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Multi‑level remodelling 
of chromatin underlying activation 
of human T cells
Naiara G. Bediaga1,2,4, Hannah D. Coughlan1,2,4, Timothy M. Johanson1,2, 
Alexandra L. Garnham1,2, Gaetano Naselli1, Jan Schröder1,2, Liam G. Fearnley1,2, 
Esther Bandala‑Sanchez1,2, Rhys S. Allan1,2, Gordon K. Smyth1,3 & Leonard C. Harrison1,2*

Remodelling of chromatin architecture is known to regulate gene expression and has been well 
characterized in cell lineage development but less so in response to cell perturbation. Activation of 
T cells, which triggers extensive changes in transcriptional programs, serves as an instructive model 
to elucidate how changes in chromatin architecture orchestrate gene expression in response to 
cell perturbation. To characterize coordinate changes at different levels of chromatin architecture, 
we analyzed chromatin accessibility, chromosome conformation and gene expression in activated 
human T cells. T cell activation was characterized by widespread changes in chromatin accessibility 
and interactions that were shared between activated CD4+ and CD8+ T cells, and with the formation 
of active regulatory regions associated with transcription factors relevant to T cell biology. Chromatin 
interactions that increased and decreased were coupled, respectively, with up- and down-regulation 
of corresponding target genes. Furthermore, activation was associated with disruption of long-
range chromatin interactions and with partitioning of topologically associating domains (TADs) and 
remodelling of their TAD boundaries. Newly formed/strengthened TAD boundaries were associated 
with higher nucleosome occupancy and lower accessibility, linking changes in lower and higher order 
chromatin architecture. T cell activation exemplifies coordinate multi-level remodelling of chromatin 
underlying gene transcription.

Mammalian genomes are folded into highly organized hierarchical structures linked to function at each level1. 
At the primary level of chromatin structure, the nucleosome, a 147 base-pair DNA segment wrapped around 
an octamer of histone proteins, directly influences gene expression by dictating access of DNA to the transcrip-
tional machinery2–4. At an intermediate level, the genome is organized into protein-mediated loops that facilitate 
3-dimensonal (3D) interactions between of pairs of genomic sites such as promoters and enhancers distant 
within the genome. At a higher level, the genome is organized into self-interacting chromatin, called topologi-
cally associating domains (TADs)5,6. Disruption of TAD boundaries has been associated with developmental 
defects7 but the functional significance of changes in TAD architecture are otherwise largely unknown. Further, 
chromosomes are organized into a gene-rich, transcriptionally active compartment (A) with open chromatin and 
active histone marks and a gene-poor, transcriptionally inactive compartment (B) with condensed chromatin and 
gene silencing histone marks. Within this overall organization, the interplay between chromatin structure8 and 
gene expression9–11 is cell-specific and mediated by transcription factors (TFs) and other DNA binding proteins 
the functions of which depend on chromatin accessibility.

The immune system evolved to respond to environmental stimuli and exhibits a high degree of phenotypic and 
functional plasticity in response to external cues. T cells have a central role in the adaptive immune system and 
are activated under different conditions to expand and differentiate into a variety of specialized and functionally 
distinct subsets. T cell activation is likely to be instructive of how coordinate changes in chromatin structure 
orchestrate gene expression programs that underlie rapid and often lifesaving responses. It was recently shown 
that T cell activation is associated with a marked remodelling of chromatin structure at the level of accessibility 
(measured by ATAC-seq)12–14 and, separately, of conformation (measured by promoter capture-Hi-C)15. Here 
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we analyse genome-wide chromosome conformation in conjunction with chromatin accessibility and whole 
transcriptome expression to further understand how coordinated changes across different levels of chromatin 
structure are linked to gene expression in response to T cell activation.

Results
Chromatin accessibility and 3D genomic interactions are immune cell‑type specific.  Resting 
CD4+ and CD8+ T cells, and mature B cells, were isolated from two healthy human male donors. T cells were 
activated through the T cell receptor subunit CD3 and the co-stimulator CD28 by incubation with anti-CD3/
CD28 antibody Dynabeads for 72 h. Each cell lineage was profiled by assay for transposase-accessible chroma-
tin using sequencing (ATAC-seq) to generate genome-wide maps of chromatin accessibility, by in  situ Hi-C 
for 3D genomic interactions and by RNA-seq for whole transcriptome expression. The consistent use of two 
independent biological replicates for each cell population across all three genomic technologies allowed us to 
assess activation-induced changes in an integrated and statistically rigorous way. For each technology, a set of 
relevant genomic features was identified and held fixed across each cell populations. For ATAC-seq, the features 
were identified peaks, for Hi-C the features were pairs of genomic windows and for RNA-seq the features were 
genes. Activation-induced changes were explored by comparing activated to resting T cells and the statistical 
significance of the changes was determined with the edgeR16 and limma17 software packages, controlling the 
false discovery rate relative to biological variability between the individual donors.

First, we confirmed the reproducibility and specificity of the data. ATAC-seq, Hi-C-seq and RNA-seq sequenc-
ing read densities at genes that define the cell phenotypes confirmed specificity for each cell type (Fig. 1A–C). 
We observed a strong enrichment of ATAC-seq reads at transcription start sites (TSSs) genome-wide, including 
promoter-TSSs of the cell type-specific genes CD4, CD8A, IFNG, BCL11B and MS4A1, which reflected the qual-
ity of the data18 (Fig. 1A,B). T cells, but not B cells, exhibited robust enrichment of Hi-C genomic interactions 
at the BCL11B gene, known to be expressed in T but not B cells19 (Fig. 1C). Conversely, B cells exhibited robust 
enrichment of Hi-C genomic interactions at the BCL11A gene, known to be expressed in B but not T cells 
(Supplementary Fig. S1). Unsupervised clustering of the samples by multidimensional scaling of the chromatin 
accessibility, chromatin interaction and gene expression data demonstrated distinct chromatin structure and gene 
expression signatures for the different cell types (Fig. 1D), as previously reported for chromatin architecture8. 
Samples clustered by activation status over dimension 1 and diverged by cell lineage over dimension 2. By calcu-
lating the proportion of variation explained by each dimension using the Glimma package (v1.6.0)20, activation 
(dimension 1) was found to account for the largest proportion of variation in chromatin accessibility, chromatin 
interactions and gene expression (34%, 27% and 49%, respectively), followed by lineage (dimension 2) (23%, 
19% and 17%) (Fig. 1D). Consistent with the smaller contribution of T cell lineage to biological variance in 
chromatin accessibility and interactions, direct comparison of activated CD4+ and CD8+ T cells revealed only 
a small number of chromatin structure differences, viz. 864 differentially accessible regions and 69 differential 
interactions, indicating that chromatin remodelling in response to activation is similar in CD4+ and CD8+ T cells.

