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The efficiency of many cellular processes relies on the defined interaction among
different proteins within the same metabolic or signaling pathway. Consequently, a
spatial colocalization of functionally interacting proteins has frequently emerged during
evolution. This concept has been adapted within the synthetic biology community for
the purpose of creating artificial scaffolds. A recent advancement of this concept is the
use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ
domains have been used most often in research studies to date. The approach has been
successfully applied to the synthesis of a variety of target molecules including catechin,
D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and
mevalonate. Increased production levels of up to 77-fold have been observed compared
to non-scaffolded systems. A recent extension of this concept is the creation of a covalent
linkage between peptide motifs and adaptor domains, which leads to a more stable
association of the scaffolded systems and thus bears the potential to further enhance
metabolic productivity.
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INTRODUCTION

Nature has developed highly efficient ways for signal and substrate processing in living cells.
Synthetic biology is inspired by the natural archetype and tries to mimic and optimize biological
processes for tailor-made applications (Luo et al., 2013). Milestone achievements of this relatively
young area include the microbial production of artemisinic acid, a key precursor of the antimalarial
drug artemisinin (Martin et al., 2003; Ro et al., 2006), the industrial production of 1,3-propanediol,
used in a multitude of further applications (Nakamura and Whited, 2003), and the reconstruction
of a complete microbial genome (Gibson et al., 2010).

The rational design in synthetic biology is frequently inspired by the spatial proximity of enzymes
observed in nature (Conrado et al., 2008; Luo et al., 2013). Following evolution, such artificial
bioreactors implement proximity mostly via modular scaffolds (Carroll, 2005; Bhattacharyya et al.,
2006). In this concept, modular building blocks are used for the creation of large custom scaffold
systems. Such scaffolds define the spatial organization of enzymes and allow substrate channeling
like in natural systems, which has several advantages: it rescues the intermediates from diffusion or
competing pathways, decreases their transit times, and avoids unfavorable equilibria and kinetics
from metabolite concentrations in the bulk phase (Miles et al., 1999; Spivey and Ovadi, 1999).
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In nature, many organisms have developed multifunctional
enzyme systems with a pivotal role in both primary metabolism
[e.g., amino acid biosynthesis (Welch and Gaertner, 1980) or fatty
acid oxidation (Ishikawa et al., 2004)] and secondary metabolism
[e.g., multifunctional polyketide synthases in bacteria (Pfeifer and
Khosla, 2001) and flavonoid or alkaloid biosynthesis in plants
(Jorgensen et al., 2005)].

Multifunctional enzyme systems that mimic natural systems
can be artificially constructed via at least four general strategies:
(I) colocalization or immobilization of enzymes has been the
first approach to be of practical use; (II) compartmentalization
generates an enclosed reaction area that can be defined similar
to biological systems (e.g., in cell organelles); (III) DNA/RNA
building blocks can be utilized for spatial organization of reactive
centers; and (IV) protein scaffolding presents a versatile approach
in synthetic biology. This last scaffolding principle can be divided
further into several approaches: fusion proteins are constructed
by linking two or more enzymes into a single protein sequence.
Non-covalent protein–protein interactions via the mutual recog-
nition of folded domains or coiled-coil pairs as well as amyloid
assemblies can be used to construct scaffolds with defined stoi-
chiometry. A brief overview over all these scaffolding strategies
is provided as supplementary information. Another concept in

protein-based scaffolding uses protein adaptor domains and pep-
tide ligands for bringing enzymes in spatial proximity, the focus
of this review.

SCAFFOLDING BASED ON ADAPTOR
DOMAINS: STRUCTURAL PRINCIPLES

Many important physiological protein interactions are medi-
ated by relatively small protein domains, which bind to pep-
tides exhibiting specific sequence motifs (Figure 1A) (Dinkel
and Sticht, 2010). In this type of interaction, only the adaptor
domain adopts a globular three-dimensional structure while the
interaction motif is mostly linear and has, therefore, been termed
short linear interaction motif (SLiM). This type of protein–ligand
interaction presents a promising concept in protein scaffolding
(Figure 1B) that has gained a lot of attention in synthetic biology
applications.

