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Abstract

We use the Tropospheric Emission Spectrometer (TES) aboard the NASA Aura satellite to 

determine the concentrations of the trace gases ammonia (NH3) and formic acid (HCOOH) within 

boreal biomass burning plumes, and present the first detection of peroxy acetyl nitrate (PAN) and 

ethylene (C2H4) by TES. We focus on two fresh Canadian plumes observed by TES in the summer 

of 2008 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and 

Satellites (ARCTAS-B) campaign. We use TES retrievals of NH3 and HCOOH within the smoke 

plumes to calculate their emission ratios (1.0% ± 0.5% and 0.31% ± 0.21%, respectively) relative 

to CO for these Canadian fires. The TES derived emission ratios for these gases agree well with 

previous aircraft and satellite estimates, and can complement ground-based studies that have 

greater surface sensitivity. We find that TES observes PAN mixing ratios of ~2 ppb within these 

mid-tropospheric boreal biomass burning plumes when the average cloud optical depth is low 

(<0.1) and that TES can detect C2H4 mixing ratios of ~2 ppb in fresh biomass burning smoke 

plumes.
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1. Introduction

Biomass burning is the second largest source of trace gases to the global atmosphere and is 

an important part of the interannual variability of atmospheric composition [1–3]. Trace 

gases from biomass burning can contribute to the secondary chemical formation of aerosol 

particles and global tropospheric ozone, both of which impact upon climate and human 

health. However, the emissions of trace gases from biomass burning are highly uncertain. 
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Emission factors for biomass burning are primarily based on airborne and ground field 

measurements and measurements from small fires conducted in laboratories. Laboratory 

studies have shown that emissions of trace gases and particles from biomass burning can 

vary widely based on the type of fuel burned as well as the phase of combustion (i.e., 
whether the combustion is in the early “flaming” stages or the later “smoldering” stages) [4]. 

However, the size, fuel moisture, and combustion characteristics of laboratory fires may not 

be representative of large-scale wildfires. Aircraft and ground studies of biomass burning 

emissions can only sample a small number of fires infrequently, making it difficult to 

understand the impact that the regional variability of fuel type and combustion phase can 

have on biomass burning emissions. Satellite observations, with their extensive spatial and 

temporal coverage, provide the opportunity to sample a large number of fires in several 

different ecosystems, which will help to characterize the spatial and temporal variability of 

emissions within a region for use in models of atmospheric chemistry, air quality, and 

climate.

Recent investigations have focused on using nadir-viewing satellite observations to estimate 

biomass burning emissions of trace gases and particles and study their subsequent chemistry. 

Examples of these studies include: estimating the emission rate of fine particles with fire 

radiative power (FRP) and aerosol optical depth retrievals from the Moderate-Resolution 

Imaging Spectroradiometer (MODIS) [5,6]; estimating emissions of NOx with MODIS FRP 

and tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) [7]; 

constraining emissions of CO using retrievals from the Measurements Of Pollution In The 

Troposphere (MOPITT) instrument, the Atmospheric Infrared Sounder (AIRS), the 

Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), 

and the Tropospheric Emission Spectrometer (TES) [8]; detecting several trace gases within 

smoke plumes using the Infrared Atmospheric Sounding Interferometer (IASI) [9,10]; and 

estimating the correlation between CO and O3 in smoke plumes with TES [11–13].

TES made multiple special observations during the summer of 2008 over eastern Siberia, the 

North Pacific, and North America as part of the Arctic Research of the Composition of the 

Troposphere from Aircraft and Satellites (ARCTAS-B) campaign [14]. This data set includes 

several observations of smoke plumes from boreal fires in Siberia and Canada. Alvarado et 
al. previously analyzed the correlation between TES retrievals of CO and O3 within these 

smoke plumes [12]. Here we use nadir observations from TES to determine the 

concentrations of the trace gases ammonia (NH3) and formic acid (HCOOH) within two 

boreal biomass burning plumes over Canada and determine the emission ratio of these gases 

relative to CO. The use of emission ratios relative to CO allows us to build on previous 

studies of emissions of CO from biomass burning [8] to estimate emissions of these less 

well-studied trace gases. We also present the first TES detections of peroxy acetyl nitrate 

(PAN), an important reservoir species of nitrogen oxides (NOx) that is formed chemically 

within biomass burning smoke plumes, and the first TES detection of ethylene (C2H4), a 

reactive hydrocarbon emitted by biomass burning.

