a bipartite graph G = (U ∪ V , E)

where |U| = m, |V | = n, m ≥ n, the worst-case space
complexity of MBEA is O(min(d, n)m).

Proof. MBEA uses two vectors to store the two vertex
sets of the biclique in each node of the recursion tree. The
space for storing them is O(m + n). When m > n, the
space complexity at each node is O(m). Since the depth of
the tree is at most d, the overall space complexity of the
recursion tree is O(dm). Meanwhile, MBEA uses bitmap
vectors to store adjacency matrix of the input bipartite
graph, which requires O(nm) space complexity. Therefore,
the space complexity in total is O(nm + dm) = O((n +
d)m) = O(min(d, n)m).

Thus, in the worst case, MBEA’s space complexity is
quadratic in the order of the graph. This should not be
surprising. Indeed, such a result is the best that can be
achieved by any algorithm that stores its entire input,
since the input size is determined by the number of edges.

Implementations and testing
We implemented MBEA and iMBEA and compared
them to existing implementations of what should be
the two strongest competitors: MICA [27], currently
the fastest graph theoretical algorithm for finding
bicliques in general graphs, and LCM-MBC [26], currently
among the most advanced data mining algorithms for
finding pairs of frequent closed patterns, improving
upon LCM [25]. An efficient implementation of MICA
is available at http://genome.cs.iastate.edu/supertree/
download/biclique/README.html. Efficient codes for
LCM can be found at http://fimi.ua.ac.be/src/. Version
2 is reported to be the faster of the two available LCM
implementations. The authors of [26] graciously pro-
vided us with their implementation of LCM-MBC, which
we used in our comparisons. MBEA/iMBEA and MICA
accept graphs in a simplified DIMACS edge list format.
LCM/LCM-MBC is not DIMACS compatible, however,

http://genome.cs.iastate.edu/supertree/download/biclique/README.html
http://genome.cs.iastate.edu/supertree/download/biclique/README.html
http://fimi.ua.ac.be/src/
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and required us to convert an edge list into an equivalent
adjacency list for the smaller bipartite partition. Graphs
come in many formats, of course, so we did not charge any
time for this simple conversion.

All implementations were compiled on and timings per-
formed under the Ubuntu 12.04 (Precise Pangolin) x64
operating system on a Dell OptiPlex 9010 Minitower with
an Intel Core i7-3770 3.4 GHz processor, 16.0 GB DDR3
non-ECC SDRAM memory at 1600 MHz (4 DIMMs), and
a 500 GB 7200 RPM SATA hard drive. Only sequential
implementations of MBEA, MICA and LCM-MBC were
compared, each making use of a single compute core.
MBEA and iMBEA were written in C and compiled with
the GNU gcc compiler with O3 optimization turned on.
The MICA and LCM-MBC implementations were also
complied with O3 turned on. The wallclock running times
we report include both I/O and computation, but exclude
the time taken to print out the maximal bicliques. They
are the average of ten, five or three runs for graphs that
can be finished within one minute, one hour or three days,
respectively. Runs that exceeded three days were killed
and omitted from the averages. We employed standard
data reduction techniques to reduce the size of bipar-
tite graphs for all methods tested. For example, during
pre-processing, two or more vertices with the same neigh-
borhood are merged into a single vertex; this process is
reversed at post-processing.

Biological graphs
We tested the algorithms on biological graphs derived
from functional genomics data. One set of graphs, which
was extracted from cerebellum data, was created using
a matrix of correlation p-values for gene expression to
phenotypes across strains of mice in a single popula-
tion [32]. The matrix consists of 45137 genes represented
by microarray measures of transcript abundance and
782 phenotypes to which the transcript abundances are
correlated. A bipartite graph is obtained by placing an
edge only where the correlation p-value is at or below
some preset threshold. The density of this graph can
be varied by adjusting the threshold. The lower the p-
value threshold, the lower the graph density. To test a
wide variety of densities, we created twenty graphs over
a range of thresholds, from 0.01 to 0.20, with a step
of 0.01.