T cell activation leads to extensive changes in chromatin accessibility and gene expres-
sion.  Relative to the resting state, T cell activation increased accessibility of 11,368 (10.0%) and 12,282 (10.8%) 
ATAC-peaks in CD4+ and CD8+ T cells, respectively, while 3674 (3.2%) and 4,723 (4.1%) peaks lost accessibility 
(Fig. 2A, Supplementary Table S1). Activation altered a higher proportion of expressed genes, with 4894 (33.4%) 
and 4727 (32.3%) being up-regulated and 4931 (33.7%) and 4611 (31.5%) in CD4+ and CD8+ T cells, respectively 
(Fig. 2B). Interestingly, despite differences in their effector functions, activation-associated changes in chromatin 
accessibility and gene expression were highly concordant in CD4+ and CD8+ T cells, evidenced by their strong 
correlation (Fig. 2C,D) and large number of overlapping activation-associated chromatin accessibility (9083) 
and gene expression (7823) changes (Fig. 2E,F; ‘aCD4+ vs. nCD4+ T cell’ and ‘aCD8+ vs. aCD8+ T cell’ compari-
sons). Thus, differentially accessible (DA) peaks and differentially expressed (DE) genes up-and down-regulated 
upon activation of CD4+ T cells were also up-and down-regulated, respectively, upon activation of CD8+ T cells 
(Fig. 2C,D). Accessibility and gene expression differences between activated CD4+ and CD8+ T cells were also 
minimal (Fig. 2E,F; ‘aCD4+ vs. aCD8+ T cell’ comparison). Moreover, in interrogating the DA peaks for enrich-
ment of known transcription factor motifs we observed that activation-associated accessibility changes in both 
CD4+ and CD8+ T cells were enriched for a similar set of DNA motifs recognized by TFs involved in T cell 
development, activation or proliferation10,21–25 (Supplementary Fig. S2A). These included members of the bZIP 
(BATF, FOSL1, ATF3), ETS (Fli1, ETV1, ERG, GABPA), and Runt (RUNX1, RUNX2) families among others 
(Supplementary Fig. S2A). Comparison with ATAC-seq signatures (GSE118189) reported in human CD4+ and 
CD8+ T cells after 24 h activation10,21–25, revealed that 24 and 72 h activation-associated accessibility changes 
were also highly concordant (Supplementary Fig. S3A), had a large number of overlapping DA peaks (Supple-
mentary Fig. S3B) and were enriched for a similar set of TF motifs (Supplementary Fig. S3C). Thus, both the 
earlier and later stages of CD4+ and CD8+ T cell activation would appear to be governed by similar chromatin 
regulatory and transcription factor programs.

Using annotations from the Refseq database and predicted regulatory states from ChromHMM in the Road-
map Epigenomics Project26, we annotated the activation-associated DA peaks and calculated their enrichment 
over the universe of ATAC-seq peaks using GAT​27. Overall, approximately 77% of the activation-induced peaks 
were located in intronic and intergenic regions while the remaining were at promoters (defined from − 1 kb 
to + 100 bp of the TSS) (~ 14%) and exonic regions (~ 3%). Moreover, DA peaks showed strong enrichment for 
ChromHMM-predicted promoters and enhancer regions, and depletion in repressive marks (heterochromatin, 
quiescent DNA and repressed PolyComb) (Supplementary Fig. S2B).
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Several studies have shown that disease-associated SNPs frequently reside in cell-specific regulatory 
elements28–30. We therefore tested whether regions of altered chromatin accessibility associated with T cell acti-
vation were enriched for disease-/trait-associated SNPs or those in linkage disequilibrium (LD) with them (Sup-
plementary Table S2). After categorizing SNPs for 15 disease or trait classes, we observed a strong enrichment 
for immune system, neurological autoimmune, haematological and cancer SNPs in DA peaks compared to the 
universe of ATAC-seq peaks (Supplementary Fig. S2C). Moreover, enrichment was more pronounced in the 
subset of peaks that contained predicted enhancers by ChromHMM (Supplementary Fig. S2C).

Because whole transcriptome sequencing without poly(A) pre-selection allowed us to detect enhancer RNAs15, 
we could identify the subset of enhancer (e)RNAs that overlapped the set of human enhancer regions defined by 
the FANTOM consortium31. In order to investigate if variation in chromatin accessibility was related to changes 
in eRNA expression, and thus enhancer activity, we calculated the distribution of eRNA expression across the 
DA peaks. We observed that eRNA expression was on average significantly higher in the chromatin regions that 
gained accessibility upon activation than in those that lost accessibility (Supplementary Fig. S4A).