Biomass burning is a significant source of NH3 [15]; other anthropogenic sources are 

livestock and chemical fertilizers, while natural sources include oceans, wild animal 

respiration, and soil microbial processes [16]. NH3 is an integral component of the nitrogen 
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cycle. It can combine with acidic gases like H2SO4 and HNO3 to form secondary aerosol, 

which then can impact climate and human health. This reactivity leads to a very short 

lifetime (less than two weeks) and large temporal and spatial variability. Background 

summer ammonia mixing ratios in the United States can range from 0.05 to 47 ppbv [17]. In 
situ observations of atmospheric ammonia are sparse and infrequent, making satellite 

observations of tropospheric NH3 highly desirable. Worden et al. derived molar ratios of 

NH3 to CO in smoke plumes from forest fires near San Luis Obispo, California, on 15 

August 1994 using the Airborne Emission Spectrometer (AES), the airborne prototype for 

TES [18]. Beer et al. reported the first satellite observations of boundary layer NH3 using the 

TES instrument aboard Aura [19]. Shephard et al. extended this work to a detailed strategy 

for retrieving NH3 using TES [20]. Pinder et al. showed that the TES NH3 retrievals were 

able to capture the spatial and seasonal variability of NH3 over eastern North Carolina and 

that the retrievals compared well with in situ surface observations of NH3 [21]. In addition, 

Clarisse et al. have used the nadir viewing IASI instrument to retrieve mixing ratios and 

global distributions of tropospheric NH3 [10,22].

Formic acid (HCOOH) is a significant contributor to the acidity of precipitation and is an 

important oxygenated volatile organic compound [23–25]. Formic acid is ubiquitous in the 

troposphere, with typical surface concentrations ranging from 0.1 ppbv for “clean” 

environments to over 10 ppbv in urban polluted environments (e.g., Table 1 of [26]). The 

HCOOH lifetime ranges from several hours in the boundary layer to a few weeks in the free 

troposphere with wet (precipitation) and dry deposition the primary sinks, and reaction with 

OH of lesser importance [27]. There is considerable uncertainty concerning the origin of 

formic acid in the atmosphere. Some identified HCOOH sources include biogenic emissions 

from vegetation and soils, emissions from motor vehicles, and secondary production from 

organic precursors [26–28].

Biomass burning is another major primary source of formic acid, with several airborne 

studies showing that secondary production of formic acid also takes place within the aging 

smoke plume as the initial organic gases in the smoke are oxidized [29]. Enhanced mixing 

ratios of formic acid were measured in TES prototype airborne measurements of western 

wildfires [18]. The limb-viewing Atmospheric Chemistry Experiment Fourier Transform 

Spectrometer (ACE-FTS) observed formic acid in young and aged biomass burning plumes 

in the upper troposphere and derived emission ratios for formic acid to CO [30,31]. 

Similarly, Grutter et al. used the limb-viewing Michelson Interferometer for Passive 

Atmospheric Sounding (MIPAS) to retrieve global distributions of formic acid in the upper 

troposphere and stratosphere [32]. Razavi et al. presented global distributions of formic acid 

retrieved using the nadir-viewing IASI instrument and showed that the retrieved formic acid 

is correlated with CO during the burning season in Brazil, the Congo, and Southeast Asia 

[33].

PAN is a thermally unstable reservoir for NOx that can be transported over large distances 

before converting back into NOx, thereby altering ozone formation far downwind from the 

original source [34–36]. The primary NOx emissions from biomass burning are rapidly 

converted to PAN within biomass burning plumes [12,37]. Satellite retrievals of PAN could 

provide substantial information on the fate of NOx emitted by biomass burning in the 
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atmosphere and the impact of these NOx emissions on global tropospheric ozone. The limb-

viewing sounders MIPAS [38] and ACE-FTS [39] and the nadir-viewing IASI instrument 

[9,10] have all previously identified PAN in biomass burning smoke, but this species had not 

been previously detected in TES spectra.

Ethylene (C2H4) is a reactive hydrocarbon that is emitted directly by biomass burning [3]. It 

has a short lifetime in the summer Arctic troposphere (14–35 h, [12]) due to rapid reaction 

with OH. As this rapid oxidation of ethylene impacts the ozone formation rate within young 

smoke plumes [40], better estimates of the emissions of ethylene from biomass burning 

could help to reduce the uncertainty in the impact of biomass burning on tropospheric ozone. 

Enhanced mixing ratios of ethylene were measured in TES prototype airborne measurements 

of western wildfires [18], and C2H4 has also been previously identified by ACE-FTS [39] 

and IASI [9,10], but it had not been previously detected in TES spectra.

Section 2 describes the methods we used to identify biomass burning plumes from TES 

spectra, to retrieve NH3 and HCOOH within the smoke plumes, and to detect PAN and C2H4 

in TES spectra. Section 3 presents the results of this study and Section 4 summarizes our 

conclusions.

2. Methods

2.1. TES Special Observations During ARCTAS-B

TES is a nadir-viewing Fourier-transform infrared (FTIR) spectrometer aboard the NASA 

Aura spacecraft with a high spectral resolution of 0.06 cm−1 and a nadir footprint of 5.3 km 

× 8.3 km. Here we use Level 1B spectra (V003) for the 1B2 (950–1150 cm−1) and 2A1 

(1100–1325 cm−1) bands of the TES instrument [41].