The second set of graphs, which represent phenotype-
gene associations, was created from a correlation matrix
between 33 phenotypes and 17539 genes, calculated over
a panel of more than 300 mice. For each threshold,
a phenotype-gene edge is present if the correlation is
at or above the threshold. We created graphs with a
range of thresholds, so that the lowest threshold ran in
a small fraction of a second and the largest in tens of
minutes.

In both sets, edge density increases across the range
of thresholds. from roughly 0.2% to about 2.5% in the
cerebellum graphs, and from roughly 6.6% to as high as
37.4% in the pheno-gene graphs. Computational demands
increase even more rapidly, because the number of max-
imal bicliques tends to grow exponentially with a linear
increase in threshold values.

Random graphs
In addition to biological graphs, we tested iMBEA and
LCM-MBC on random bipartite graphs, using two differ-
ent random graph models. The first is the classic Erdős-
Rényi random graph model. Here, we fixed the number
of vertices in each partition at 300 and varied the den-
sity from 0.1 to 0.28. The density range was selected so
that the lowest would run in well under a second and
the highest would require several minutes. We also tested
graphs with 400 and 500 vertices, but the results were sim-
ilar enough to graphs with 300 vertices that we omit their
discussion.

For the second random graph model, we modified the
Erdős-Rényi model so that we could study graphs with
both high and low degree variability. The graph genera-
tor takes as input these four parameters: the size m of
the larger partition, the size n of the smaller partition, the
average vertex degree μ in the smaller partition, and the
coefficient of variation CV of the degrees in the smaller
partition. (Recall that CV = σ/μ, where σ is the stan-
dard deviation and μ is the mean.) These specifications
were used to assign vertex degrees to the smaller partition.
No edges were produced within a partition, of course.
The assigned degrees in the smaller partition were used
to place edges, selecting each endpoint in the larger par-
tition with uniform probability. For example, if a vertex in
the smaller partition had been assigned degree three, then
three neighbors for it were uniformly selected from the
larger partition.

We created three sets of random graphs with this graph
generator. The first set fixed the number of vertices in
one partition at 10,000 and in the other partition at 1000,
the edge density at 4.5%, and varied the CV from 0.3 to
1.2. The purpose of this set was to test the behavior of
MBEA versus iMBEA when the CV is varied, it being our
intuition that iMBEA might be better suited to graphs
with higher CV. The second and third sets of graphs were
created to test iMBEA versus LCM-MBC when the rela-
tive partition sizes were varied. In one set, the size of the
larger partition is fixed at 10,000 and the size of the smaller
partition is varied from 100 to 1000. In the other set, the
size of the smaller partition is fixed at 500 and the size of
the larger partition is varied from 5000 to 50,000. In both
sets we used an edge density of 3.0%, which provided a
wide spectrum of partition sizes while keeping runtimes
within reason.
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Results and discussion
In this section, we compare runtimes of the various algo-
rithms. MICA turns out not to be competitive on any of
our graphs. We therefore exclude its timings from our
presentation. For instance, iMBEA outperforms MICA by
more than three orders of magnitude on even modest-
sized biological graphs. On a somewhat larger graph,
iMBEA finishes in under an hour while MICA runs
for over three days without completion. And on the
largest graphs, MICA runs out of memory. Thus, we
feel it is manifest that MICA does not belong in the
same class as algorithms such as MBEA and iMBEA,
which are specifically targeted at bipartite graphs. We
first concentrate on MBEA and iMBEA on both bio-
logical and random graphs in order to demonstrate the
performance gained by iMBEA’s improved pruning. We
then move on to compare iMBEA and LCM-MBC on
two sets of biological graphs and three sets of random
graphs.