To further explore the relationship between the activation-associated DA peaks and expression of their poten-
tial target genes we applied the Genomic Regions Enrichment of Annotations Tool (GREAT)32. We observed 
that expression of genes linked to the peaks that gained accessibility was on average significantly higher than 
that of genes linked to peaks that lost accessibility (Supplementary Fig. S4B). The set of target genes defined by 
GREAT comprised immune system-associated genes known to be up-regulated upon T cell activation, including 
TNFSF15, TNFRSF8, IL32, IL23R, IL12RB2, IL1R2, IL2, IL21 and IL13 among others. Furthermore, functional 

[0-40]

[0-40]

[0-40]

[0-40]

[0-40]

[0-800]

[0-800]

[0-800]

[0-800]

[0-800]

[0-100]

[0-100]

[0-100]

[0-100]

[0-100]

[0-5000]

[0-5000]

[0-5000]

[0-5000]

[0-5000]

[0-40]

[0-40]

[0-40]

[0-40]

[0-40]

[0-800]

[0-800]

[0-800]

[0-800]

[0-800]

[0-100]

[0-100]

[0-100]

[0-100]

[0-100

[0-5000]

[0-5000]

[0-5000]

[0-5000]

[0-5000]

[0-40]

[0-40]

[0-40]

[0-40]

[0-40]

[0-5000]

[0-5000]

[0-5000]

[0-5000]

[0-5000]

2

Gene expressionChromatin accessibility Genomic interactions

-2 -1 0 1 -0.5   0 0.5 -2   0

2.0

1.0

0.0

-1.0

0.5

0.0

-0.5

2.0

0.0

-2.0

  

Leading logFC dimension 1

Le
ad

in
g 

lo
gF

C
 d

im
en

si
on

 2

2

A

C

C
hr

om
at

in
 a

cc
es

si
bi

lit
y

G
en

e 
ex

pr
es

si
on

CD4 CD8A IFNG MS4A1 BCL11B

nCD4+ T aCD4+ T nCD8+ T aCD8+ T B

Chr14
96.5 97 97.5 98 98.5 99

aCD8+ T cell

B cell

aCD4+ T cell 

nCD4+ T cell
215

nCD8+ T cell 

161

204

229

250

BCL11B

In
te

ns
ity

96.5 97 97.5 98 98.5 99

96.5 97 97.5 98 98.5 99

96.5 97 97.5 98 98.5 99

96.5 97 97.5 98 98.5 99

In
te

ns
ity

In
te

ns
ity

In
te

ns
ity

In
te

ns
ity

99.5
Mb

B

Figure 1.   Chromatin structure and gene expression are immune cell type-specific. (A) Normalized read 
coverage plots of ATAC-seq and RNA-seq libraries at phenotype-defining genes including CD4, CD8A, IFNG, 
MS4A1 and BCL11B loci in resting CD4+ (nCD4+), resting CD8+ (nCD8+), activated CD4+ (aCD4+), activated 
CD8+ (aCD8+) T and resting B (B) cells. (B) In-situ Hi-C contact matrices for a 1 Mb region on chromosome 14 
that includes BCL11B, which is known to be expressed in T but not B cells. The top four Hi-C matrices display 
data from resting and activated T cells and show distinct genome organisation at the gene, while the bottom 
Hi-C matrix of B cells shows a lack of genome organisation at BCL11B. Color scale indicates number of reads 
per bin pair and has been scaled within each matrix to facilitate comparisons. (C) Multidimenional scaling 
(MDS) plots of log-CPM values with samples coloured by cell type and shaped by donors. The log-CPM values 
were corrected for the donor variable. Distances on the plot correspond to the leading fold-change, which is 
the average (root-mean-square) log2-fold-change for the 500 genes (RNA-seq), 5000 peaks (ATAC-seq) and 
50,000), bin pairs (Hi-C) most divergent between each pair of samples.
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enrichment analysis by GREAT showed that DA peaks were significantly enriched for a number of relevant Gene 
Ontology terms, including regulation of immune system process, regulation of response to stimulus or regulation 
of cellular processes, among others.

In summary, this integrated analysis reveals that T cell activation leads to extensive remodelling of chroma-
tin accessibility and the formation of active regulatory chromatin regions associated with TFs relevant to T cell 
biology, enhancer activity and expression of genes critical in T cell responses, comparable between CD4+ and 
CD8+ T cells.

T cell activation leads to genome‑wide changes in chromatin interactions.  Chromatin interac-
tions bring disparate regulatory elements and genes into spatial proximity to regulate transcription. To identify 
how the chromatin interactions change upon T cell activation we used the diffHic pipeline33 in conjunction 
with edgeR. The pipeline partition the genome into 25 kbp bins. Each pair of bins from the same chromosome 
represents the location of a potential chromatin interaction, with the intensity of the interaction measured by 
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Figure 2.   T cell activation induces extensive changes in chromatin accessibility and gene expression that 
are comparable between CD4+ and CD8+ T cells. (A) Volcano plots showing the magnitude of differential 
accessibility in activated CD4+ and CD8+ T cells. Each point represents a peak with significant changes 
highlighted in red (FDR < 0.05). (B) Volcano plots showing the magnitude of differential expression in activated 
CD4+ and CD8+ T cells. Each point represents a gene with significant changes in red (FDR < 0.p05). (C) Barcode 
enrichment plot showing that DA peaks in CD4+ T cells are similarly ranked in CD8+ T cells. Peaks are ordered 
from left to right on the plot from most down-regulated to most up-regulated upon activation in CD8+ T cells, 
forming a shaded middle horizontal bar, with log2-fold-changes shown by the x-axis. DA peaks significantly 
up-or down-regulated upon activation in CD8+ T cells (FDR < 0.05) are marked by red and blue vertical bars, 
respectively. The red enrichment worm at the top of the plot shows the local density of red vertical bars while 
the blue enrichment worm at the bottom of the plot shows the local density for blue vertical bars. P-values show 
significance of the enrichments (fry gene set tests). The enrichment pattern shows strong concordance of the 
CD4+ and CD8+ changes. (D) Barcode enrichment plot showing that DE genes in CD4+ T cells are similarly 
ranked in CD8+ T cells. (E) UpSet plot showing the number of DA peaks for each comparison (activated vs. 
resting CD8+ T cells, activated vs. resting CD4+ T cells, resting CD4+ vs. resting CD8+ T cells and activated 
CD4+ vs. activated CD8+ T cells) and their intersections. Vertical bars illustrate the total number of DA peaks 
for each comparison. Horizontal bars show the number of common DA peaks (intersection size) for a given 
set of comparisons (filled connected circles). (F) UpSet plot showing the number of DE genes for the same 
comparisons as in (E).
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the number of reads mapping to that bin-pair. Statistical tests for gain or loss of intensity were performed for 
each bin-pair. Upon activation, we found 17,965 and 15,496 interactions were gained in CD4+ and CD8+ T 
cells, respectively, and 12,434 and 11,376 interactions were lost (Supplementary Tables S3A and S3B). Across 
the whole genome, 103,741 bins had above-background interaction activity and more than half of these (56.3% 
in CD4+ T cells and 52.4% in CD8+ T cells) were involved in a least one significant differential interaction (DI). 
Similar to the chromatin accessibility and gene expression changes upon activation, activation-associated chro-
matin interaction changes were highly concordant between the CD4+ and CD8+ T cells, reflected by the strong 
positive correlation (Fig. 3A).