TES retrievals of trace gas profiles are based on an optimal estimation approach (with a 
priori constraints) that minimizes the differences between the TES Level 1B spectra and a 

radiative transfer calculation that uses absorption coefficients calculated with the line-by-line 

radiative transfer model LBLRTM [20,42–45]. Current Level 2 products from TES (V004) 

include retrieved profiles of CO, O3, H2O, HDO, and CH4. The NH3 retrieval discussed 

below will be included in the upcoming V005 of TES products, while the HCOOH retrieval 

discussed below is a prototype retrieval being developed at AER. The averaging kernel 

matrix of the retrieval gives the vertical sensitivity of the retrieved profile to the true profile, 

while the trace of the averaging kernel gives the degrees of freedom for signal (DOFS), 

which represents the number of independent pieces of information contained in the retrieval 

[44]. Cloud properties are retrieved by assuming single layer clouds with an effective optical 

depth that accounts for both cloud absorption and scattering [46]. Due to their small size 

(count median diameters of ~0.13 μm [47]), biomass burning aerosols are unlikely to 

significantly impact radiances in the thermal infrared regions detected by TES, and any 

impact from larger particles is accounted for by the retrieved effective cloud optical depth.

The TES special observations during ARCTAS-B included nadir observations over eastern 

Siberia, the North Pacific, and North America for every 0.4° latitude. Biomass burning 

plumes were identified following the procedure in Alvarado et al. [12], which we briefly 
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outline here. We used maps of Level 3 daily AIRS retrievals of CO at 1° × 1° resolution to 

identify the transport of CO from major regions of boreal biomass burning. We then used 

TES Level 2 retrievals of CO (V003) to identify the corresponding plumes that were 

observed by TES. The CO retrievals for TES special observations between 15 June and 15 

July 2008 were filtered for data quality as recommended in the TES Level 2 Data Users 

Guide [48]. In general, the retrievals had 1 DOFS below 250 hPa with the region of 

maximum sensitivity in the troposphere near 500 hPa. We defined a plume in the TES 

special observations as an area where the retrieved CO mixing ratio at 510 hPa exceeded 150 

ppb. This threshold ensured that the CO retrievals were significantly different from the a 
priori values (~110 ppb). While this procedure will detect thick plumes that are transported 

between continents [49], it does not detect plumes near the surface (where the sensitivity is 

low) or very thin or dilute plumes. We then used HYSPLIT back-trajectories [50] to 

determine if the observed air masses came from boreal biomass burning regions in Siberia 

(17 plumes) and Canada (5 plumes). The CO and O3 retrievals for these plumes were 

analyzed by Alvarado et al. [12]. In this paper, we restrict our analysis to the fresh plumes 

from Canadian biomass burning.

2.2. NH3 Retrieval

NH3 retrievals were performed using TES Level 1B spectra (V003) [41] following the 

method of Shephard et al. [20], which has been implemented in V005 of the TES Level 2 

products. The a priori profiles and covariance matrices for TES NH3 retrievals are derived 

from GEOS-Chem model simulations of the 2005 global distribution of NH3. Figure 1a 

shows an observed TES brightness temperature spectrum in the region of strong NH3 

absorption for a scan of a fresh Canadian smoke plume. Figures 1b,c show the brightness 

temperature residuals (observed spectrum minus modeled spectrum) for the unpolluted 

background NH3 profile and the retrieved NH3 profile, respectively, while Figure 1d shows 

the modeled spectrum of NH3, calculated as the difference between the modeled spectrum 

including the retrieved NH3 profile and the modeled spectrum without any NH3. We can see 

a strong residual (−0.8 K) in the background profile spectrum that is substantially reduced 

following retrieval of NH3. (The second strong residual feature near 949 cm−1 in panels b 

and c appears to be due to the ν7 Q-branch of ethylene (C2H4), as is discussed in Section 3.4 

below.)