Comparison of MBEA and iMBEA
In Figure 7 we compare the runtimes of MBEA and
iMBEA on the twenty cerebellum graphs. The curves
cross at a p-value threshold of about 0.07. iMBEA is
roughly three times as fast as MBEA at around threshold
0.20. These results confirm our expectations that the rel-
ative simplicity of MBEA wins on sparse graphs produced
at lower thresholds, while the improvement overhead of
iMBEA more than pays for itself once higher thresholds
generate graphs that are sufficiently dense.

We also compared MBEA and iMBEA on random bipar-
tite graphs. As shown in Figure 8, while reasonably close,
iMBEA consistently outperforms MBEA. The sorted can-
didate vertex selection and enhanced pruning of iMBEA

appear still to produce performance gains. These gains
are not as significant, however, as they were for biologi-
cal graphs. This may be due at least in part to the rather
smoothed overall topology of random graphs, as opposed
to the uneven density and highly irregular features typ-
ically seen in graphs like those in GeneWeaver. To look
closer into this behavior, we varied the CV with which
random graphs were built. We found, as illustrated in
Figure 9, that iMBEA outperforms MBEA on random
bipartite graphs over the entire CV range tested. The
performance gap is smaller when the CV is low, proba-
bly due to MBEA’s relative simplicity and reduced over-
head. As the CV increases, however, the performance gap
between MBEA and iMBEA widens. These results help
explain iMBEA’s superior performance on biologically-
derived graphs, which very often exhibit high variation
in vertex degree. When comparing our algorithms to
other methods, we employ only iMBEA for simplicity. It
is possible that on some inputs MBEA would do slightly
better.

Comparison of iMBEA and LCM-MBC
Figure 10 shows the average runtimes of iMBEA and
LCM-MBC on the biological graphs tested. Part (a) is
the pheno-gene graphs, and parts (b) and (c) are two
ranges of p-values for the cerebellum graphs. The perfor-
mance disparity is most notable when the graphs grow
denser. On both the cerebellum and pheno-gene graphs,
the maximal bicliques in the densest graph exceed the 2
GB disk storage limit of the LCM-MBC implementation,
causing the program to halt prematurely, reporting only
a portion of the maximal bicliques. The runtime of these
two graphs would certainly be much higher if the limit
were removed. The results of iMBEA and LCM-MBC on

Figure 7 Performance of MBEA versus iMBEA on biological graphs. Performance comparison of MBEA and iMBEA on 20 cerebellum graphs
from GeneWeaver. As the size and density of the graphs increases, the small overhead incurred by iMBEA’s pruning checks is quickly rewarded with
performance gains from the additional pruning.
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Figure 8 Performance of MBEA versus iMBEA on random graphs. Although runtimes are close, iMBEA consistently outperforms MBEA on
random graphs.

random bipartite graphs are shown in Figure 11. Both
methods scale to graphs with thousands of vertices in each
partition. The iMBEA algorithm, however, consistently
and convincingly outperforms LCM-MBC.

These figures highlight iMBEA’s advantages in scal-
ability. Methods tend not to look very different when
graphs are sparse. As data quality improves, however,
GeneWeaver and analysis tools of its ilk tend to employ
denser graphs in order to capture deeper latent structure.
This is where the design enhancements of iMBEA really
start to become conspicuous and unmistakable.

Utility in GeneWeaver
GeneWeaver (http://geneweaver.org), formerly the Onto-
logical Discovery Environment [11], seeks to identify

unique and shared relationships between genes and their
roles in biological processes. Aggregated genomic data
is integrated, and relevant associations are represented,
with discrete bipartite graphs. These allow relation-
ships from diverse experimental sources to be combined.
GeneWeaver employs MBEA/iMBEA on these graphs
to discover the ontology or structured inheritance of
biological processes through the genesets that support
them. This is accomplished through an enumeration of
maximal bicliques, which are organized as a directed
acyclic graph (DAG) to form an empirically derived
interpretation of relationships between biological pro-
cesses. An implementation of this systematic approach,
including MBEA/iMBEA, is embedded in the web-based
GeneWeaver software platform. Data availability has