Examples of highly ranked DIs are shown in Supplementary Fig. S5. The figures show the interactions that 
are gained and lost on activation together with the associated genes that are DE and regions that are DA. We 
next identified a network of chromatin interactions connecting DA peaks with the promoters of expressed 
genes, which we refer to as gene-regulatory chromatin interactions. Regions with gene-regulatory chromatin 
interactions ‘gained’ were associated with a larger increase in chromatin accessibility compared to those with 
‘lost’ or ‘unchanged’ interactions following activation of either CD4+ or CD8+ T cell (Fig. 3B). Furthermore, 
when we examined if ‘gained’ or ‘lost’ regulatory interactions were associated with up-regulation or down-reg-
ulation of gene expression we found that that the proportion of ‘gained’ gene-regulatory interactions associated 
with up-regulated genes was significantly higher than that associated with ‘lost’ or ‘unchanged’ gene-regulatory 
interactions (Fisher’s exact test p-value < 1.1 × e − 11), while the proportion of ‘lost’ gene-regulatory interactions 
associated with down-regulated genes was also significantly higher than those linked to ‘gained’ or ‘unchanged’ 
gene-regulatory interactions (Fisher’s exact test p-value < 5 × e − 10) (Fig. 3C). Thus, ‘gain’ and ‘loss’ interactions 
are coupled, respectively, to up-regulation and down-regulation of corresponding target genes.

T cell activation is associated with partitioning of genome topology.  Evidence has emerged of 
the dynamic nature of TAD and DNA loop formation, mainly from studies of mouse embryo development 
(reviewed in Ref.1). To examine TAD plasticity we first segmented the chromatin of resting and activated T cells, 
and B cells, into TADs using TADbit34. Naïve CD4+ T, CD8+ T and B cells had 1727, 1750 and 1602 TADs with 
a mean size of 1.40, 1.38 and 1.51 Mb, respectively; activated CD4+ and CD8+ T cells had 2772 and 2863 TADs 
with a mean size of 0.85 and 0.84 Mb, respectively (Fig. 4A). In activated T cells, TADs appeared to be parti-
tioned, becoming smaller and more numerous than in resting T cells (Fig. 4A). We next explored the proportion 
of intersecting TADs among different TAD sets. TADs were termed intersecting if the reciprocal region overlap 
was higher than 75%. On average, 62% of the TADs intersected between resting CD4+ T and CD8+ T cells and 
70% of TADs intersected between activated CD4+ T and CD8+ T cells. Interestingly, this overlap fell to an aver-
age of 43.5% when comparing resting and activated T cells. Further analysis of the TAD intersects revealed that 
while only 24% of the TADs called in resting CD4+ T cells overlapped two or more TADs in resting CD8+ T cells 
this increased to 44% when analysing the TAD overlap between resting and activated T cells (Supplementary 
Fig. S6). This suggests that T cell-activation induces partitioning of TADs into smaller chromatin domains.

We observed also that, analogous to TAD partitioning, chromatin interactions that strengthened upon activa-
tion were on average significantly shorter than those that were weakened (t = 9.3; P-value < 2e−16), i.e. activation 
appeared to preferentially promote disruption of the longer-range interactions (Fig. 4B). Remarkably, intra-TAD 
chromatin interactions in TADs that became smaller upon activation showed a higher proportion of ‘gain’ interac-
tions than those in TADs that remained unchanged or increased (Fig. 4C). This suggests that TADs have a pivotal 
role in shaping the intra-TAD chromatin loops. Examples of TAD partitioning and rearrangement of chromatin 
interactions are shown (Fig. 5 and Supplementary Fig. S7); significant differential interactions in response to 
activation are represented by red (‘gained’) and blue (‘lost’) arches, and locations of the TADs in resting (top) 
and activated (bottom) T cells are shown by yellow triangles.

We next sought to quantify how TADs changed upon T cell activation. Like most TAD caller algorithms, TAD-
bit uses a binary approach whereby TAD boundaries are either present or completely absent, and thus TADbit 
is unable to identify subtle changes in genome architecture characterized by the quantitative strengthening or 
weakening of a boundary. Therefore, we used diffHic and edgeR to test for strengthening or weakening of each 
of the TAD boundaries. Of the 7260 and 7337 unique TAD boundaries called by TADbit, 3529 (46.0%) and 3755 
(51.2%) were called differential by edgeR. Of these, 1596 and 1440 became significantly stronger and 1933 and 
2315 weaker in CD4+ and CD8+ T cells, respectively. Thus, our findings indicate that T cell activation elicits a 
significant remodelling of the TAD boundaries.

We then calculated the distribution of chromatin accessibility, nucleosome occupancy and gene expression 
for the differential TAD boundaries in both resting and activated T cells. Interestingly, we observed that chro-
matin regions overlapping TAD boundaries that strengthened upon activation were associated on average with 
lower chromatin accessibility, higher nucleosome occupancy and lower protein-coding gene expression than 
those overlapping TAD boundaries weakened (Fig. 6). This trend was true for both resting and activated T cells, 
implying that chromatin regions associated with TAD boundary formation/disruption in T cells have intrinsic 
invariant features. In summary, T cell activation leads to global rearrangement of TAD boundaries, partitioning 
of TADs and disruption of long-range chromatin interactions, with weakening of TAD boundaries associated 
with regions of higher accessibility and gene expression.