Figure 2a shows the averaging kernel for the same NH3 retrieval. The retrievals are 

performed using 14 vertical levels. However, the number of DOFS is generally not greater 

than one, meaning that it is not possible to obtain information about the shape of the profile 

from these retrievals. In order to minimize the influence of the a priori constraints on the end 

result, it is desirable to report one retrieved quantity per DOFS. However, performing a 

“profile” retrieval offers a major advantage in that us allows the calculation of diagnostics, 

such as the averaging kernels, that enable characterization of the spatial and temporal 

variability of the vertical sensitivity of the measurements. Therefore, for this work, the 

retrievals are performed on 14 levels in order to take advantage of the sensitivity 

characterization that this enables, then post-processed to calculate a single quantity that 

better represents the information that is really available in the measurement and that is 

relatively insensitive to the a priori constraints. Shephard et al. developed a Representative 

Alvarado et al. Page 5

Atmosphere (Basel). Author manuscript; available in PMC 2021 March 22.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Volume Mixing Ratio (RVMR) metric for NH3 [20] based on similar techniques used 

previously for CH4 [51] and CH3OH [19]. This RVMR represents a TES sensitivity 

weighted average value where the influence of the a priori profile is reduced as much as 

possible. (Note that for NH3, one of three a priori profiles is selected based on the signal-to-

noise ratio in the TES NH3 band [20]. For the scan shown in Figures 1 and 2, the polluted a 
priori, shown as a dashed blue line in Figure 2b, was selected.) Figure 2b shows a retrieved 

profile of NH3 for a fresh Canadian smoke plume as a solid black line, while the red circle is 

the RVMR calculated from the profile. The horizontal error bars show the uncertainty in the 

RVMR due to noise in the TES spectrum, while the vertical bars encompass the region of 

TES sensitivity to NH3, defined as the full width at half maximum (FWHM) of the 

averaging kernel at the pressure level of the RVMR [20]. With the a priori assumption about 

profile shape that was chosen here the NH3 RVMR is roughly 20% to 60% of the retrieved 

surface value for NH3. The estimated minimum detection level is an RVMR of 

approximately 0.3 ppb, corresponding to a profile with a surface mixing ratio of about 1–2 

ppb [20]. However, it must be noted that this is merely a general estimate of the minimum 

detection level, which depends strongly on the location of peak NH3 mixing ratio and the 

thermal structure of the atmosphere for a given scan [20], and thus retrieved NH3 RVMRs of 

less than 0.3 ppb are considered valid and are included in our analysis.

The excess mixing ratio of a trace gas like NH3 (EMR, ΔNH3) is defined as the mixing ratio 

of the gas in the smoke plume minus its mixing ratio in the background. This excess mixing 

ratio can be normalized using the excess mixing ratio of CO to give the normalized excess 

mixing ratio (NEMR, ΔNH3/ΔCO). The emission ratio (ER) is a special case of the NEMR 

where the measurements are made in fresh smoke near the fire source [3]. The NEMR of a 

trace gas can be highly variable for reactive gases downwind of fires due to the different 

rates of deposition and secondary photochemical production and loss for the trace gas and 

CO. In this paper, we will refer to our derived NEMRs for fresh Canadian smoke observed 

by TES as emission ratios; however, these emission ratios are inherently convolutions of the 

initial NEMR and any secondary production and loss processes that have taken place within 

the smoke plume during plume lofting and transport from the fire source [28]. Furthermore, 

the lower sensitivity of the TES retrievals near the surface (see Figure 2a) means that TES 

will preferentially sample smoke from the flaming stages of combustion, as these emissions 

are more likely to be lofted well above the surface. This lower sensitivity near the surface is 

due to the physics of nadir thermal infrared sounding: when the surface and the layers of the 

atmosphere near the surface have similar temperatures (low thermal contrast), we cannot 

distinguish between radiation emitted by the surface and radiation emitted by the lowest 

layers of the atmosphere. Similar caution must be used in interpreting emission ratios 

measured from other platforms: for example, NEMRs of NH3 measured at the ground are 

generally much higher than those measured by aircraft, as the aircraft does not sample the 

emissions from residual smoldering combustion very close to the ground (see Section 3.1 

below).

In order to use the TES retrievals of NH3 and CO to calculate the emission ratio of NH3, we 

first calculated the RVMR for NH3 following the procedure of Shephard et al. [20]. Since 

the DOFS for the CO retrieval are generally higher than for NH3, in order to obtain a 

comparable metric we transform the TES CO retrieval using the same grid and weightings as 
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were used to generate the NH3 RVMR to obtain a pseudo-RVMR for CO. Figure 2c shows 

the retrieved CO profile for a fresh Canadian smoke plume as a solid black line while the 

pseudo-RVMR for CO is shown in green. The emission ratio of NH3 was then calculated as 

the slope of a least squares linear regression of the NH3 RVMR and the CO pseudo-RVMR.