Figure 9 Effect of graph degree structure on MBEA and iMBEA. The average delay time of MBEA and iMBEA on random graphs with the same
size and density, but varying degree distribution. On graphs with low coefficient of variation, the performance gap between MBEA and iMBEA is
narrower than on graphs with high coefficient of variation. This confirms our expectation that the pruning enhancements of iMBEA have a larger
effect on graphs with diverse degree structure.

http://geneweaver.org
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Figure 10 Performance of iMBEA and LCM-MBC on GeneWeaver graphs. The GeneWeaver graphs were constructed from two different
phenotype-gene similarity matrices. Each edge is either present or absent based on whether it is at or above (or at or below, when p-values are
used) a given threshold. The graphs in (a) were created from a correlation matrix of 33 phenotypes and 17539 genes. Graphs in (b) and (c) were
created from a matrix of correlation p-values for gene expression to phenotypes in a single mouse population, using 782 phenotypes and 45137
genes. As the threshold moves to the right along the x-axis, the graphs generally grow larger and denser. The pheno-gene graphs range from 6.6%
to 34.7% density, while the cerebellum graphs range from about 0.2% to about 2.5% density.
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Figure 11 Performance of iMBEA and LCM-MBC on random bipartite graphs. The Erdős-Rényi random bipartite graphs in (a) have the number
of vertices in each partition fixed at 300, but the density is varied from 0.1 to 0.28, showing how density affects runtime. Similar results on graphs
with each partition fixed at 400 and 500 vertices are omitted for space considerations. The graphs in (b) and (c) were generated using the random
graph generator described in the text, with CV of 1.0 and density of 0.03. In (b), the size of the larger partition is fixed at 10,000 while the size of the
smaller partition is varied. In (c) the converse occurs; the size of the smaller partition is fixed at 500 while the size of the larger partition is varied. In all
three cases, the performance disparity between iMBEA and LCM-MBC is apparent.
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driven this application to emphasize genes as the pri-
mary biological entity through which relationships are
inferred. Nevertheless, the model is general enough to
map easily onto other biological entities or attributes.
Thus, GeneWeaver provides a computationally scalable
approach to subset-subset matching in the quest to
increase our understanding of molecular networks that
support biological function.

Motivation
A major challenge in bioinformatics is to identify relation-
ships among poorly characterized genes and their varied
roles in biological processes, and to group these pro-
cesses along functionally meaningful lines. For example,
one may be interested in whether (and which of) the bio-
logical bases of psychiatric disorders such as anxiety or
depression are also involved in alcoholism. Each disorder
may be attributable to multiple genes, and each gene may
be involved in multiple disorders (pleiotropy). Biological
processes are typically categorized by ontologists based on
their external manifestations. Unfortunately, phenomena
such as convergent evolution (when two similar structures
or functions are obtained through distinct evolutionary
processes) and other factors that result in functional sim-
ilarity can lead to poor classification schemes that do
not map onto the supporting biology. Thus, for basic
research into discovery of the biological underpinnings of
diverse processes, a classification of biological functions
can instead be based on sets of underlying genes. Finite
simple graphs are a natural way to represent relationships
between such sets. Graph algorithms are a useful tool in
their analysis and interpretation. The need to study whole
genome versus biological functional data makes bipar-
tite graphs an appropriate model for finding associations
between pairs of disparate data types. Enormous corre-
lational structures can arise in data of this size, however,
potentially making the task of biclique enumeration a lim-
iting computational bottleneck. This is because classifica-
tion and assessment of the phenome space is theoretically
unbounded, especially in the case of genome-scale onto-
logical discovery. The MBEA and iMBEA methods were
therefore developed to harness fast algorithm design tech-
niques and to exploit bipartite graph structure in order
to satisfy the staggering computational demands that
may be incurred in the creation of emergent phenotypic
ontologies.