Protein scaffolding based on cognate adaptor domains and
peptide motifs requires a careful selection of candidate domains
and SLiMs as well as the choice of proper linkers to interconnect
these moieties and to attach them to the enzymes of interest
(Figure 1B). The properties of these three building blocks, i.e.,
domain, linker, and peptide ligand, critically affect the shape of

FIGURE 1 | Scaffolding with adaptor domains and peptide motifs. (A) Schematic view of scaffolding modules, i.e., three different adaptor domains (D1–D3)
with their peptide ligands (black line forms). (B) Scaffold protein built by the three adaptor domains D1–D3 with three enzymes (E1–E3) bound via peptide ligands,
which are fused by a linker region (pink) to the respective enzyme. (C) Alternative scaffold system formed by three peptide ligands [cf. Lu et al. (2014)], which bind to
the respective adaptor domain fused to an enzyme. (D) Three-dimensional structures of protein domains used for scaffolding: SH2 domain in yellow [PDB-code:
3WA4, Higo et al. (2013)], SH3 domain in red [PDB-code: 1WA7, Schweimer et al. (2002)], PDZ domain in blue [PDB-code: 4UU5, Ivanova et al. (2015)], and GBD
domain in green [PDB-code: 2K42, Cheng et al. (2008)]. Structural representations were created with VMD (Humphrey et al., 1996).
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the resulting scaffold (cf. Figure 1) and will be described in the
following in more detail.

Adaptor Domains
Adaptor domains used in protein-peptide scaffolding need to
fulfill two basic requirements. First, they should have a strong
affinity toward their peptide ligands to allow for effective cou-
pling. Second, they should provide a distinct specificity for their
ligands to allow for defined coupling, when several domain-
ligand pairs are used simultaneously. The most often used
domains are SH3, SH2, PDZ, andGTPase-binding domain (GBD)
(cf. Figure 1D).

The first protein modules that were reported to mediate inter-
action with SLiMs are the “Src homology 2” (SH2) and “Src
homology 3” (SH3) domains (Koch et al., 1991). SH3 domains
are small modules of ca. 60 residues. They recruit proline-rich
ligands, which bind to the domain surface at three shallow grooves
formed by conserved aromatic residues (Mayer, 2001) and exhibit
two different binding orientations. Over the last few years, an
increasing number of SH3 domains with different ligand binding
specificity have been described (Saksela and Permi, 2012).

SH2domains are highly conserved structures of ca. 100 residues
comprising two α-helices and seven β-strands (Pawson et al.,
2001). In nature, this domain possesses an either promiscuous
or strict specificity for a 3–5 residues motif flanking a phos-
phorylated tyrosine; like for the SH3 domain, additional SH2-
bindingmodes were discovered, underscoring the plasticity of this
recognition type in physiological context (Machida and Mayer,
2005).

PDZ domains are also widely used for scaffolding. They are
of similar size as SH2 domains and target specific motifs at the
C-terminus of the binding partner. The peptide ligand adopts
a β-strand and extends an existing β-sheet within the PDZ
domain upon binding (Schultz et al., 1998; Harris and Lim, 2001).
At least four different classes of ligands are known for PDZ
domains exhibiting a distinct binding specificity (Songyang et al.,
1997).

The last example of an established domain-ligand pair in syn-
thetic biology originates from GBDs. In contrast to the other
domains discussed above, isolated GBD domains do not adopt
a single, discrete structure under physiological conditions but
rather sample multiple, loosely packed conformations in solu-
tion (Abdul-Manan et al., 1999; Kim et al., 2000). The corre-
sponding peptide ligand has been deduced from the autoin-
hibited form of the GBD (Dueber et al., 2009). Figure 1D
shows three-dimensional structures of the SH2, SH3, PDZ, and
GBD domain. Beyond the examples presented above, other
domain/ligand pairs may also be utilized for synthetic scaffolds
if they exhibit a sufficiently high affinity and specificity for their
ligand.

Linear Motif Peptides
Short linear interaction motifs are the complementary binding
partner to protein adaptor domains. These peptide motifs occur
in disordered protein regions and are present in 20–50% of all
eukaryotic proteins, while up to 17%of the proteins are completely
disordered in eukaryotic cells. To date, ~300 knownmotif patterns

are listed in electronic databases, e.g., ELM database (Dinkel
et al., 2014), PROSITE (Hulo et al., 2004), and Minimotif-Miner
(Balla et al., 2006). Interestingly, there are estimates that in the
proteome the SLiM-mediated instances in signaling pathway
modulation outnumber those mediated by globular domains
(McEntyre and Gibson, 2004).

Linear motif peptides possess a number of properties, which
make themwell suited as ligands in synthetic biology. The interac-
tionmotifs normally comprise only 3–10 amino acids and are thus
rather short and intrinsically disordered. Furthermore, SLIMs
may constitute the sites of post-translational modification (e.g.,
phosphorylation), which enables them to function as inducible
switches.