2.3. HCOOH Retrieval

We have developed a prototype retrieval for formic acid (HCOOH) from TES Level 1B 

spectra. The retrieval approach is similar to that used for NH3. The spectroscopic parameters 

for HCOOH were taken from the HITRAN 2008 database, which substantially improved the 

estimates of the strengths of HCOOH lines by removing interference from the formic acid 

dimer [52]. All other spectroscopic parameters were taken from v1.4 of the TES 

spectroscopic line parameters [53]. The a priori constraint and covariance matrix were 

compiled from GEOS-Chem model simulations of the 2004 global background mixing ratios 

of HCOOH; however, these background profiles may be biased low, as GEOS-Chem tends 

to underestimate HCOOH in the northern mid-latitudes [28]. For HCOOH, the initial guess 

profile is the same as the a priori constraint vector. LBLRTM was run using TES Level 2 

(V004) retrievals of temperature, average cloud optical depth, emissivity, reflectivity, H2O, 

CO, O3, and CH4. Profiles of CO2 and N2O were taken from the TES Level 2 supplemental 

data files. The top panel of Figure 3 shows the observed TES brightness temperature 

spectrum between 1090–1130 cm−1 for a scan of fresh smoke from a Canadian fire with the 

HCOOH retrieval microwindows shown in red. Note that only some sections of the HCOOH 

band have been retained in order to remove interfering lines from other species, principally 

water vapor. The second panel shows the residuals (observed spectrum minus modeled 

spectrum) for the background HCOOH profile. We see a strong (−2 K) residual in the 

HCOOH Q-branch (~1105 cm−1), which is removed after retrieval of HCOOH as seen in the 

third panel of Figure 3.

An RVMR for HCOOH and a corresponding CO pseudo-RVMR were calculated following 

the procedure of Shephard et al. for NH3 [20], as illustrated in Figure 4. The RVMR for 

HCOOH is lower than the retrieved value at the level of maximum sensitivity to HCOOH, 

possibly because the TES sensitivity to HCOOH covers a wide pressure range. The emission 

ratio of HCOOH was calculated as the slope of the least squares linear regression of the 

HCOOH RVMR and the CO pseudo-RVMR.

2.4. Detection of PAN and C2H4

In order to use TES to detect PAN in boreal smoke plumes, we calculated the differences 

(residuals) between the TES Level 1B spectra (V003) and a forward run of LBLRTM using 

v1.4 of the TES spectroscopic line parameters for the region of strong absorption by PAN 

(1140–1180 cm−1). As for the retrievals of HCOOH, the model was run using TES Level 2 

(V004) retrievals of temperature, emissivity, reflectivity, average cloud optical depth, H2O, 

CO, O3, and CH4 and profiles of CO2 and N2O were taken from the TES Level 2 

supplemental data files. Preliminary model runs using the spectrally resolved effective cloud 

optical depth retrieved by TES led to unphysical slopes in the residuals versus wavenumber 

between 1100 and 1200 cm−1. We removed these slopes by setting cloud optical depth in 

this spectral region to the average effective cloud optical depth included in the TES Level 2 
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products; however, the spectral signature of PAN was detectable regardless of which TES 

cloud product was used. The absorption cross section of PAN was taken from HITRAN 

2008 [52].

A similar procedure was used to detect C2H4 in TES spectra, with the addition that the 

surface emissivity, surface temperature, and NH3 profile were taken from the final results of 

the NH3 retrieval described in Section 2.2 above. The line parameters for C2H4 were taken 

from v1.4 of the TES spectroscopic line parameters.

3. Results and Discussion

3.1. Emission Ratio of NH3

Figure 5 shows a map of the retrieved NH3 RVMR values within smoke plumes from 

Canadian biomass burning in the summer of 2008. We have filtered the retrievals for quality 

following Shephard et al. [20]. First, NH3 retrievals are rejected if the DOFS are less than 

0.1 or if the average cloud optical depth is greater than 1. Second, retrievals with DOFS less 

than 0.5 are rejected if the thermal contrast between the surface and the atmospheric layer 

nearest the surface is between −7 K and 10 K.

Figure 6 shows the NH3 RVMR versus the CO pseudo-RVMR for all of the retrievals shown 

on the map in Figure 5. The most elevated amounts of CO and NH3 come from a fresh 

smoke plume from a single Canadian fire observed by TES between 52.5–54.1°N and 90.5–

91.8°W at 19:03 UTC on 1 July 2008 (TES Run #7656). Due to the high retrieved values for 

CO (>500 ppb), this plume likely contains concentrated fresh smoke. Also included are 

retrievals of NH3 within a more dilute smoke plume observed between 55.5–59.8°N and 

88.8–91.4°W at 18:51 UTC on 17 June 2008 (TES Run #7472).

We calculate the NH3 emission ratio (ΔNH3/ΔCO) for these fires as 1.0% ± 0.5%. However, 

there is a large amount of scatter in this plot, which leads to a low correlation between CO 

and NH3 (r2 = 0.30). The scatter is likely due to the combination of: (1) variations in plume 

heights, which change the relative sensitivity of TES to CO and NH3 in the smoke plume; 

(2) variations in the age of the smoke plumes, as older plumes could have lost more NH3 to 

chemical reaction or deposition, and (3) variations in the initial emissions of ammonia from 

the fires, which are in turn related to differences in the relative fraction of flaming versus 

smoldering combustion as well as variations in fuel nitrogen content.