Chromosome A/B compartments are not altered substantially by T cell activation.  Lineage 
differentiation is associated with rearrangement of chromosome A/B compartments35. However, in response to 
T cell activation we observed only modest changes in the A/B compartments, with less than 824 (1.4%) and 476 
(0.8%) of the genome switching compartments upon activation CD4+ and CD8+ T cells, respectively (Fig. 7A,B). 
As expected, the small proportion of regions that switched from A to B showed decreased accessibility and gene 
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expression, whereas regions that switched from B to A tended to show higher accessibility and gene expression 
(Fig. 7C). Changes across T and B cell types were also minimal. Overall, the pattern of change was subtle, indi-
cating that T cell activation has minimal impact on the A and B compartments.

Discussion
Previous studies have characterized either activation-responsive chromatin accessibility13,14,36,37 or 3D organiza-
tion of the genome8,13,15 in mouse and human immune cells. However, to our knowledge no previous study has 
characterized chromatin accessibility, Hi-C chromatin interactions and the whole transcriptome in concert in 
response to activation of human CD4+ and CD8+ T cells. By using biological replicates throughout, changes in 
chromatin accessibility, interaction intensity and gene expression could be rigorously tested statistically, rela-
tive to the biological variation observed between human individuals. Activation of T cells was associated with 
multi-level remodelling of chromatin that was comparable between CD4+ and CD8+ T cells, indicating that their 
activation is regulated by similar genome control mechanisms. In response to T cell activation, we observed 
extensive changes in chromosome accessibility in regions enriched for regulatory elements and eRNAs, immune 
system-associated SNPs and TFBSs recognized by TFs involved in T cell development, activation or proliferation. 
These findings parallel those in other systems12–14,36,37 and are consistent with the view that changes in chromatin 
accessibility in response to external cues identify active regulatory regions likely to be critical for transcriptional 
responses. Furthermore, we also show that T cell activation uncovers many additional regulatory regions likely 
to be associated with the immune response and induces thousands of differential chromatin interactions linked 
to up-regulation or down-regulation of the corresponding target genes. At a higher level of chromosome archi-
tecture, T cell activation was associated with genome-wide rearrangement of TAD boundaries.

Although TADs were reported to be largely invariant across species and cell types5,6 our findings indicate 
otherwise and, in accord with recent evidence1, reveal that TADs are dynamic. We found that T cell activation 
was associated with global rearrangement of chromatin interactions involving changes in the strength of TAD 
boundaries and a smaller compartment structure. Strengthened TAD boundaries displayed lower chromatin 
accessibility, higher nucleosome occupancy and lower gene expression both before and after activation. Nucleo-
some organization is known to dictate local chromatin folding by regulating internal factors including linker 
DNA length and linker-histone binding affinities, but whether nucleosome architecture influences higher level 
genome topology, i.e. TADs and DNA loops, remains unknown38. Polymer simulations of the chromatin fiber 
suggest that regions of “stiffness” can act as local insulators to decrease interaction frequencies39. In mammary 
epithelial MCF-10A cells, knockdown of BRG1, the major ATPase subunit of the SWI/SNF chromatin remodel-
ling complex, globally altered long-range genomic interactions and decreased TAD boundary strength, suggesting 
that nucleosome occupancy around CTCF sites might contribute to the regulation of higher-order chromatin 
architecture40. Our results in primary human cells support the view that long-range chromosomal organization 
and nucleosome occupancy are molecularly coupled and suggest that chromatin regions associated with TAD 
boundary formation have invariant features reflected by lower accessibility and higher nucleosome occupancy 
in both resting and activated T cells. Further examination of other elements at differential TAD boundaries may 
provide valuable insights into the TAD formation process and its role in chromatin folding and transcriptional 
regulation.

Together, our findings connect multi-level features of chromatin structure to gene expression in response 
to T cell activation. In addition, we provide a genome-wide resource of T cell activation-associated regulatory 
regions that will aid interpretation of chromatin accessibility data in human T cells.

Methods
Blood collection, cell subset isolation and T cell activation.  Heparinised venous blood was col-
lected at 09.00 h from two healthy young adult males, who gave written informed consent. The research was 
carried out in accordance with the principles of the Declaration of Helsinki and the guidelines of Nature journals 
and was approved by the Walter and Eliza Hall Institute of Medical Research Human Research Ethics Commit-
tee (application 88/03). Peripheral blood mononuclear cells (PBMCs) were purified by Ficoll-Hypaque gradi-
ent centrifugation and cryopreserved in liquid N2. Thawed PBMCs, ≥ 92% viable by acridine orange-ethidium 
bromide staining, were stained with anti-human αβ TCR (eBioscience, clone IP26, cat. no. 46-9986-42), anti-
human CD4 (BD Pharmingen, clone RPA-T4, cat. no. 555349), anti-human CD45RA (BD Pharmingen, clone 
5H9, cat. no. 556626), anti-human CD25 (BD Pharmingen, clone M-A251, cat. no. 557741), anti-human CD14 
(BioLegend, clone 63D3, cat. no. 367104), anti-human CD16 (BD Pharmingen, clone 3G8, cat. no. 557758), 
anti-human HLA-DR (eBioscience, clone L243, cat. no. 48-9952-42), and anti-human CD19 (BioLegend, clone 
HIB19, cat. no. 302238). Naïve CD4+ T cells (CD14− CD16− TCRαβ+ CD4+ CD45RA+CD25−) and CD8+ T cells 
(CD14−CD16−TCRαβ+CD4 + -CD45RA+CD25-), and B cells (TCRαβ-, HLA-DR+, CD19+), were flow-sorted on 
a FACSAria (BD Biosciences). Resting CD4+ and CD8+ T cells were cultured in Iscove’s Modified Dulbecco’s 
Medium containing 5% pooled, heat-inactivated, human serum, 100 nM non-essential aminoacids, 2 mM of 
glutamine and 50 μM 2-mercaptoethanol (IP5) medium. T cells were activated through the T cell receptor subu-
nit CD3 and the co-stimulator CD28 by the addition of Human T-Activator CD3/CD28 Dynabeads at a 1:2 
bead:cell ratio (Life Technologies, cat. no. 111.31D) for 72 h.

