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The quest to understand how allogeneic transplanted tissue is not rejected and how
tolerance is induced led to fundamental concepts in immunology. First, we review the
research that led to the Clonal Deletion theory in the late 1950s that has since dominated
the field of immunology and transplantation. At that time many basic mechanisms of
immune response were unknown, including the role of lymphocytes and T cells in
rejection. These original observations are reassessed by considering T regulatory cells
that are produced by thymus of neonates to prevent autoimmunity. Second, we review
“operational tolerance” induced in adult rodents and larger animals such as pigs. This can
occur spontaneously especially with liver allografts, but also can develop after short
courses of a variety of rejection inhibiting therapies. Over time these animals develop
alloantigen specific tolerance to the graft but retain the capacity to reject third-party grafts.
These animals have a “split tolerance” as peripheral lymphocytes from these animals
respond to donor alloantigen in graft versus host assays and in mixed lymphocyte
cultures, indicating there is no clonal deletion. Investigation of this phenomenon
excludes many mechanisms, including anti-donor antibody blocking rejection as well as
anti-idiotypic responses mediated by antibody or T cells. This split tolerance is transferred
to a second immune-depleted host by T cells that retain the capacity to effect rejection of
third-party grafts by the same host. Third, we review research on alloantigen specific
inhibitory T cells that led to the first identification of the CD4+CD25+T regulatory cell. The
key role of T cell derived cytokines, other than IL-2, in promoting survival and expansion of
antigen specific T regulatory cells that mediate transplant tolerance is reviewed. The
precise methods for inducing and diagnosing operational tolerance remain to be defined,
but antigen specific T regulatory cells are key mediators.
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THE ORIGIN OF THE CLONAL DELETION
THEORY OF TRANSPLANT TOLERANCE

For over 60 years, the concept of clonal deletion has dominated
the field of immunology and the quest for acceptance of
transplanted tissue without ongoing immunosuppression.
The clonal theory for immune cells and the concept that
during ontogeny self-reactive clones are deleted, was made at
a time when the function of lymphocytes and the existence of
T cells was not appreciated. Because of this, most clinical
attempts to induce transplant tolerance aim to delete specific
alloreactive cells and the establishment of lympho-
haemopoetic chimerism.

Transplant tolerance can be induced in the presence of clones
reactive to the graft and in the absence of lympho-haemopoietic
chimerism, however. There are many animal models of
operational tolerance, where grafts continue to function
without immunosuppressive therapy. Ex vivo expanded Treg
promote tolerance induction (1). In most there is no deletion of
alloreactive clones.

This review revisits the findings that led to the theory of
clonal deletion and transplant tolerance and describes
innumerable mechanisms that control the rejection of
allografts without deletion of alloreactive clones. A variety of
models of operational tolerance are described, including the
spontaneous acceptance of liver grafts and the induction of
specific unresponsiveness in murine and swine models by
short-term therapy to minimize early rejection. These
models do not produce clonal deletion. This review focuses
on the induction of alloantigen specific T regulatory cells
(Treg) and their role in the generation of “Operational
Tolerance” to allografts. These forms of operational tolerance
raise the possibility that attempts at clonal deletion have
confused the field and may be misguided.
Frontiers in Immunology | www.frontiersin.org 2
Self and Non Self
In 1949, Burnet andFenner sought to explainwhy antibodywasnot
generated against self-antigens (2) and how foreign antigen was
recognized asnon self. Theyproposed that “self”wasdefinedduring
embryonic development. The key observations that led Burnet to
propose the clonal deletion hypothesis are summarized in Figure 1
and Supplementary Table 1. First was Owen’s observations in
dizygotic bovine twin calves who share a placenta in utero causing
cross circulation of blood. These twins throughout life share each
other’s red cell groups (3, 4). These twins produce red cells of their
twin, as well as their own red cells, and are haemopoietic chimeras.
The Clonal Deletion theory was also supported by an earlier
observation by Taube who reported that viral infections acquired
in utero did not induce antibodies to the virus, whereas mice
infected postpartum eliminated the virus (2, 5).

Until the 1960s, immunity was only considered in the context of
an antibody response. Jerne in 1955 (6) proposed small amounts of
antibody to antigen circulates in blood and when bound to antigen,
the complex induces cells to produce more antibody to the antigen.
Burnet modified Jerne’s theory to hypothesise that cells had pre-
formedantibody to only one antigen, and that antigen activated these
clones to produce antibody to the antigen (7, 8). That B cells produce
only one specific antibody, was demonstrated by Burnet’s student
Gus Nossal, together with Nobel Laureate Joshua Lederberg, in
experiments using an assay of flagella immobilization after
immunization with two bacteria with different flagella antigens
(9, 10).

At that time, the fate of lymphocytes was unknown. There
were two hypotheses; one that lymphocytes could differentiate
into many different cell types, and the second that they were
terminally differentiated cells that could not divide (11). The
central role of lymphocytes in immunity was not appreciated
until Gowan’s work on thoracic duct lymphocytes (TDL) in the
early 1960s (12, 13). Thus, the clonal deletion theory was
FIGURE 1 | Timeline of observations that supported clonal deletion in utero and in neonates. A chronological representation of studies that led to establishment of
clonal deletion to explain tolerance.
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accepted before the role of lymphocytes in immunity was known
or recognized.

Transplant Rejection
The quest for transplant tolerance arose from work to examine if
allogeneic tissue couldbeaccepted, somaking tissue transplantation
clinically possible. To understand why skin grafts failed in burns
patients (14), Peter Medawar went from bedside to bench. He
observed rabbits that had rejected a skin graft, had accelerated
second-set rejection of a subsequent graft from the same donor but
not of third party grafts (15). This suggested rejection was an
immune process. Prior studies on transplanted tissue had not
supported an immune mediated response (16), but others did
(17). The inflammation causing loss of a skin graft was associated
with a lymphocyte, not a granulocyte infiltration (18). At that time
antibodies, not lymphocytes, were considered the mediator of
rejection (19).

Medawar’s group was asked by the Animal Breeding Research
Organization to perform skin grafts between cattle twins as ameans
of distinguishing fraternal and identical twins. Fraternal twins
accepted the other’s skin grafts but rejected third party grafts (18,
20, 21).The twin calves shared red cells and the possibility theywere
chimeras was raised, as female twins had male cells (18).

Work of Gorer and Snell, starting in the late 1930s with
breeding of congenic strains of mice, identified the Major
Histocompatibility Complex (MHC) as the genes that
promoted rejection of transplanted tissue and tumours (22–
24). Highly inbred strains provided models with known MHC
incompatibility, that were used to define the mechanisms of
rejection and transplant tolerance.