Table 1 compares our derived emission ratio for NH3 to previous satellite, aircraft, and 

ground measurements of ammonia emission ratios for boreal biomass burning. Our value is 

close to the value of 1.3% derived from IASI retrievals in Siberian smoke over East 

Mongolia [9]. The results from the aircraft and ground studies are substantially different 

with ground studies showing values of ΔNH3/ΔCO that are a factor of 5 higher than the 

aircraft or satellite studies. The higher ground values are likely due to emissions of NH3 

from residual smoldering combustion very close to the ground [3] where aircraft cannot 

sample and satellites have little sensitivity to NH3 (see Figure 2). Thus, both aircraft and 

satellites are likely to underestimate the true emissions of NH3 from biomass burning fires 

unless the emission factors from aircraft and satellite studies are carefully combined with 
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ground observations, such as in the review of Akagi et al. [3]. In addition, given the 

discrepancy between aircraft and ground observations, nadir-viewing satellite observations 

of NH33 are most appropriately compared with aircraft observations, as satellites will not be 

very sensitive to the ground-level residual smoldering emissions detected in ground studies. 

Our NH3 emission factor of 1.0% ± 0.5% is similar to the values of 1.3% ± 0.7% and 1.7% 

± 0.9% reported for Alaskan forest fires in the aircraft studies of Nance et al. [54] and 

Goode et al. [55], respectively, but is substantially higher than the value of 0.16% ± 0.14% 

reported by Radke et al. for boreal forests [56]. Furthermore, our value lies within the 

uncertainty range of the average value of 1.0% ± 0.7% (boreal forests, aircraft studies only) 

reported in the review of Akagi et al. [3], as well as the value of 2.6% ± 2.2% (all 

extratropical forests, all study types) in the review of Andreae and Merlet [57].

3.2. Emission Ratio of HCOOH

Figure 7 shows a map of the retrieved HCOOH RVMR values within smoke plumes from 

boreal biomass burning over Canada. We have removed retrievals with less than 0.5 DOFS 

for HCOOH, which also eliminated retrievals with an HCOOH RVMR of less than 0.5 ppbv. 

The smoke plumes included in the analysis are the same as described above for NH3. Figure 

8 shows the HCOOH RVMR versus the CO pseudo-RVMR for all of the retrievals shown on 

the map in Figure 7. We calculate the emission ratio ΔHCOOH/ΔCO for these fires as 0.31% 

± 0.21%. As we saw for NH3, there is a large amount of scatter in this plot that leads to a 

low correlation between CO and HCOOH (r2 = 0.41). As discussed above, this scatter is 

likely due to the combination of variations in (1) plume heights, (2) plume ages, and (3) 

initial smoke emissions of HCOOH. The large pressure range of TES sensitivity to HCOOH 

may also contribute to the low correlation of HCOOH with CO. It is worth noting that the 

ACE-FTS observations of HCOOH within boreal biomass burning plumes showed a much 

higher r2 value (0.86), likely due to the fact that the higher vertical resolution of limb 

retrievals means that ACE is better able to separate the different vertical layers of the plume 

which are averaged together by nadir-viewing sounders like TES and IASI [31].

Table 2 compares our derived emission ratio for HCOOH to previous satellite, aircraft, and 

ground measurements of formic acid emission ratios for boreal biomass burning. Our 

HCOOH emission ratio is slightly lower than the ratio of 0.38% ± 0.06% derived from ACE-

FTS observations [31], possibly due to the fact that a limb-sounder like ACE is more 

sensitive to plumes that reach high altitudes; this type of plume is more common over more 

flaming fires since fire power output peaks during flaming combustion [4]. Table 2 shows 

that our value is similar to the emission ratios for HCOOH derived from aircraft and ground 

studies, with the exception of the value of 3.7% ± 2.0% reported for Canadian forests by 

Lefer et al. [60], which is about a factor of 10 higher than the average value for boreal 

biomass burning in the review of Akagi et al. [3]. However, Lefer et al. note that the elevated 

enhancement ratios of HCOOH they observed (0.82% to 6.2%) are likely due to HCOOH 

production within the plumes in the first couple hours after emission, and do not necessarily 

reflect the initial emissions. When the Lefer et al. study is removed, the Andreae and Merlet 

average becomes 0.85% ± 0.53%, with the relatively higher value of HCOOH likely due to 

the inclusion of midlatitude fires as well as boreal fires in the average [57].
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3.3. Detection of PAN

The solid black line of Figure 9a shows the brightness temperature residuals (data minus 

model) for the scan of fresh smoke from a Canadian fire at 53.32°N and 90.84°W.