In addition to the key residues necessary for binding, SLiMs
also frequently contain variable residues (denoted as “X”) to
ensure proper spacing between the binding residues. Due to its
lack of a defined structure prior to binding, this peptide–domain
interaction differs from the well-known domain–domain inter-
actions in protein complexes. Prominent examples for SLiM
sequence patterns include the classical P–x–x–P motif for bind-
ing to SH3 domains or a phosphorylated tyrosine with specific
sequence neighbors for binding to SH2 domains.

Linkers
The last part necessary for modular protein scaffolding is the
linker region connecting the engineered enzymes and the attached
peptide ligands (Figure 1B). The importance of linker design is
well known from fusion proteins (Chen et al., 2013), as length and
amino acid composition may influence the activity and folding
properties of the protein construct (Robinson and Sauer, 1998; Bai
and Shen, 2006; Zhao et al., 2008).

As a guide for the rational design of artificial linkers, an
inspection of natural linkers is helpful. Two independent studies
with different data sets gave similar results: while Argos found a
preferredmean linker length of 6.5 residues (Argos, 1990), George
and Heringa obtained a value of 10.0± 5.8 residues (George
and Heringa, 2002). Generally, polar or charged residues were
enriched in the natural linkers, with a secondary structure pref-
erence for coil (Argos, 1990) or helix (George and Heringa, 2002),
respectively. Natural linkers lack interaction with neighboring
protein domains and adopt mainly non-globular conformations
(Chen et al., 2013).

Designed linkers may be classified according to their structure,
which defines their functionality. Flexible linkers are normally
rich in small or hydrophilic amino acids and allow for an increased
spatial separation and reorientation of the fused parts. A promi-
nent and very early example for a flexible linker is (GGGGS)3 that
connected the heavy and light chain domains (VH and VL) of an
engineered antibody fragment (Huston et al., 1988). Rigid linkers
with the sequence (EAAAK)n exhibit a stable helical structure
and thus pertain a certain distance between the fused parts. This
linker type has been successfully used to increase the enzymatic
efficiency of bifunctional fusions of β-glucanase and xylanase (Lu
and Feng, 2008).

It should also be noted that linker regions may also have
additional benefits. They potentially improve folding and stability
(Huston et al., 1988; Takamatsu et al., 1990; Werner et al., 2006;
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Hagemeyer et al., 2009), expression (Amet et al., 2009), or even
bioactivity (Bai and Shen, 2006).

SCAFFOLDING BASED ON ADAPTOR
DOMAINS: APPLICATION TO METABOLIC
ENGINEERING

In this section, several applications of scaffolding using adaptor
domains and peptide ligands are presented. The key features of
the engineered systems are summarized in Table 1.

As one prominent example for this approach, Dueber et al.
(2009) engineered a model scaffold for the three-step synthesis
of mevalonate (Martin et al., 2003), which is an important pre-
cursor for the large field of isoprenoids, starting from acetyl-CoA.
The enzymatic system comprised threemodules, acetoacetyl-CoA
thiolase (AtoB), hydroxy-methylglutaryl-CoA synthase (HMGS)
and hydroxymethylglutaryl-CoA reductase (HMGR). From these
modules, only AtoB is native to the host system Escherichia coli,
whereas the two others were imported from Saccharomyces cere-
visiae. To avoid flux imbalances with high metabolic load and
to increase the overall production, scaffold constructs of three
domains, GBD, SH3, and PDZ connected via flexible linkers were
created and AtoB, HMGS, and HMGR were extended by corre-
sponding peptide ligands, respectively. As this first simple scaffold
design yielded only slightly increased product titers compared to
the scaffold-free system, the authors designed scaffolding proteins
with a varying number of SH3 and PDZ domains. This systematic
search revealed the best synthetic scaffold GBD1–SH32–PDZ2
for this system, i.e., one GBD domain linked to two SH3 and
PDZ domains, and exhibited a remarkable 77-fold increase of the

product. Furthermore, the authors also investigated the influence
of the spatial orientation of the domains toward each other by
changing the order of the two SH3 and PDZ domains. A further
increase, however, was not observed in these additional systems
(Dueber et al., 2009).