Induction of Transplant Tolerance In Utero
and in Neonates in Murine Models
In 1953 Billingham, Brent and Medawar injected newborn mice
with donor cells, and found that later in life these mice accepted
specific donor skin grafts and normally rejected third party grafts
(25–27). Woodruff replicated these findings in neonatal rats (28,
29). Skin grafts applied to newborn rats were accepted to varying
degrees and second skin grafts from the same donor strain were
delayed in rejection, as were donor strain thyroid grafts (30).

Transfer of normal unsensitised recipient strain cells to mice
with tolerance induced slow rejection of some but not all grafts
(31). A second donor strain skin graft often was slowly rejected
without affecting the original graft, suggesting some anti-donor
immune reactivity was present. It was proposed that there is
incomplete clonal deletion (28). Some mice induced to become
tolerant at birth developed runt disease (26) and autoimmunity
(32) indicating an aberrant interaction of the tolerizing process
and immune responses to self. These unexpected findings were
not explained at that time. They suggest a loss of autoimmunity
control mechanisms.

Induction of Transplant Tolerance in
Developing Chickens
In the early 1950s, skin grafts in chicken eggs and newborn
chickens were also studied albeit histocompatibility could not be
matched (19). In a small proportion of transplants, skin grafts
Frontiers in Immunology | www.frontiersin.org 3
between newly hatched chickens of different strains had
prolonged survival with good feather growth (19, 33, 34). In
some chicks, there was delayed loss of feathers from chronic
rejection and these had a lymphocytic infiltrate (35). However,
chicks with grafts that appeared tolerated rejected a second skin
graft from the same donor but usually retained the original graft
(36). This suggested graft accommodation and there was no
specific systemic transplant tolerance.

Hasek in Czechoslovakia showed parabiosis of chicken eggs
suppressed the haemagglutinin response to the paired chicken
(37) and a skin graft from the parabiosis partner was accepted
(37, 38). This work was published, in a Czech journal of limited
circulation, in the same year that Medawar’s group reported
neonatal induced tolerance in mice. Hasek interpreted his
findings in relation to the Stalinist theories enforced by
Lysenko and Michurin, which ignores genetics (39). When
aware of Billingham, Brent and Medawar’s findings in mice,
Hasek re-interpreted his experiments significance for transplant
tolerance (40).

In birds, embryonic cross transfusion of RBC alone induced
graft survival as did bone marrow cells (37). Embryonic cross-
transfusion was most effective at 12-18 days post fertilization,
suggesting early exposure to alloantigen is required (41).

In 1957, Simonsen reported leukocytes induce reactions on
chick membranes (42) as reported by Murphy in 1916 (43).
Transfer of white cells to the embryo results in non-antigen
specific delay in rejection of skin, as the injected cells induce
splenomegaly in a GVH reaction (34). Cross transfusion with
blood from chicks of the same strain as the donor, but not the
actual donor, prolongs donor skin graft survival, showing the pre-
treatment with allogeneic cells is not always alloantigen specific
(44). The non-alloantigen specific immune depletion is due to
GVH response mediated by transferred immunocompetent cells.

Studies with chicken eggs replicated those with murine
models. Both can induce alloantigen specific tolerance, but
there also can be non-specific immunosuppression due to
GVH response mediated by transferred cells.

In 1960, Medawar and Burnet shared the Nobel Prize for
Medicine and Physiology “For discovery of acquired immunological
tolerance”. The key observations leading to the concept of clonal
deletionare listed inFigure1andSupplementaryTable1.Although,
at that time there was evidence for clones of B cells, the thymus was
considered irrelevant. The data on antigen specific tolerance in
neonates was consistent with immune ignorance that could be due
to clonal deletion or specific inhibitory mechanisms.
Induction of Transplant Tolerance In Utero
and in Neonates in Large Mammals
The experiment of nature in Freemartin cattle demonstrates that
Medawar type tolerance induction could occur in large
mammals. To examine if Medawar-like transplant tolerance
can be induced in larger animals, MHC incompatible bone
marrow depleted of T cells were infused in utero to miniature
swine. Induction of tolerance was evident by induction of
chimerism, low reactivity of lymphocytes to donor alloantigen
and acceptance of a donor kidney allograft (45, 46).
April 2022 | Volume 13 | Article 810798
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Combined, these studies support the notion that donor
alloantigen during embryonic development induced a state of
immune hypo-responsiveness to tissue transplant from the same
donor strain. This was interpreted as clonal deletion.

Evidence That Exposure to an Alloantigen
In Utero or at Birth Does Not Always
Induce Clonal Deletion
The mechanism of neonatal tolerance induction is not universal
and the reason for the failure to induce tolerance was not
considered. Not all strain combinations are susceptible to
neonatal transplant tolerance induction (47) and this is due to
MHC and non-MHC genes (48). In some animals, second donor
strain grafts were rejected, albeit often slowly, showing tolerance
and therefore clonal deletion was incomplete. Many studies at
the time indicated the process of transplant tolerance is not
simply clonal deletion.

If transplant tolerance was solely due to clonal deletion,
infusion of normal naïve immune cells would cause allograft
rejection. TDL effect rejection of long surviving skin grafts on
tolerant animals (49). Transferred syngeneic lymphocytes
proliferate in tolerant hosts but later host cells produced by the
thymus mediated anti-donor reactivity (50, 51). Transfer of host
strain naïve lymphoid cells do not always break tolerance, even
when large numbers of cells are transferred (31). Parabiosis of an
animal with long-term transplant tolerance with a naïve host
does not always break tolerance (52), but in other studies
tolerance is broken (31).

Role of Donor Haemopoietic Chimerism in
Maintenance of Transplant Tolerance
Persistence of neonatally induced tolerance requires
maintenance of lymphoid chimerism (53, 54) including in the
thymus (55). The most potent cells for inducing neonatal
tolerance are bone marrow (31), although cells from kidney,
testes and spleen can also induce tolerance (25). Chimeric cells
enter the thymus where they tolerise T cells (55). A skin graft to a
neonate can also induce tolerance (30). Persistence of tolerizing
antigens is required to maintain tolerance, as treatment with allo-
antisera to deplete chimeric cells abolishes tolerance (56, 57).
Transfer of neonatal tolerance to irradiated syngeneic hosts,
requires transfer of chimeric cells (53).

The Response of Donor Cells Against
Recipient- Graft Versus Host Assays
AGVH response by lymphoid cells is usually by transfer to a host
that will not react against the transferred cells (42), usually a F1
hybrid of donor x recipient. Lymph node cells and blood cells
(26), as well as small TDL mediate GVH (58), described at that
time as runt disease (12). TDL also induces runt disease in rats
(59, 64). The small lymphocytes transform into large
pyroninophilic cells that divide (12). These cells were similar
to cells that may produce antibody described by Fagreus (60) and
lymph node and spleen cells induced by a skin homograft (61).