RNA‑seq.  RNA was isolated using the miRNeasy Micro Kit (QIAGEN, cat. no. 217084). RNA libraries were 
prepared with an Illumina’s TruSeq Total Stranded RNA kit with Ribo-zero Gold (Cat# RS-122-2001, Illumina) 
according to the manufacturer’s protocol. rRNA-depleted RNA was purified and then reverse transcribed into cDNA 
using SuperScript II reverse transcriptase (Cat# 18064014, Invitrogen). Validation of the library preparations was 
performed using Agilent D1000 ScreenTape Assay on the Agilent 2200 TapeStation. Total RNA-Seq libraries were 
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sequenced on the Illumina NextSeq 500 platform to produce 2 × 75 paired-end reads. All samples were aligned to 
the human genome, build hg38, using the Rsubead aligner v1.24.141. The number of fragments overlapping each 
Entrez gene were summarised using featureCounts42 and Rsubread’s inbuilt hg38 annotation. Gene symbols were 
associated with Gene IDs using NCBI gene information (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO).
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Figure 4.   T cell activation results in partitioning of genome topology. (A) Violin plots showing the distribution 
of TAD sizes in resting and activated T cells and B cells determined from summed libraries called with 
TADbit. Numbers in parenthesis depict the number of TADs called in each category. (B) Violin plots showing 
the distribution of the span of differential chromatin interactions (DIs) determined at 25 kbp resolution 
(FDR < 0.05) that are lost (decrease in logFC) or gained (increase in logFC) upon activation. Violin plots 
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outliers (circles) and kernel density estimation. Data for CD4+ and CD8+ T cells were merged as they showed 
a similar pattern. (C) Pie charts showing distribution of Loss and Gain chromatin interactions in TADs that 
become smaller in size (left) or remain unchanged/became larger in size (right) upon T cell activation. Statistical 
comparisons were made with the unpaired Wilcoxon test.
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ATAC‑seq.  ATAC-seq was performed as previously described18. For each immune cell subset, 50,000 puri-
fied cells were lysed in cold lysis buffer (10  mM Tris–HCl, pH 7.4, 10  mM NaCl, 3  mM MgCl2 and 0.03% 
Tween20). Immediately after lysis, nuclei were spun out at 500 g for 8 min at 4 °C and the supernatant carefully 
removed. Nuclei were resuspended with Tn5 transposase reaction mix (25 µl 2X TD buffer, 2.5 µl Tn5 trans-
posase, and 22.5 µl nuclease- free water) (Nextera DNA Library Prep Kit (Illumina, cat. no. FC-121-1030). The 
transposase reaction was performed at 37 °C for 30 min, and DNA immediately purified with a Qiagen MinElute 
kit (QIAGEN, cat. no. 28204). ATAC-seq libraries were sequenced on an Illumina NextSeq 500 to produce 75 bp 
paired-end reads.

In situ Hi‑C.  In situ HiC was performed as previously published43. Primary immune cell libraries were gener-
ated in biological duplicates. Libraries were sequenced on an Illumina NextSeq 500 to produce 81 bp paired end 
reads. Between 129 and 280 million valid read pairs were generated per sample.

Differential gene expression analysis.  Differential expression analyses were undertaken using the 
edgeR v3.20.944 and limma v3.34.917 software packages. Any gene which did not achieve a count per million 
mapped reads (CPM) greater than 1.5 in at least 2 samples were deemed to be unexpressed and subsequently 
filtered from the analysis. Additionally, all genes without current annotation were also removed. Composi-
tional differences between libraries were normalized using the trimmed mean of log expression ratios method 
(TMM)45. All counts were then transformed to log2-CPM with associated precision weights using voom46. Dif-
ferential expression between all cell types was assessed using linear models and robust empirical Bayes moder-
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ated t-statistics47. To increase precision, the linear models incorporated a correction for a donor batch effect. 
P-values were adjusted to control the FDR below 5% using the Benjamini and Hochberg method.

eRNA analysis.  Reads overlapping the non-exonic ATAC-seq peaks were summarised using featureCounts 
in the resting and activated CD4 and CD8 samples. To avoid inflation of expression estimates, the library size for 
each sample was set to the total number of reads aligned to the genome for that sample. All regions that failed 
to achieve a CPM greater than 0.5 in at least 2 samples were considered to be unexpressed and were therefore 
filtered from the analysis. The TMM method was then applied to normalize compositional differences between 
libraries and the data transformed to log2-CPM with precision weights using voom. Differential expression of 
the regions was then evaluated between the activated and naïve CD4+ and CD8+ T cell samples using linear 
models and robust empirical Bayes moderated t-statistics. P-values were adjusted to control the FDR below 5% 
using the Benjamini and Hochberg method.

ATAC‑seq data pre‑processing and peak calling.  75 bp ATAC-seq reads were aligned to the human 
genome assembly (hg38) using Bowti2 v2.2.5 (bowtie2 -p 4 -X 2000)48. For each sample, mitochondrial reads, 
ummapped reads and low mappability (< 30) reads were filtered out using Samtools (v1.6) function “view”49. 
After filtering, we had a median of 80 million (MAD+/− 13 million) reads per sample. Filtered ATAC-seq reads 
from resting and activated CD4+ and CD8+ T cell as well as B cells from two donors were merged using samtools 
function merge, and peaks were called on the merged bam file using MACS2 (v2.1.0)-callpeak (with param-
eters –nomodel, –extsize 200, and –shift 100)50, such that there were 113,689 peaks after excluding peaks map-
ping outside the main chromosome contigs. ATAC-seq reads overlapping the peaks were summarized using 
featureCounts42. Peaks in blacklisted genomic regions as defined by ENCODE for hg38 were removed.

Differential accessibility analysis.  Differential accessibility analysis was undertaken using the edgeR 
v3.20.916 and limma v3.34.917 software packages. The TMM method was applied to normalize compositional 
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differences between libraries45. A mean-dependent trend was fitted to the negative binomial dispersions with 
the estimateDisp function and, and differential accessibility between all cell types was assessed using the quasi-
likelihood (QL) framework in edgeR51,52, which assesses statistical significance relative to biological variation 
between the replicate libraries. As is the differential expression analysis, linear models incorporated a correction 
for a donor batch effect. P-values were adjusted for multiple testing using the Benjamini–Hochberg method. 
Peaks with a FDR below 5% were defined as differentially accessible regions. Barcode enrichment plots were 
drawn with limma’s barcodeplot function and enrichment p-values were obtained using the fry gene set testing 
function in edgeR53.