The two lobes of PAN absorption are clearly visible on either side of the water line at ~1165 

cm−1. The dotted red line shows the residuals when a hypothetical PAN profile with a peak 

concentration of 1.9 ppb at 560 hPa is added to the forward model, and Figure 9b shows the 

modeled PAN spectrum as a solid black line. Adding the PAN profile substantially reduces 

the mean residuals, but this peak concentration of PAN in the assumed profile is about a 

factor of 2 higher than the concentration of PAN observed 30–60 min downwind of the Lake 

McKay fire in Saskatchewan, Canada during ARCTAS-B [12]. We have also detected PAN 

in a scan of aged smoke from Siberian biomass burning observed near Kamchatka (not 

shown). These two scans shared several common features, including relatively high mixing 

ratios of CO (mixing ratio > 250 ppbv at 510 hPa) and low average cloud optical depth 

(<0.1). This low cloud optical depth may be a necessary but insufficient criterion for 

detecting PAN in biomass burning smoke plumes with TES.

3.4. Detection of C2H4

As mentioned in Section 2.2 above, there is a second strong residual feature in Figure 1c 

near 949 cm−1 that appears to be due to absorption by C2H4.

Figure 10b shows this residual feature, which partially overlaps with the strong CO2 line 

[39] that is visible in the TES spectrum shown in Figure 10a. Figure 10c shows that the 

addition of a hypothetical C2H4 profile to the model (with a peak concentration of 1.9 ppb at 

the surface) removes this feature. This peak C2H4 mixing ratio is approximately the 85th 

percentile of C2H4 observations observed downwind of the Lake McKay fire in 

Saskatchewan, Canada during ARCTAS-B [12]. While the scan in Figure 10 did have a low 

cloud optical depth, this criterion is likely to be less important for detecting C2H4 within 

fresh biomass burning plumes using TES, as the residual feature of C2H4 is both stronger 

and sharper than the PAN feature. However, the short lifetime of C2H4 may make it difficult 

to detect in smoke that is several hours old.

4. Conclusions

We have retrieved mixing ratios of ammonia (NH3) and formic acid (HCOOH) within 

biomass burning smoke plumes over Canada from TES radiance measurements. We have 

combined these retrievals with the TES retrievals of CO to calculate molar ratios of NH3 and 

HCOOH to CO within biomass burning plumes by calculating representative volume mixing 

ratios for NH3 and HCOOH and then mapping the CO retrieval to the same vertical grid. 

Our estimated emission ratios for NH3 (1.0% ± 0.5%) and HCOOH (0.31% ± 0.21%) for 

forest fires in Canada are within the range of values reported in the literature for airborne 

and satellite studies of boreal biomass burning emissions. This work thus provides a method 

for the use of TES spectra to study the emissions of NH3 and HCOOH from biomass 

burning. This method, if applied to the entire TES data set, would help to estimate the spatial 

and temporal variability of these emissions. This information could then be used, in concert 
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with the other satellite observations discussed in Section 1 of our manuscript, to provide 

improved estimates of the emissions of these trace gases for use in models of atmospheric 

chemistry, air quality, and climate.

We have shown that TES can observe peroxy acetyl nitrate (PAN) and ethylene (C2H4) 

within boreal biomass burning plumes. A low cloud optical depth (<0.1) appears to be 

required for successful detection of PAN by TES within biomass burning smoke plumes. 

Continuing this line of research could lead to maps of tropospheric PAN concentrations near 

source regions, which would help to constrain the fate of NOx emission within atmospheric 

chemistry models. These could be combined with satellite estimates of the emissions of 

ethylene from biomass burning to help reduce the uncertainty in the impact of biomass 

burning on tropospheric ozone.
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Figure 1. 
(a) Tropospheric Emission Spectrometer (TES) observed brightness temperature spectrum, 

(b) the background profile residuals, calculated as observed minus modeled spectrum for an 

unpolluted profile of NH3, (c) the residuals after retrieval of NH3, and (d) the modeled 

spectrum of NH3 for the TES scan at 53.32° N and 90.84° W on 1 July 2008 near a 

Canadian fire. The microwindows used in the NH3 retrieval are shown in red. Note that 

surface emissivity and temperature are adjusted during the retrieval, which requires 

microwindows outside of the NH3 absorption band (~960–970 cm−1).
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Figure 2. 
(a) NH3 averaging kernel for the same TES scan as shown in Figure 1. (b) Background 

unpolluted NH3 profile (open black squares), polluted a priori NH3 profile (open blue 

diamonds), retrieved NH3 profile (filled black squares) and NH3 Representative Volume 

Mixing Ratio (RVMR) (red circle) for the same scan. The horizontal error bars show the 

uncertainty in the RVMR due to noise in the TES spectrum, while the vertical bars 

encompass the region of TES sensitivity to NH3. (c) Background (and a priori) CO profile 

(open black triangles), retrieved CO profile (filled black triangles) and CO pseudo-RVMR 

(green inverted triangle) for the same scan.
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Figure 3. 
(a) TES observed brightness temperature spectrum, (b) background formic acid (HCOOH) 

profile residuals, calculated as observed minus modeled spectrum, (c) residuals after 

retrieval of HCOOH, and (d) the modeled spectrum of HCOOH for the same TES scan as 

shown in Figure 1. The microwindows used in the HCOOH retrieval are shown in red.