Injection of parental strain lymphoid cells into an F1 host,
particularly if the host was irradiated, induce a similar reaction
(62, 63). Cells from adult homologous lymphoid tissues induce
Frontiers in Immunology | www.frontiersin.org 4
runt disease in embryo chickens (42), newborn mice (26) and
newborn rats (64), suggesting lymphoid cells mediate this GVH
reaction (26).

Testing of peripheral lymphoid cells from animals with
neonatal tolerance in GVH assays (65) and in mixed
lymphocyte cultures (MLC) (66) showed lack of reactivity to
specific donor alloantigen but have normal response to third
party alloantigen. These studies were interpreted to support the
clonal deletion hypothesis for neonatal tolerance.

The Role of Lymphocytes in
Transplant Tolerance
In 1954 Lord Florey stated “nothing of importance is known
regarding the potentialities of lymphocytes other than that they
move and that they reproduce themselves” (67). This reflected
the conclusion of doctoral studies by Jean Medawar, wife of Peter
Medawar, who was a student in Florey’s department. She had
cultured lymphocytes from TDL and show they did not
spontaneously differentiate (11). In the 1950’s Gowans, another
member of Florey’s department, showed thoracic duct
lymphocytes in TDL recirculate from blood into lymphoid
tissue and then back to lymph (68, 69). Later, Gowans showed
small lymphocytes initiate immune responses (13, 58), develop
into antibody producing cells (70), promote rejection of
allografts (49) and GVH responses (12). He showed TDL
include both T and B cells (71).

B Cells
In the mid 1950s, it was shown that bursectomy in chickens
impairs antibody production (72) and reduces lymphocyte
numbers, but has no effect on rejection of skin allografts (73).
In birds, the Bursa of Fabricius was considered similar to the
thymus, in that it was a lymphoid organ present in early life that
atrophies (74). At that time lymphocytes and the thymus had no
known immune function and adult thymectomy had little effect
on antibody production (75–77). All immune responses were
attributed to antibody, including graft rejection.

Attempts to accelerate graft rejection with antigraft antibody
are unsuccessful, whereas sensitised lymphoid cells transfer
alloantigen specific rejection (78). In other studies, the
presence of anti-donor antibodies delays rejection and
enhances survival of the graft, inducing a form of tolerance
(77, 79, 80). Preformed alloantibody lead to hyper-acute
rejection in man (81), sheep (82) and rats (83), however. The
role of B cells in clonal deletion and in the mediation of
transplant tolerance is beyond the scope of this review. The
central rejection mechanism is a T cell response, both CD4+ and
CD8+ T cells (84).

The Thymus
In 1961, Miller reported that mice thymectomized within 16
hours of birth were lymphopenic in blood and lymphoid organs,
with deficiency in germinal centres and plasma cells (85–87). The
neonatally thymectomized mice, accept allogeneic skin grafts
from 41 to over 100 days, whereas sham thymectomized and
normal mice reject all grafts in 10-11 days. The animals with
surviving skin grafts were described as tolerant, but many died of
April 2022 | Volume 13 | Article 810798
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runt disease. At that time runt disease was considered due to
infection and was not induced in specific pathogen free mice
(88). Runt disease resembles GVHD (89) and a form of
autoimmunity seen in FoxpP3 deficient mice (88).

In chickens, thymectomy of neonates, led to an inability to
reject a skin allograft but preserved antibody responses (8).
Neonatally thymectomized rats (90) and nude mice (91–94)
also do not reject allografts. Neonatally thymectomized mice
that were grafted with a host strain thymus, and mice
thymectomized 5 days after birth rejected skin grafts (87). The
thymus is required for recovery of lymphocytes after whole body
irradiation (95). Involution of the thymus increases susceptibility
to autoimmunity (96), suggesting the thymus plays a key role
with aging in maintaining immunity.

Burnet and Jerne immediately predicated that the thymus
would be a site of clonal deletion of self-reactive cells (97, 98),
which turned out to be true (99–101). On the other hand, after
Miller described the effects of neonatal thymectomy (86), Sir
Peter Medawar stated in 1962; “we shall come to regard the
presence of lymphocytes in the thymus as an evolutionary accident
of no very great significance” (102).

The fact that T cells, like B cells were clonal was established by
the identification of T cells that respond to a specific alloantigen
(103) and that sensitized hosts have memory T cells for specific
sensitizing alloantigen (104). The cloning of an immunoglobulin
like molecule as an antigen specific T cell receptor (105, 106) and
the generation of T cell clones by repeated stimulation with
antigen, reviewed (107), confirmed there were antigen specific T
cell clones. The finding that T cells identify antigen presented by
MHC molecules (108), further confirmed T cells were
antigen specific.

Clonal Deletion in the Thymus
The developing CD4+CD8+T cells in thymus undergo a complex
selection process. This has been extensively investigated over the
last 60 years as set out in other reviews (109). This review will be
limited to and focus on the thymus and T cells role in
transplant tolerance.

The majority of thymocytes have no affinity for MHC and by
neglect die by apoptosis (110). Thymocytes with strong affinity to
self MHC, also die by over activation (110). In this step, APC
activate thymocytes that recognize host and they are deleted by
apoptosis (101).

After surviving in the thymic cortex, thymocytes enter the
medulla where they contact autoantigens. Here, self-reactive T
effector lineage cells are deleted and FoxP3+Treg lineage that
recognize autoantigen survive (111). T cell anergy to antigen
requires continued exposure to antigen (112).

The AIRE (autoimmune regulator) molecule plays a major
role in deletion of autoreactive cells and promotion of auto-
antigen protective Treg, as reviewed (113). AIRE is expressed by
thymic epithelial cells located in the medulla of the thymus.
These thymic epithelial cells also express class II MHC and
CD80. Expression of AIRE, Class II MHC and CD80 on thymic
epithelial cells can be observed in day 14-15 mice embryos.

AIRE promotes promiscuous gene expression by thymic
epithelial cells, which includes hundreds of genes whose
Frontiers in Immunology | www.frontiersin.org 5
expression is normally restricted to peripheral specialized
tissues. Effector T cells with TCR recognizing these
autoantigens expressed by Class II MHC on thymic epithelial
cells, causes their deletion and central tolerance. Similarly host
dendritic cells in thymic medulla, also promote deletion or
anergy in thymocytes that recognize self- antigen, to prevent
autoimmunity. Thymic epithelial cells are more tolerogenic for
CD4+T cells than CD8+T cells (100).