Data
A biological pathway or process can be associated with
a set of genes. Such a set typically comes from some
biological source, for example, an experiment related to
drug abuse. Gene sets can be generated with any method-
ology dedicated to gene-network creation. Commonly
used methods include differential gene expression, genetic

correlation to gene expression, positional candidates from
genetic mapping, associations obtained from text mining,
and literature reviews and/or empirical studies in which
researchers compile gene lists involved in various behav-
ioral constructs such as pain, aggression, alcoholism and
drug abuse.

The GeneWeaver database currently contains over
75,000 gene sets covering nine species: Caenorhabditis
elegans (roundworm), Danio rerio (zebrafish), Drosophila
melanogaster (fruit fly), Gallus gallus domesticus
(chicken), Homo sapiens (human), Macaca mulatta
(monkey), Mus musculus (mouse), Rattus norvegicus (rat)
and Saccharomyces cerevisiae (yeast). When sets from
different species are combined, gene homology is used
to match genes onto a set of reference gene ID clusters.
Although the gene-set space is unlimited, the genome
space is constrained by the finiteness of the genome itself.
(The human genome, for example, is currently estimated
to contain roughly 20,000-25,000 genes.) It should be
noted that the method described here is extensible to
include any biomolecule associated with a function or
process, including miRNA, transcript forms, gene prod-
ucts and their various states and many additional entities
involved in biological processes. Likewise, it is often desir-
able to use abundance or co-occurrence statistics to relate
one class of biomolecules to another, including transcripts
and miRNA, or transcripts and proteins. Thus, the size of
the biomolecular vertex class is also potentially without
bound.

Model
A biclique-based model was developed to extract func-
tions along with functionally similar genes from gene
sets derived from various sources, and then to orga-
nize them as a DAG to represent an entire ontology
of biological functions. This model consists of three
major components: a combine module to compute gene-
set association matrices to construct bipartite graphs
via thresholding and graph mapping, a biclique module
using MBEA/iMBEA to enumerate maximal bicliques
from gene-set bipartite association graphs, and a phenome
graph module to organize gene sets by integrating max-
imal bicliques into a DAG to represent an ontology of
functions.

Graphs
The combine module melds gene sets from various
sources, computes a real-valued scoring matrix to asso-
ciate genes with functions, converts the matrix to binary
by applying a suitable threshold, and transforms the
matrix into a bipartite association graph. Homology may
be employed when more than one species is involved.
Scoring can be based on a variety of statistical metrics,
including correlation coefficients, p or q values, literature
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Figure 12 The hierarchical similarity graph. Creation of the hierarchical similarity graph of gene sets: (a) the source gene sets, (b) the gene-set
bipartite graph, (c) the gene-set bipartite graph with two of its maximal bicliques highlighted, ({DRD2}, {GS1256, GS1132}) and ({NPY , PDYN,
CYP2D6}, {GS1132, GS1229}), and (d) integration of all maximal bicliques to a DAG of function relationships. In this graph, the two highlighted
maximal bicliques from (b) are roots. The maximal biclique ({25 genes}, {GS1132}) is a child of both, since {GS1132} is a subset of the gene sets in
both roots. Geneset {GS1132} is associated with the genes DRD2 and NPY, PDYN, CYP2D6 as its parents, but is also connected to 21 genes not shown.

associations and other categorical analyses. Threshold-
ing may be soft or hard, and is generally performed with
the aid of low and high pass filters. Keywords such as
“drug,” “alcohol” and “cerebellum” are used to select gene
sets, based on search term occurrence in metadata. These
sets may be fused to form larger collections of putative
biological functions.

Biclique enumeration
The biclique module uses MBEA/iMBEA to enumerate
all maximal bicliques in the bipartite gene-set association
graph. Here a biclique represents the relationship between
a set of biological functions and the genes with which they
are commonly associated. Maximality ensures that this

relationship is not properly contained within another. A
maximal biclique thus denotes a unique set of function-
ally similar biological processes along with the genes they
share in common.