In order to demonstrate the generality of this approach, the
same group strived to increase the production of -glucaric
acid from -glucose via scaffolding. The synthetic pathway
had originally been constructed by Moon et al. (2009): myo-
inositol-1-phosphate synthase (Ino1) from S. cerevisiae, myo-
inositol oxygenase (MIOX) from mouse, and uronate dehydro-
genase (Udh) from Pseudomonas syringae were coexpressed in
E. coli. A domain-based scaffold for the two enzymes Ino1 and
MIOX, which were equipped with the respective peptide ligand
sequences, tripled the product titers compared to the original sys-
tem (Dueber et al., 2009). Additional optimization of the system
by including Udh into the scaffold and also varying the number
of cognate domains within the scaffold allowed for an additional
product increase of ~50% (Moon et al., 2010).

The first artificially scaffolded redox pathway was presented by
Agapakis et al. (2010). They engineered a hydrogen-producing
electron transfer circuit in E. coli composed of the heterolo-
gously expressed enzymes [Fe-Fe]-hydrogenase, ferredoxin, and
pyruvate-ferredoxin oxidoreductase. A major issue was the risk
of side reactions caused by high energy electrons stored in
iron-sulfur cluster proteins. They, thus, applied several meth-
ods to insulate the synthetic pathway, one of which was to
utilize a protein scaffold constructed from the three domains
GBD, SH3, and PDZ. This approach yielded a threefold increase
of H2 production. Furthermore, the authors investigated the
influence of scaffold protein composition and peptide ligand

TABLE 1 | Examples of engineered scaffolds comprising adaptor domains and peptide ligands.

Product Enzyme pathwaya Domainsb Host Fold increasec Reference

Mevalonate Acetoacetyl-CoA thiolase, hydroxy-methylglutaryl-CoA
synthase, hydroxymethylglutaryl-CoA reductase

GBD, SH3,
PDZ

E. coli 77 Dueber et al.
(2009)

D-glucaric acid Myo-inositol-1-phosphate synthase, myo-inositol oxygenase,
(uronate dehydrogenase)

(GBD), SH3,
PDZ

E. coli 3 Dueber et al.
(2009)

D-glucaric acid Myo-inositol-1-phosphate synthase, myo-inositol oxygenase,
uronate dehydrogenase

GBD, SH3,
PDZ

E. coli 5 Moon et al.
(2010)

H2 [Fe-Fe]-hydrogenase, ferredoxin, (pyruvate-ferredoxin
oxidoreductase)

(GBD), SH3,
PDZ

E. coli 3–5 Agapakis
et al. (2010)

Hydrochinone Cutinase SH2 Self-assembled
monolayer

30 Li et al.
(2010)

Resveratrol 4-Coumarate:CoA ligase, stilbene synthase (GBD), SH3,
PDZ

S. cerevisiae 5 Wang and Yu
(2012)

Butyrate (Acetoacetyl-CoA thiolase), 3-hydroxybutyryl-CoA
dehydrogenase, 3-hydroxybutyryl-CoA dehydratase,
trans-enoyl-coenzyme A reductase, (acyl-CoA thioesterase II)

GBD, SH3,
PDZ

E. coli 3 Baek et al.
(2013)

Gamma-aminobutyric
acid

Glutamate decarboxylase, glutamate/GABA antiporter SH3 E. coli 2.5 Vo et al.
(2013)

Catechin Flavanone 3-hydroxylase, dihydroflavonol 4-reductase,
leucoanthocyanidin reductase

GBD, SH3,
PDZ

E. coli 1.3 Zhao et al.
(2015)

aUnscaffolded enzymes in parentheses.
bScaffold domains without a ligand/enzyme counterpart in parentheses.
cCompared to the unscaffolded system.
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linker length on the yield and found both to be a significant
factor.

Scaffolds consisting of the same domains, GBD, SH3, and
PDZ, were used to increase the production of butyrate in E. coli
(Baek et al., 2013). For the complete biosynthetic pathway, the
five enzymes acetoacetyl-CoA thiolase, 3-hydroxybutyryl-CoA
dehydrogenase, 3-hydroxybutyryl-CoA dehydratase, trans-enoyl-
coenzyme A reductase, acyl-CoA thioesterase II were overex-
pressed in the host. For the three enzymes amidst the pathway,
a domain scaffold was created to provide a better spatial prox-
imity of the reaction centers. After additional variation of the
domain frequency within the scaffold, the production increased
to threefold.

Wang and Yu (2012) used the set of scaffold proteins composed
of GBD, SH3, and PDZ domains established by Dueber et al.
(2009) for another biotechnological application. Theirwork aimed
to recruit two enzymes, 4-coumarate:CoA ligase and stilbene syn-
thase, via covalently attached SH3 and PDZpeptide ligands for the
biosynthesis of resveratrol, a naturally occurring defensemolecule
from plants with significant physiological effects on human and
animals. In contrast to the experimental settings discussed above,
S. cerevisiae was used as host system. The product yield increased
fivefold via the scaffolding approach compared to the unscaf-
folded enzymes and 2.7-fold compared to a direct fusion protein
approach.