Donor cells given to induce neonatal tolerance can enter
thymic medulla of the host and promote central tolerance by
induction of anergy or apoptosis of T cells recognizing the donor
alloantigen. In this latter process, donor alloantigen selects for
survival of CD4+CD25+FoxP3+Treg, discussed further below.
These mechanisms are of relevance to tolerance models where
there is chimerism and the thymus is essential (114).

Probably due to murine studies with neonatal thymectomy
and the limited consequences of thymectomy in adults, the role
of the thymus during life has been underappreciated. During life,
the thymus continues to produce naïve T cells, and presumably
naïve CD4+CD25+FoxP3+Treg cells (115). After deletion of
peripheral T cells by irradiation, chemotherapy as in bone
marrow transplantation (116) or HIV infection (117), the
peripheral T cell pool is re-established by expansion of
remaining T cells in the periphery and later in a delayed
fashion by generation of naïve T cells in the thymus (116). IL-
7 in thymus promotes production of naive T cells that are
exported to the periphery. These cells protect against infection
and malignancy, as well as autoimmunity (118).

The thymus by deleting new alloreactive naïve T cells and
selecting alloreactive Treg probably contributes to tolerance
induction in adults as well as in utero and newborn.

T Regulatory Cells and the Thymus
Thymocytes are prone to develop to Treg (119). Human babies
produce CD4+CD25+Treg at 13 weeks of gestation (120).
Thymectomy in the first month of life, usually for cardiac
surgery, later in life results in a higher rate of autoantibodies
(121) and a reduced naïve T cell pool (122). Children
thymectomized in the first year of life, have reduced numbers
of T cells, CD4+ and CD8+T cells and CD31+T cells, with a
reduced diversity of their TCR repertoire throughout life (123).
CD31 is a marker of T cells recently exported from the
thymus (123).

In contradiction to neonatal thymectomy depleting
immunity, neonatal thymectomy in mice at day 3, not day 0,
resulted in autoantibody production (124–127) and a variety of
autoimmune diseases. The organ attacked is determined by host
genetic factors (94, 128–130). In mice thymectomized as
neonates, autoimmunity is prevented by a thymus graft or
injection of naïve adult thymocytes or peripheral lymphocytes
(131). Neonatal thymectomy of rats also results in development
of autoimmunity (132).

Adult thymectomy and whole body irradiation induces
thyroiditis in rats (133), that can be prevented by transfer of
normal lymphocytes (134). Rat thymocytes depress autoantibody
responses (135). Loss of Treg is considered the cause of
experimental autoimmune gastritis (128).
April 2022 | Volume 13 | Article 810798
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In the 1979-80’s, CD8+T cytotoxic cells were considered themain
mediators of rejection (136) but also includedCD8+I-J+ suppressorT
cells. The first reports of suppressor T cells documented their
inhibition of B cell responses (137–141). Tissue specific suppressor
cells also were shown to protect against autoimmunity (142).
Treatment with anti-donor I-J, but not anti-host I-J, broke neonatal
tolerance (143). At that time, I-J was considered a marker of CD8+T
suppressor cells (144), until the gene for I-J was not found (145). This
error in phenotyping, led to a decade or more delay in the study of
regulatoryTcells. Laterworkonadultmodels of transplant tolerance,
led to the rediscovery of suppressor/regulatory cells, which were
CD4+T cells not CD8+T cells as a major immune cell (146). The key
points related to discovery of Treg are summarized in Figure 2 and
Supplementary Table 2.

In a mouse model of oophoritis, induced by thymectomy 2-4
days after birth, Ly1+ T helper cells prevent autoimmunity (147).
Ly1+T cells from normal animals were shown to prevent onset of
autoimmunity (148). Ly1 is a marker of non CD8 cells, of the
helper lineage, now better identified by expression of CD4.

At that time, in 1985, we described that adult transplant
tolerance was maintained by CD4+T cells, not CD8+T cells (149).
In 1990, we reported that CD4+CD25+T cells mediate transplant
tolerance (150). This was the first description of a regulatory
function of CD4+CD25+ T cells. We also showed CD8+T cells
played no role in maintaining transplant tolerance (150). Later in
1995, the Sakaguchis used our finding to show CD4+CD25+T
cells prevented onset of autoimmunity in day 3 thymectomized
mice (151).

CD4+CD25+Treg express the transcription factor FoxP3,
which distinguishes them from effector lineage cells (152).
Frontiers in Immunology | www.frontiersin.org 6
During development of thymus, production of FoxP3+Treg is
delayed compared to production of effector lineage CD4+T cells
(153). CD4+CD25+FoxP3+T cells control effector CD4+ and
CD8+T cells to prevent induction of autoimmunity (154).
Neonatal thymectomy reduces CD4+CD25+FoxP3+Treg that
prevent autoimmunity (155–159).

CD4+CD25+FoxP3+T cells that enter thymic medulla contact
thymic epithelial cells and dendritic cells that express host
autoantigens induced to be expressed by AIRE. This contact of
CD4+CD25+FoxP3+T cells with auto-antigen in the thymic
medulla promotes their expansion and survival (160, 161).
Treg with specificity for an autoantigen prevent autoimmunity.

There is limited information on the role of CD4+CD25+

Foxp3+Treg in neonatally induced tolerance. The output of
Treg from thymus in the neonatal period, makes it possible
that Treg specific for the allogeneic cells are activated alongside
CD4+CD25+Foxp3+Treg that prevent autoimmunity.

Assays of Clonal Deletion of T Cells
Assays of T cell alloreactivity include quantitative GVH (162,
163), MLC (164, 165) and cell mediated lympholysis assays
(CML) (166). CD4+T cells responding to Class II MHC are
assayed in GVH (65, 167) and MLC (168). There is a weak
response to Class I MHC (169), which is assayed by generation of
CD8+T cells to CML in MLC.

Tolerant hosts have reduced frequency of alloreactive T
helper cells (170–173) and it is loss of this response, rather
than CML that is associated with neonatal tolerance (174). On
the other hand, in one study 75% of lymphocytes from animals
with neonatal tolerance, responded to donor class II MHC and
FIGURE 2 | Discoveries Timeline related to suppressor regulatory T cells. Timeline of major discoveries that led to recognition of role of T regulatory cells in tolerance
specially in antigen specific tolerance.
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produced IL-2 (175). Tolerant class II MHC reactive cells on
activation in vitro produce IL-2, IFNg, IL-4 and IL-5 (176). In
one neonatal tolerance model, lymphoid cells could mediate
GVH to specific donor, suggesting incomplete clonal deletion
(177). In vitro class II MHC responsive tolerant cells undergo
apoptosis when re-exposed to donor alloantigen (178).