For comparison of our ATAC-seq data with the previously published 24 h human T cell activation accessibility 
signature (GSE118189)12, raw data were pre-processed as above and only peaks common to both datasets were 
considered using the bedtools intersect function (version 2.19.1)54. ATAC-seq reads overlapping the intersecting 
list of peaks (76,812 peaks) were summarized again using featureCounts.

Enrichment of transcription factor binding motifs.  The Homer suite v4.1055 was used to determine 
transcription factor enrichment within ATAC peaks, using the findMotifsGenome.pl function (with parameters 
hg38 and –size given).

Annotation of ATAC peaks.  Peaks were annotated as 5′ UTR, 3′ UTR, promoter-TSS, exonic, intronic, 
TTS, non-coding or intergenic using the Homer suite annotatePeaks.pl function and the default setting. Chro-
matin state(s) of the DA peaks were annotated using the ChIP-seq-defined ChromHMM states from the Road-
map Epigenomics Project and following the method in Corces et al.56 In brief, 15 state models were downloaded 
from the chromatin state learning site for the ‘Primary T helper naïve cells from peripheral blood’ (E038) and 
‘Primary T CD8+ naïve cells from peripheral blood’ (E047) (https​://egg2.wustl​.edu/roadm​ap/web_porta​l/chr_
state​_learn​ing.html). We then identified the regions of each ChromHMM state that were overlapped by an DA 
peak. To determine the significance of these overlaps for each ChromHMM state, we compared the total length 
of DA peaks covered by the given ChromHMM state to the expected background determined by the total length 
of the universe of ATAC-seq peaks (13,688 peaks) covered by the ChromHMM state using a binomial test in R.

Enrichment for chromatin states and gene annotation.  Enrichment of ATAC-seq peaks for chro-
matin states as well as for gene annotations was calculated using GAT v1.3.427. The significance threshold was 
set up at FDR below 5%.

Prediction of transcriptional target genes.  To identify potential targeted genes for the activation asso-
ciated accessibility changes we performed enrichment analysis of gene annotations in the proximity of the DA 
peaks using Genomic Regions Enrichment of Annotations Tool (GREAT)32 against the whole genome as back-
ground. GREAT links genomic regions with genes by defining a ‘regulatory domain’ for each gene in the genome. 
Gene regulatory domains were defined with the “Basal plus extension” association rules (proximal 5 kb upstream 
and 1 kb downstream from the TSS, plus distal extended to the nearest gene’s basal domain but not more than 
500  kb). Significantly enriched gene sets were then selected by FDR < 0.05 for binomial tests to identify the 
regulatory domains with the densest clusters of activation-associated DA peaks and classify them as potential 
transcription target genes.

Enrichment of GWAS loci.  GREGOR v1.4.057 was used for enrichment analysis of disease-trait associated 
SNPs in the ATAC-seq peaks. GREGOR calculates enrichment relative to MAF, TSS-distance and number of 
LD neighbor-matched null SNP sets using the GREGOR parameters: r2 threshold = 0.8, LD window size = 1 Mb 
and minimum neighbor number = 500. For the GWAS SNPs, we created an updated version of Supplementary 
Table S2 in Maurano et al.29. The GWAS SNP set used for analysis was derived from the NHGRI GWAS Catalog, 
downloaded on August 2, 2017. The catalog contained 41,304 entries at the time of download. We excluded SNPs 
mapping outside the main chromosome contigs, including the "random" chromosome fragments, SNPs without 
coordinates in the GRCh37/hg19 human genome assembly. There were 40,929 unique SNP disease/trait combi-
nations that represented 34,421 unique SNP IDs (Supplementary Table S2). Of these, 19,075 were in non-coding 
regions. Coding regions were defined by the CCDS Project (downloaded from the UCSC genome browser at 
http://hgdow​nload​.cse.ucsc.edu/golde​nPath​/hg38/datab​ase/ccdsG​ene.txt.gz on August 4, 2017). As in Maurano 
et al.29, we also grouped SNPs into classes of similar diseases or traits but some of the categories were updated so 
they could better reflect the new and extended list of SNPs. Categories comprised: aging related; immune sys-
tem; cancer; cardiovascular diseases and traits; metabolic disorder; drug metabolism; hematological parameters; 
kidney, lung, or liver; miscellaneous; serum metabolites; neurological/behavioral; neurological/autoimmune; 
parasitic or bacterial disease; quantitative traits; radiographic (primarily bone density); viral disease.

Nucleosome occupancy.  Nucleosome occupancy was defined with the “occ.bedgraph” files using the 
NucleoATAC v0.3.2.1 package58.

In situ Hi‑C data pre‑processing.  Each sample was aligned to the hg38 genome using the presplit_map.py 
script in the diffHic package v1.10.033. Data were pre-processed and artefacts removed as per Johanson et al.59.

Differential interaction (DI) analysis.  DIs between all five libraries were detected using the diffHic 
package33 at two different resolutions, 100 kbp and 25 kbp. Read pairs were counted into 25 or 100 kbp bin 

https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/ccdsGene.txt.gz
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pairs (with bin boundaries rounded up to the nearest MboI restriction site) using the squareCounts function. 
This yielded a matrix of read pair counts for each bin pair in each library. All bins with counts less than 5 were 
discarded along with bins on the sex chromosomes. Bins containing blacklisted genomic regions as defined by 
ENCODE for hg3860 were also removed. Filtering of bin-pairs was performed using the filterDirect function, 
where bin pairs were only retained if they had average interaction intensities more than sixfold higher than the 
background ligation frequency. The ligation frequency was estimated from the inter-chromosomal bin pairs 
from a 2 Mbp bin-pair count matrix. Bins on the first diagonal of the interaction space are also removed with 
the filterDiag function.