Ontological integration
The phenome graph module constructs an ontology of
functions. Maximal bicliques are connected based on
their relationships. The resultant hierarchical similarity
graph represents sets of genes associated with common
functions. Note that DAGs are similar to hierarchies
(forests), except that a child node in a DAG may have
more than one parent node. The formulation of the
hierarchical similarity graph is based on the following
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Table 2 Gene sets extracted from GeneWeaver

GeneWeaver IDs Descriptions # Genes

GS1132 Addiction candidate genes derived from literature review [33] 25

GS1229 Differential gene expression among heroine and cocaine abusers [34] 693

GS1256 Gene expression in hippocampus from human cocaine abusers [35] 38

observation, which helps us define an inherent biclique
ordering.

Observation 6. Let P(b) denote the set of phenotypes in
a biclique, b, and let G(b) denote its set of genes. Given two
maximal bicliques b1 and b2, P(b1) ⊂ P(b2) if and only if
G(b1) ⊃ G(b2), and P(b1) ⊃ P(b2) if and only if G(b1) ⊂
G(b2).

We can now define a hierarchical similarity graph using
maximal bicliques for nodes and a partial ordering of the
bicliques for arcs (directed edges). Node b1 will be an
ancestor of node b2 iff P(b1) ⊃ P(b2). In this case we say
that b2 is a descendant of b1. A node with no ancestors is
said to be a root. One with no descendants is said to be
a leaf. Node b1 will be a parent of b2 iff it is an ancestor
and there is no other node b3 for which P(b1) ⊃ P(b3)
and P(b3) ⊃ P(b2). In this case we say that b2 is a child of
b1. Once these relationships have been formed, an arc is
placed from a parent to each of its children.

Figure 12 illustrates this construction. A sample hierar-
chical similarity graph is built from three human gene sets
taken from GeneWeaver using the drug-related gene sets
listed in Table 2. These sets contain many genes, but we
are chiefly interested in the ten genes that are each shared
by at least two of the sets. These genes and sets are used
to build a gene-set association graph, from which a total
of six maximal bicliques are extracted.

Despite GeneWeaver’s size and scope, MBEA/iMBEA
currently requires at most a few minutes to enumerate
maximal bicliques on legitimate queries. A more subtle
but equally important task that it must perform is the
computation of significance levels for DAG scoring (based
on factors such as height and width) among graphs with
the same number of genes, gene sets and gene-set asso-
ciations. Here a re-sampling procedure can be applied
to simulate variations in gene-set intersection topology.
Such a procedure can easily require tens of thousands of
re-sampling operations, however, each needing its own
list of maximal bicliques. MBEA/iMBEA can accomplish
this task in less than an hour using current technologies,
while previous methods were untenable, often consuming
several days even on just a few hundred gene sets.

Conclusions
We introduced a novel algorithm, MBEA, to enumerate
maximal bicliques in a bipartite graph. The technique

we described employs efficient branching and pruning
strategies to eliminate paths that cannot lead to maxi-
mal bicliques. We also presented an improved version
of this algorithm, iMBEA, that selects candidate vertices
in non-decreasing order of common neighborhood size.
Extensive empirical evaluation revealed that iMBEA out-
performs MBEA on both biological and random graphs.
Furthermore, we tested iMBEA against MICA, a fast
consensus algorithm, and against LCM-MBC, a fre-
quent closed itemset data mining method. We observed
that both iMBEA and LCM-MBC are orders of mag-
nitude faster than MICA, which we thus eliminated
from further consideration. We also found that iMBEA
is significantly faster than LCM-MBC, on both ran-
dom graphs and biologically-based graphs derived from
GeneWeaver (http://geneweaver.org), an online system
for the integration of functional genomics experiments.
Armed with iMBEA, GeneWeaver provides users with the
computational capacity to perform genome-scale analyses
of complex relationships derived from diverse biological
experiments, with the goal to discover the ontology or
structured inheritance of biological processes. MBEA and
iMBEA are apt to be well suited to any application in
which bipartite graphs can be used to model relationships
between two sets of diverse items.
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