Cytotoxic T cells (CTL) precursors to specific donor assessed
in limiting dilution assays are reduced in neonatal tolerance
which is considered due to clonal deletion (32, 170, 171, 179).
Donor alloantigen reactive cells are not active in neonatal
tolerance, but reactivity to third party alloantigen is retained
(180). Lymphoid cells from animals with neonatal tolerance are
less cytotoxic to donor cells consistent with clonal deletion (166,
172, 179). However, complete clonal deletion of cells reactive to
donor, in some mice strain combinations does not result in
transplant tolerance (181). Absence of MLC and CML responses
did not predict the induction of tolerance to an allograft (182).

Not all studies show clonal deletion in neonatal transplant
tolerance. Cytotoxic T cells effective against Class I MHC are
generated in MLC of lymphocytes from tolerant hosts (103, 183),
but have reduced function compared to normal cells (184). Other
studies showed lymphoid cells from tolerant hosts were not
deleted, and were either anergic or suppressed (146). Inhibitory
cells or factors were not found in tolerant hosts (185, 186).

Assay of Tolerant T Cells in
Rejection Models
TDL and T cells mediate rejection in whole body irradiated host
(187–189), showing antibody and B cells are not essential to the
rejection response. Deletion of clones of T cells reactive to donor
strain, by passage from blood to lymph in a donor strain host, do
not effect rejection but also do not induce tolerance, as
recovering host lymphoid cells mount a rejection response (190).

In contrast, TDL from rats with neonatal tolerance do not
effect rejection of donor strain skin grafts on irradiated rats, but
effect rejection of third party grafts (191). Recirculating T cells
from a tolerant host, on adoptive transfer to irradiated hosts,
suppresses skin graft rejection (192). This transfer of tolerance is
dependent on chimeric donor strain T cells (53, 193). Deletion of
chimeric cells breaks tolerance (194). Further adoptive transfer of
tolerance requires a donor suppressor T cell (53, 191). Treatment
of cells from tolerant hosts with anti-donor sera, removes their
ability to transfer tolerance to an adoptive host (53). Thus, the
tolerant state depends on the chimeric donor strain cells.

On the other hand, chimerism persists in animals that are not
tolerant, and application of the donor skin results in expansion of
these chimeric cells, even though the graft is rejected (195).

After neonatal tolerance is broken by transfer of naïve cells,
the transferred cells contain all the alloreactivity (51). Later, host
thymus derived cells develop and have donor reactivity (50). In
these experiments, chimeric donor strain lymphoid cells are lost
and cannot promote clonal deletion in the thymus.

The variable results related to GVH, MLC and CML assays,
together with the failure of normal cells to effect rejection in
tolerant hosts, suggests clonal deletion is not the sole or the
essential mechanism for induction and maintenance of
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transplant tolerance after injection of donor cells in the
neonatal period.

Attempts to Induce Medawar Type
Transplant Tolerance in Adults
These pre-clinical and clinical models deplete hosts of peripheral
lymphoid cells by irradiation and/or myeloablation and transfer
donor lympho-haemopoietic cells to try and establish chimerism.
The level of chimerism in these models is greater (up to 80%)
(197) than in neonatal transplant tolerance (196, 197) where
chimerism is only a few percent of peripheral blood and
lymphoid cells (53, 54, 193). The presence of mixed chimerism
in blood, thymus and bone marrow indicates donor allografts
will be tolerated (198).

These protocols required very high doses of irradiation to allow
establishment of chimerism and were too toxic for use in humans.
This led to assessment of a variety of immunosuppressive
protocols to induce bone marrow chimerism (199).

To reduce the side-effects of whole-body irradiation, total
lymphoid irradiation (TLI) is used. TLI targets lymphoid tissues
including thymus and spleen and minimizes irradiation of non-
lymphoid tissues including skull, lungs, limbs and pelvis (200,
201). TLI given before transplant induces tolerance to organ
grafts in rats (200), dogs, non-human primates and humans
(201, 202).

In rats, infusion of donor bone marrow cells post-transplant
induces chimerism, and the rate of chimerism is high in animals
where the thymus was protected from irradiation (203). GVH is
not induced by the infused allogeneic cells. In this study, early
post-transplant there was non-alloantigen specific hypo
responsiveness of host lymphoid cells, which after months
became alloantigen specific (203). These host accepted long-
term fully allogeneic heart allografts. Post TLI transplant
tolerance is maintained by a combination of clonal deletion
and suppression (197).

Non-myeloablative regime of non-lethal doses of irradiation,
thymic irradiation and T cell depletion, can be used to establish
myeloid chimerism and the potential of transplant tolerance
(204). These chimeric models of transplant tolerance can be due
to central and peripheral tolerance.

To overcome the need to give TLI pre-transplant, TLI was
tested by use of anti-lymphocyte antibodies and conventional
immunosuppression, which is tapered once TLI was
administered. In a high responder rat strain, a combination of
anti-CD3 mAb and TLI induced tolerance to fully allogeneic
heart grafts and this synergized with donor blood transfusion
(205). In this model chimerism was not established (205).

Two groups, one at Stanford and the other Medeor
Therapeutics are using post-transplant TLI and anti-thymocyte
globulin in renal transplant recipients (206). Early post-
transplant, these patients receive some conventional
immunosuppression, which is later withdrawn. In HLA
matched related donor transplant, infusion of CD34+ cells and
some T cells, has established chimerism in a large proportion and
many are off immunosuppressive treatment. There were no
serious infections or engraftment syndromes which are a form
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of GVH. Some patients required long-term immunosuppression.
With HLA incompatible grafts, there was an engraftment
syndrome in some patients, and chimerism was lost (206).

Induction of Bone Marrow Transplants to
Induce Transplant Tolerance
Several other protocols have been described, with success. These
protocols are discussed in detail in a recent review and will not be
described here (206). The details of these protocols and the
immunological mechanisms operating are incompletely
understood and are beyond the scope of this review.
INDUCTION OF TRANSPLANT
TOLERANCE IN THE ADULTS,
SPECIFIC UNRESPONSIVENESS
WITHOUT CLONAL DELETION

There are several methods of inducing “Operational Tolerance”
in adult animals, and many do not induce clonal deletion. These
models and the non-clonal deletion mechanisms by which they
are induced and maintained will be reviewed. Key mechanisms of
induction and maintenance of transplant tolerance in adults are
listed in Table 1.