For the retained bin pairs, counts were normalized between libraries using a LOESS-based approach to 
account for abundance-dependent biases. This was performed using the normOffsets function to obtain a matrix 
of offsets with bin pairs less than 100 kbp (for the 25 kbp) or 150 kbp (for the 100 kbp) from the diagonal normal-
ized separately from other bin pairs. Tests for differential interactions were performed using the quasi-likelihood 
(QL) framework51,52 of the edgeR package (v3.20.9). The design matrix was constructed using a layout that speci-
fied the cell lineage to which each library belonged and which individual the cells were sampled from. Using 
the counts and offsets for all bin pairs, a mean-dependent trend was fitted to the negative binomial dispersions 
with the estimateDisp function. A generalized linear model (GLM) was fitted to the counts for each bin pair16, 
and the QL dispersion was estimated from the GLM deviance with the glmQLFit function. The QL dispersions 
were then squeezed toward a second mean-dependent trend, using a robust empirical Bayes strategy47 to share 
information between bin pairs. A P-value was computed for each bin pair using the QL F-test, representing the 
evidence against the null hypothesis, i.e., no difference in counts between groups. P-values were adjusted for 
multiple testing using the Benjamini–Hochberg method. If a bin pair had a FDR below 5%, it was defined as 
a DI. To reduce redundancy in the results, DIs adjacent in the interaction space were aggregated into clusters 
using the diClusters function to produce clustered Dis. DIs were merged into a cluster if they overlapped in the 
interaction space, to a maximum cluster size of 500 kbp (for the 25 kbp) or 1Mbp (for the 100 kbp) to mitigate 
chaining effects. The significance threshold for each bin pair was defined such that the cluster-level FDR was 
controlled at 5%. Cluster statistics were computed using the combineTests and getBestTest functions from the 
csaw package v1.12.061. Clustered DIs were used to report the number of differences between the libraries. The 
25 kbp unclustered DIs were used for overlap analysis and integration with other data types. Contact matrices 
were created from the libraries using the inflate function in diffHic for various bin sizes with no filtering. Contact 
matrices from biological replicates were summed.

Detection of TADs.  TAD breakpoints were detected with the TADbit v0.2.0.5 python based software34. 
Read pairs were counted into 50 kbp bin pairs (with bin boundaries rounded up to the nearest MboI restriction 
site) using the squareCounts function of diffHic with no filter. This yielded a count matrix containing a read pair 
count for each bin pair in each library. The count matrix was converted into a contact matrix for each somatic 
chromosome with the inflate function of the InteractionSet package61. Replicate contact matrices were summed 
to obtain one matrix for each cell type. The TADbit tool find_tad was run on the raw counts specifying normal-
ized = FALSE. Only TADs boundaries with a score of 7 or higher were included in the results.

Detection of differential TAD boundaries (DTBs).  Changes in TAD boundaries between activated 
and resting cells were assessed with the diffHic and edgeR packages using the approach described in Chap-
ter 8 of the diffHic User’s Guide. This approach adapts the statistical strategy recently developed for differential 
methylation62 to identify TAD boundaries that are significantly strengthened or weakened between cell types. 
The strength of each TAD boundary was assessed based on the upstream vs downstream intensity contrast at 
that genomic loci, defined as the ratio of upstream to downstream Hi-C read pairs anchored at that genomic 
region. edgeR was used to test whether the ratio increased or decreased for each boundary upon T cell activation. 
This method directly assesses differential boundary strength relative to biological variation without needing to 
make TADs calls in individual samples. Upstream and downstream read counts were determined for the same 50 
kbp genomic regions as used for the TADbit analysis. An upstream (downstream) read was defined as one with 
anchors in the 50 kbp region and 0–1 Mbp upstream (downstream) of the region. Low abundance regions with 
average log2-counts per million below 0.8 were removed. An appropriate edgeR linear model was fitted to the 
counts for all the T cell samples. Tests for differential TAD boundaries were performed using the QL framework 
of the edgeR package as described in the DI analysis section above. Regions with FDR below 0.05 were consid-
ered to be significantly different.

Detection of A/B compartments.  A/B compartments were identified at a resolution of 50 kbp using the 
method outlined by Lieberman-Aiden et al.63 using the HOMER HiC pipeline55.

After processing with the diffHic pipeline libraries were converted to the HiC summary format using R. 
Then input tag directions were created for each library with the makeTagDirectory function specifying the 
genome (hg38) and restriction enzyme cute site (GATC). Biological replicates tag directories for each cell type 
were summed. The runHiCpca.pl function was used on each library with -res 50,000 and specifying the genome 
(hg38) to perform PCA to identify compartments. To identify changes in A/B compartments between libraries, 
the getHiCcorrDiff.pl function was used to directly calculate the difference in correlation profiles. We identified 
regions with an A-to-B or B-to-A compartment flip that showed a correlation profile lower than 0 and regarded 
them as differential compartments.

Visualization of the data and plots.  Plots were performed using R and ggplot. Multi-dimensional scal-
ing (MDS) plots were constructed using the plotMDS function in the limma v3.34.9 package17 applied to the 
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filtered and normalized log2-counts-per-million values for each library. The removeBatchEffect function of the 
limma package was used to correct for effect of the individual and batch in the data. Plaid plots were constructed 
using the contact matrices and the plotHic function from the Sushi v1.22.0 R package64. The inferno color palette 
from the viridis v0.5.1 package65 was used and the range of color intensities in each plot was scaled according to 
the library size of the sample, to facilitate comparisons between plots from different samples. DI arcs were plot-
ted with the plotBedpe function of the Sushi package. The z-score shown on the vertical access was calculated 
as − log10 (P-value). RNA-seq coverage was plotted with the plotBedgraph function of the Sushi package and 
Integrative Genomics Viewer, IGV. UpSet plots were generated using the UpSet function in the ComplexHeat-
map package in R66.

Data intersection.  Intersection between pairs of the genomic regions was performed using bedtools inter-
sect (v2.19.1)54.

Data availability
Raw and processed Hi-C, ATAC-seq, and RNA-seq data from this study are available from the NCBI Gene 
Expression Omnibus as series GSE126117 (reviewer token yxupgogepbsvrqp).
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