The biosynthesis pathway of catechins from flavanone was the
target of metabolic engineering efforts of Koffas and coworkers
(Zhao et al., 2015). In their pathway optimization, they focused
on three enzymes: flavanone-3-hydroxylase, dihydroflavonol
4-reductase, and leucoanthocyanidin reductase. Application of
scaffolds composed of GBD, SH3, and PDZ domains yielded only
marginal metabolic improvement in some cases, whereas most
constructs tested exhibited a decreased productivity.

Besides the creation of a scaffold protein containing multi-
ple adaptor domains, domain–ligand interactions can also be
exploited in a different fashion as exemplified by the work of
Vo et al. (2013). They enhanced the productivity of E. coli
producing gamma-aminobutyric acid (GABA) by coupling glu-
tamate decarboxylase (GadA/GadB) to the membrane protein
glutamate/GABA antiporter (GadC). For that purpose, they
attached an SH3 domain to GadA/GadB and three peptide ligand
sequences to GadC each separated with flexible linkers. In that
way, they could increase the GABA productivity by 2.5-fold.

A further and different approach used the localization of
substrate and enzyme on a self-assembled monolayer for a
30-fold product increase (Li et al., 2010); 4-hydroxyphenyl 2-
methylvalerate, which is converted by cutinase to a hydroquinone
product, and a SH2-ligand were presented on the surface to the
enzyme fused to a SH2 domain. As the SH2 domain only rec-
ognizes its ligand in phosphorylated form, the system contains a
potential switch, which might be exploited in future applications.

OUTLOOK

Inspection of Table 1 reveals that the increase in metabolic pro-
ductivity is highly dependent on the system investigated, and for
some of the systems, there is little benefit from scaffolding. As

suggested by Zhao et al. (2015), a further increase in catechin
biosynthesis might be achieved from an optimization of linkers.
An additional factor for optimization might be the use of alter-
native adaptor domains or the rational design of covalent bonds
between the two binding partners in order to increase the stability
of the scaffolded complex.

Recently, Lu et al. (2014) constructed two domain-ligand pairs
for both SH3 and PDZ domains, in which the ligand–domain
interaction was reinforced by an engineered thioether bond. For
that purpose, a residuewithin the domainwasmutated to cysteine,
while the peptide ligand was equipped with an unnatural amino
acid carrying a reactive α-chloroacetyl group. Binding of the
ligand to the domain brought the two reactants in close proxim-
ity and established the covalent bond. Using this approach, the
authors constructed several Y-shaped ligand structures via triazole
bonds branched from a lysine site as mini-scaffolds (Figure 1C).

Similarly, Guan et al. (2013) created a disulfide bond between
a PDZ domain and its ligand by mutating one residue to cysteine
in each of the binding partners to reinforce the domain–ligand
interaction. Fusing these modified moieties to the trimeric pro-
tein CutA, they were able to build stable hydrogels. By adding a
second peptide ligand sequence to one CutA species, the hydrogel
could be functionalized by an enzyme and formed an enzymatic
biocathode for direct electron transfer.

A new versatile approach for covalent protein linkage is based
on CnaB domains from bacteria, which autocatalytically estab-
lish isopeptide bonds between the sidechains of a lysine and an
asparagine/aspartate residue (Veggiani et al., 2014). By a structure-
based splitting of the CnaB domain into two parts, it was possible
to create a domain-ligand pair that enables spontaneous formation
of intermolecular isopeptide linkages (Zakeri et al., 2012; Li et al.,
2014). A modification of this approach even allows that two pep-
tides become covalently joined by an artificial ligase (Fierer et al.,
2014). A recently described ester bond that forms autocatalytically
in a bacterial cell surface adhesion protein (Kwon et al., 2014) also
bears the potential for the construction of orthogonal covalent
domain/ligand pairs. The enhanced stability due to the isopeptide
or ester bonds may present a promising strategy to design more
efficient scaffolds for artificial bioreactors in the future.

Synthetic biology is an emerging field with tremendous
biotechnological potential. The efforts reviewed above clearly
demonstrate that promising steps in this field have been made,
though individual system design will require a tailor-made
approach for achieving optimization. More complex metabolic
pathways or large-scale industrial applications, however, would
clearly benefit from an extended and well characterized tool-box
of scaffolding components (Kwok, 2010).
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