Three broad groups of specific unresponsiveness induced in
adult animals where there is no “Clonal Deletion “will be reviewed

Spontaneous Acceptance of a
Directly Vascularized Organ
Allograft Without Immunosuppression
Induces Specific Unresponsiveness
The best example is allogeneic liver allografts, which in some
hosts are accepted without immunosuppression, reviewed (207,
208). This was first observed with liver transplants in pigs (209),
but also occurs in rats (211) and mice (210). In rats, such
tolerance is only induced in low responder strains whereas in
mice liver transplants induce tolerance in nearly all strain
combinations. In miniature swine thymectomy reduces the rate
of tolerance induction to liver allografts (88).

In rats, liver allografts rapidly induce systemic donor hypo-
reactivity (211) and reverse rejection of other donor strain organs
(212). There is partial clonal deletion in peripheral lymphocytes
(213) including specific donor memory lymphocytes (214).

Liver transplant tolerance induction depends upon passenger
leukocytes in the liver graft (215, 216). Immune activation by
donor leukocytes in the graft is a major mechanism (217), that
leads to clonal exhaustion (218). Compared to heart allografts,
there is more rapid migration of passenger leukocytes to spleen
and lymphoid tissue with a more rapid activation of T cells (219).
There is activation of Th1 responses with induction of IL-2 and
IFN-g (220). Reduction in Th1 response by administration of
corticosteroids (221) or the Th2 cytokine IL-4 (222) prevents
development of tolerance and promotes liver allograft rejection.
Paradoxically, prior treatment of donor with rIL-4 increases
macrophages in the donor liver and induces tolerance to livers
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in strain combinations where liver allografts are not
spontaneously accepted (217).

Passenger leukocytes transplanted within the liver allograft
can mount a GVH response and provide a source of donor cells
(223). Micro chimerism of donor lympho-haemopoietic cells
occurs and promotes tolerance (223, 224). Whether this GVH
leads to further clonal deletion is unclear. The thymus is essential
for stopping GVH in the liver graft but is not required long-
term (225).

The mass of the liver protects it from rejection. Activation of
T cells by hepatocytes, rather than antigen presenting cells, leads
to incomplete activation and rapid loss of function (208). High
alloantigen expression in the liver exhausts alloantigen reactive
CD8+T cells (226). Direct contact of alloreactive T cells with liver
cells, through fenestrations in the endothelium of hepatics
sinusoids, results in their deletion or exhaustion (227).
Deletion may also be related to the massive activation of
alloreactive T cells (220), which may become anergic or be
deleted by apoptosis of T cells (219, 220, 228), including
alloreactive T cells (229). Sensitized T cells are deleted in the
periphery (214).

In rats, transplantation of a liver immediately stops rejection of a
heart graft from the same donor, demonstrating a systemic effect,
whichmay include secretion of MHCmolecules from the liver (230,
231) or other immunosuppressive molecules (232, 233).

T suppressor cells have been implicated in tolerance to
liver allografts (234). There is limited evidence that FoxP3+T
cells mediate tolerance to a liver allograft (235, 236).
CD4+CD25+FoxP3+T cells are present in rejecting and
tolerated liver allografts (210). Therapy with FoxP3+Treg has
been trialled (237, 238). A combination of donor dendritic cells
and CD4+CD25+Treg is more effective at inducing tolerance in a
strain that does not spontaneously accept liver grafts (239). In
TABLE 1 | Immune Mechanisms described in Transplantation Tolerance.

Mechanism

Clonal Deletion CD4+ cells
CD8+ T cells
B cells

Clonal Exhaustion Apoptosis
Clonal Anergy Systemic donor hypo-reactivity
Specific unresponsiveness CD4+ cells transfer from tolerant hosts
Regulatory T cells Naïve Treg

Activated Treg Ts1, Ts 2, Highly potent
Th1-like Th2 like

Chimeric Donor Derived haemopoietic
and lymphoid cells

Regulatory

Effect Clonal silencing
Graft Factors Alloantigen mass

Inhibitory factors secretion
Donor Dendritic cells Depletion/graft adaptation

Stimulation of regulatory cells
Failure to stimulate effector cells

Immune ignorance –

Antibodies to Class II MHC Blocks CD4+T cell activation and
effectors

Excessive Immune activation Dependent on grafts antigen
presenting cells
A
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mice, pre-treatment with anti-CD25 mAb prevents tolerance
induction, increases the anti-donor T cells response and reduces
apoptosis (235, 240).

Current clinical trials of immunosuppression withdrawal
from liver allograft recipients have recently been summarized
(206). Operational tolerance occurs in patients with
liver allografts.

In some mice strain combinations, kidney allografts are
spontaneously accepted, and tolerance is induced. This is
associated with induction of FoxP3+T cells, not Th1 cell
activation (241). With rat kidney allografts, administration of
donor leukocytes at the time of transplantation induces donor
specific transplant tolerance (242). This increases T cells
activation and induction of IL-2 and IFN-g in the allograft
associated with the infusion of donor leukocytes, suggesting
overactivation, as occurs with liver allografts, induces tolerance
(242, 243).

Transplant Tolerance With Specific
Unresponsiveness Without Clonal
Deletion in Large Animals With
Kidney and Heart Allografts
In studies with inbred miniature swine, a single or double class I
MHC incompatible kidney or heart allograft treated with a short
course of cyclosporine A (CSA) (244) or tacrolimus (245) therapy
develop a form of tolerance. A large proportion of these animals
develop tolerance, with no anti-donor antibodies, variable CML to
donor, and most accepted a second donor allograft without
immunosuppression. In the swine kidney allograft model, 12 days
of high dose CSA induces tolerance and the to be tolerated grafts
have a cellular infiltrate not dissimilar to rejection in the untreated
kidney allografts, with induction of inflammatory cytokines in both
tolerated grafts and rejecting grafts (246). This infiltrate
spontaneously resolves (247). This suggests the tolerance is
central, and not due to graft adaptation (244, 245). Donor antigen
presenting cells in the second transplanted graft do not trigger
rejection. Themaintenance of tolerance requires the presence of the
original tolerated renal allograft (248).

Class II mismatched miniature swine kidney grafts with no
immunosuppression are rejected but a short course of CSA
induces long term graft acceptance (249). These animals with
long surviving allografts accept skin and second kidney allograft
from the same donor strain indicating tolerance (249). Class II
MHC matching is more important in tolerance induction in
miniature swine than class I MHC matching (250). For a second
test heart graft to be accepted by a swine tolerant to a kidney
graft, the second graft must share class II MHC with the original
kidney graft (251).

Host thymus is essential for tolerance induction (252) but
not-long term maintenance of tolerance (253). Thymectomized
miniature swine are resistant to induction of tolerance to cardiac
allografts (254–256).