Alvarado et al. Page 17

Atmosphere (Basel). Author manuscript; available in PMC 2021 March 22.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 4. 
(a) HCOOH averaging kernel for the same TES scan as shown in Figure 1. (b) Background 

(and a priori) HCOOH profile (open black squares), retrieved HCOOH profile (filled black 

squares), and HCOOH RVMR (intersection of red lines) for the same scan. The red dot was 

omitted so that the horizontal error bars would be visible. (c) Background (and a priori) CO 

profile (open black triangles), retrieved CO profile (filled black triangles) and CO pseudo-

RVMR (green inverted triangle) for the same scan.
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Figure 5. 
RVMR of NH3 for the TES special observations for Arctic Research of the Composition of 

the Troposphere from Aircraft and Satellites (ARCTAS-B) between 15 June 2008 and 15 

July 2008. Only retrievals within biomass burning plumes over Canada are shown. Note that 

the red point is 7.3 ppb.
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Figure 6. 
RVMR of NH3 versus the pseudo-RVMR of CO for all of the retrievals shown in Figure 5.
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Figure 7. 
RVMR of HCOOH for the TES special observations for ARCTAS-B between 15 June 2008 

and 15 July 2008. Only retrievals within biomass burning plumes over Canada are shown.
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Figure 8. 
RVMR of HCOOH versus the pseudo-RVMR of CO for the retrievals shown in Figure 7.
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Figure 9. 
(a) Brightness temperature residuals (data minus model) for the same TES scan as in Figure 

1. The solid black line does not have PAN in the forward model, while the dotted red line 

does include PAN. (b) Difference between the model runs with and without PAN, which 

shows the modeled spectrum of PAN.
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Figure 10. 
(a) TES observed brightness temperature spectrum, (b) residuals without a C2H4 profile in 

the model, calculated as observed minus modeled spectrum, (c) residuals after addition of a 

hypothetical profile of C2H4, and (d) the modeled spectrum of C2H4 for the same TES scan 

as shown in Figure 1. The area of strong absorption by C2H4, corresponding to the ν7 Q-

branch, is shown in red.
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Table 1.

Ammonia emission ratios (ΔNH3/ΔCO, mol/mol) for boreal biomass burning.

ΔNH3/ΔCO Ecosystem/Fuel Study Type Source

1.0% ± 0.5% Canadian Forest Satellite (TES) This Study

1.3% Siberian Forest Satellite (IASI) [9]

0.16% ± 0.14% Boreal Forests Aircraft [56]

1.3% ± 0.7% Alaskan Forest Aircraft [54]

1.7% ± 0.9% Alaskan Forest Aircraft [55]

6.9% ± 11.1% Boreal Peat Ground [58]

5.9% ± 3.6% Boreal organic soil Ground [58]

6.9% ± 3.2% Boreal organic soil Ground [59]

1.7% ± 2.2% Boreal dead, woody material Ground [59]

3.5% Alaskan Duff Laboratory [4]

1.0% ± 0.7% Boreal Forests Review: Aircraft Only [3]

5.1% ± 5.6% Boreal Forests Review: Ground Only [3]

3.5% ± 3.2% Boreal Forests Review: Aircraft and Ground [3]

2.6% ± 2.2% Extratropical Forests Review: Aircraft, Satellite, and Ground [57]
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Table 2.

Formic acid emission ratios (ΔHCOOH/ΔCO, mol/mol) for boreal biomass burning.

ΔHCOOH/ΔCO Ecosystem/Fuel Study Type Source

0.31% ± 0.21% Canadian Forest Satellite (TES) This Study

0.38% ± 0.06% Canadian Forest Satellite (ACE-FTS) [31]

0.31% ± 0.09% Alaskan Forest Aircraft [55]

0.26% ± 0.44% Boreal Peat Ground [58]

0.18% ± 0.12% Boreal organic soil Ground [58]

0.33% ± 0.29% Boreal organic soil Ground [59]

0.17% ± 0.18% Boreal dead, woody material Ground [59]

0.35% Alaskan Duff Laboratory [4]

0.28% ± 0.24% Boreal Forests Review, Aircraft and Ground [3]

3.7% ± 2.0% Canadian Forest Aircraft [60]

1.4% ± 1.4% Extratropical Forests Review, Aircraft, Satellite and Ground [57]
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