Co-transplantation of thymus and a kidney allograft enhances
tolerance induction (244). Vascularized thymus allografts in
miniature swine transplanted at the same time as a heart graft,
combined with a short course of tacrolimus, induce transplant
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tolerance (257). Combined thymus/heart grafts have increased
survival compared to heart grafts without thymus (258, 259).

In miniature swine, combined heart and kidney allografts are
accepted and induce tolerance, whereas single grafts are rejected.
This effect of combined heart and kidney allograft is in part due
to increased alloantigen load (260). Irradiation of the kidney but
not the heart allograft prevents tolerance to both grafts (255).

In pigs, the transfer of the tolerated kidney with cells from the
tolerant host induces prolonged survival in a second irradiated
host, suggesting the graft and cells from tolerant animals
promote tolerance (261). The tolerated kidney allograft when
transplanted to a second host, induces tolerance with or without
co-transferred tolerant cells, suggesting a peripheral mechanism
of tolerance (261). Tolerated kidneys are rejected when
retransplanted into a normal host, indicating graft adaptation
is not the mechanism of tolerance (262).

Application of donor strain skin to swine tolerant to a kidney
allograft induces anti-donor CTL, but the kidney graft is not
rejected (263).

Lymphocytes from miniature swine tolerant to a kidney
allograft inhibit responses to specific donor but not third party
(264). Tolerant hosts have reduced helper and CTL capacity
against donor strain (265). Lymphocytes from tolerant hosts, do
not generate CML against donor but do to third party (266).
CD25+ lymphocytes suppress donor specific CML (267).

Prior specific donor blood transfusions increased the rate of
induction of tolerance by CSA to heart transplants, suggesting a
peripheral mechanism of tolerance induction (268). Prior
induction of tolerance by a bone marrow transplant in swine
allows acceptance of donor strain kidneys (269).

These studies in miniature swine, performed by a group at the
NIH and Massachusetts General Hospital, show specific
unresponsiveness to an organ allograft can be induced by
methods used in rodent models that are reviewed below. They
establish that acceptance of a graft is (i) preceded by a rejection like
response that spontaneously resolves, (ii) is facilitated by the
thymus, (iii) is alloantigen specific and that peripheral
lymphocytes can promote tolerance and are not clonally deleted.
The mechanisms of tolerance induction and maintenance may be
very similar to those in the rat models, making it possible that such
specific unresponsiveness may be induced in all species
including man.
Split Tolerance or Specific
Unresponsiveness in Adult Murine Models
In adult rodents, a variety of treatments reduced rejection and
induce a state where organ allografts are accepted without
ongoing immunosuppression. This phenomenon was called
specific unresponsiveness (270, 271) and is a form of
“operational tolerance” (272), reviewed (273). These models of
tolerance have similarities to the swine models, as described
above. Like in the swine models, a rejection response is generated
but is insufficient to reject the grafts which survive. It then takes
weeks for tolerance to fully mature after exposure to alloantigen.
Tolerance is associated with a loss or change in dendritic cells
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and the development of suppressor cells, which in all cases
include CD4+T cells (273).

One of the first such models of transplant tolerance was
induced by treatment of mice with donor liver cells and anti-
lymphocyte serum, which led to acceptance of fully allogeneic
skin (274, 275). The acceptance of these allografts requires
induction of suppressor cells now known as Treg (276–279).
Overtime, there has been increasing acceptance that Treg
contribute to this form of tolerance (280, 281) and that
alloantigen from the graft can induce host Treg (282).

Other models of specific unresponsiveness, described in the
1960-70s, were passive or active enhancement (283). In these
models, there was no attempt to induce chimerism or clonal
deletion. In active enhancement, donor peripheral lymphoid cells
or haemopoietic cells are given ivi, either at the time of transplant
or 7-10 days prior to transplantation. Class II MHC and B cells
promote enhanced allograft survival (284). Passive enhancement
is induced by injection of alloantibody to the donor stain (79),
particularly alloantibody to Class II MHC (77). Kidney and heart
allografts are easier to enhance survival of than skin or lung.
Sensitization to donor strain alloantigen prevents induction of
enhancement of allograft survival (285). Not all host strains can
be induced to develop tolerance of an allograft (286, 287).

It is only after weeks that an enhanced allograft induces a state
where a second donor strain graft, usually skin, is accepted while
third party grafts are rejected (288, 289).

Long surviving grafts can have pathological lesions of
rejection (290) but the graft continues to function.

In part, acceptance of enhanced kidney allografts is due to
depletion of donor dendritic cells, so that the graft cannot
provoke a rejection response when re-transplanted into a naïve
recipient strain host (291–294). The loss of alloantigen
stimulation to provoke rejection, is not the sole mechanism as
second donor strain allografts, with a normal complement of
alloantigen presenting cells, are accepted (288, 289).

Treatment with a short-course of CSA (149, 295–300) is more
reliable at inducing specific unresponsiveness to allografts than our
enhancement protocol (289, 296). The mechanisms of graft
acceptance seems to be similar to those in enhancement models
(298), although infiltration of grafts by allospecific CTL is impaired
(301). Later, other reliablemodels of specific unresponsivenesswere
developed, including therapy with antilymphocyte sera (ALS),
blood transfusions (302), anti-CD4 mAb (303–306), a
combination of anti-CD4 and anti-CD8 mAb (307), anti-CD3
mAb (308, 309) and anti-CD25 mAb (310). The many models for
specific unresponsiveness are reviewed elsewhere (273) and include
models of transplant tolerance in adult animals (304).

In these models, specific unresponsiveness takes time to
develop and is usually not manifest until after 100 days post-
transplant (289, 296). It is only after a period of weeks, that
second donor strain grafts are delayed in rejection and after time
(usually ten weeks) most are accepted (271, 289). Normal
rejection of third-party grafts is retained by these hosts at all
times post-transplant (271, 289).

Cells from animals with specific unresponsiveness have
normal reactivity in MLC (309, 311–313), CML (309, 311,
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313–316), and GVH (317–320). There is no experimental
evidence for clonal deletion. Animals with enhanced allograft
survival make donor specific alloantibody responses (315, 321).

Early attempts to demonstrate suppressor cells in hosts with
specific unresponsiveness were unsuccessful (322), but later
suppressive T cells were identified (149, 276, 289, 323, 324)
and confirmed by others (325–330). The maintenance of
suppressor cells is dependent on alloantigen from the graft (331).

The difficulty in measuring suppressor/regulatory cell activity,
led us to develop an assay using limited numbers of alloreactivity
of cells, and establishing their ability to mediate rejection or
transfer specific unresponsiveness in an immunodeficient
irradiated host.
ROLE AND ACTIVATION OF
T REGULATORY CELLS IN
TRANSPLANT TOLERANCE

An Assay to Assess Ability of
Lymphocytes to Mediate Rejection or
Transfer Specific Unresponsiveness
We developed a model in which different numbers of peripheral
lymphocytes capacity to mediate rejection or inhibit rejection of
fully allogeneic directly vascularized heart allografts is tested in
adoptive hosts whose own lymphocytes had been depleted by
whole body irradiation (104, 188). For these studies, DA
recipient and PVG heart grafts are used with Lewis rats as
third-party donors.

Using cells from naïve animals, we have shown that the most
potent are TDL, then lymph node cells and spleen cells (188).
Thymocytes and bone marrow cells do not restore rejection
(188). Larger numbers of TDL, spleen or lymph node cells
mediate faster rejection (188). Enriched recirculating T cells
are effective at mediating rejection. Cells from adult
thymectomized animals are not impaired and tend to reject
faster than cells from non-thymectomized hosts (188, 332).
Injecting thymocytes mixed with normal lymph node cells or
spleen cells delays rejection (332), suggesting in normal animals
thymus cell and peripheral T cells recently produced by thymus
inhibit the rejection response (332). In this model, host
thymectomy allows transferred cells to mediate faster rejection,
suggesting the hosts’ immune reconstitution following
irradiation promotes development of tolerance (189).

In this model, enriched CD4+T cells mediate rejection
whereas CD8+T cells and B cells do not restore rejection (189).
Dilution of CD4+T cells, shows that half a million cells are as
effective at restoring rejection as two hundred million cells. This
allows studies on tolerant cells to be with very small numbers of
naïve CD4+ T cells (149, 333). That allows the effects of the
suppression by tolerant cells to be assayed, which is not possible
in hosts with a redundant effector T Cell population.

Removal of CD25+ cells from naïve CD4+T cells results in
more rapid rejection, consistent with naïve CD4+CD25+T
cells non-alloantigen specific effect on allograft rejection
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responses (334). Mixing 5x106 CD4+CD25+T cells from naïve
animals with 5x106 unfractionated CD4+T cells totally
suppresses rejection (334). Tolerance was only induced when
the mixture was 1:1 (334). Lower ratios of CD4+CD25+T cells to
effector CD4+T cells do not supress rejection and at the normal
ratio of 1:10 rejection is not suppressed showing that naïve/
resting Treg are weak at suppressing rejection (334). Ratios of 1:1
are impossible to achieve long-term in animals.

Cells from syngeneic donors sensitized to specific donor
strain by rejection of skin grafts are more potent (104).
Compared to naïve cells, these cells from TDL, lymph node
and spleen, accelerate rejection of specific donor allografts but
not third party grafts, showing an increase in potency and in
alloantigen specific memory T cells (335). These memory T cells
do not rapidly recirculate from blood to lymph (104, 336),
consistent with what is now known as effector memory T cells.
Memory CD4+ and CD8+T cells mediate rejection, showing
sensitized or memory CD8+T cells mediate rejection without
help from CD4+T cells (337).

Transfer of Specific Unresponsiveness
by Lymphocytes
This model of rejection was adapted to the study of specific
unresponsiveness. We use DA rats as specific unresponsiveness
to PVG heart grafts can be induced by a variety of treatments
including passive enhancement (289), CSA treatment (296, 317),
anti-CD4 mAb treatment (303, 338) and anti-CD3 mAb
treatment (309). In this assay, the relative potency of different
cell populations can be examined.

Our studies show peripheral lymphoid cells, especially spleen
cells and lymph node cells, but not thymocytes transfer alloantigen
specific tolerance (288, 289). B cells and an antibody response is not
required to transfer tolerance (297). Enriched T cells populations
transfer tolerance to specific donor grafts to an adoptive host (289,
296, 297). Peripheral lymphocyte from tolerant hosts, suppress the
ability of naïve peripheral lymphoid cells to restore rejection (289,
296, 297, 339). The tolerant CD4+T cells must be at ratios of≥4:1 to
naïve cells. This ratio of specificunresponsivehost cells tonaïve cells
is used in all our subsequent experiments on suppression of
rejection. Such ratios of tolerant CD4+T cells to host naïve
lymphocytes cannot be achieved in normal adoptive host. Thus,
tests of transplant tolerance transfer need to use severely
immunocompromised hosts, such as those given whole body
irradiation, B rats, Rag and SCID mice.

We prepare T cells that recirculate from blood to lymph, by
injecting irradiated recipient strain rats with lymph node and
spleen cells from rats with specific unresponsiveness. The T cells
that recirculate from blood to lymph, do not suppress rejection in
a third adoptive host (289). Thus, suppressor T cells from specific
unresponsive hosts migrate to peripheral tissue, not secondary
lymphoid tissue, and behave like effector memory T cells (104).

CD4+T Cells, Not CD8+T Cells, Mediate
Specific Unresponsiveness
Examination of the role of CD4+T cells and CD8+T cells (340) in
specific unresponsiveness, produced what is a very surprising
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result, reviewed (341). That is the CD4+T cell fraction transfer
specific unresponsiveness, whereas the CD8+T cells do not
inhibit graft rejection or transfer specific unresponsiveness. A
key role of CD4+T cells in maintaining unresponsiveness to an
allograft is shown in enhancement (319), after CSA treatment
(297), anti-CD3 mAb treatment (309) and anti-CD4 mAb
treatment (303) mAb. Up until that time suppressor cells were
considered to be CD8+T cells (cytotoxic/suppressor) not CD4+T
cells, which were helper/inducer.

Early after transplantation, when there is immunosuppression
to induce tolerance, at 8 and 20 days post-transplant, CD4+T cells
effect rejection (342). It is only after 50 days that tolerance is
transferred by CD4+T cells (342), consistent with the observation
that second donor strain graft are only accepted after 50 days post-
transplant (342). With regards to CD8+T cells, at 8 and 20 days
post-transplant, they effect rejection, much like CD8+T cells from
controls where no immunosuppression is given (342). CD8+T cells
at 50 and >75 days do not effect rejection, and do not suppress
rejection (342). These studies show that during induction of
specific unresponsiveness the hosts CD4+ and CD8+T cells have
capacity to effect rejection and in the case of CD8+T cells are
activated. With time, the CD4+ tolerance mediating cells develop
and prevent rejection of a second donor allograft.

Further characterization of the CD4+T cells from tolerant
hosts, show they cannot suppress specific donor rejection
mediated by sensitized CD4+T cells, but can suppress rejection
mediated by specifically sensitized CD8+T cells (150). Depletion
of the adoptive host of CD8+T cells by thymectomy or treatment
with an anti-CD8 mAb demonstrated that CD8+T cells are not
required to re-establish tolerance in the adoptive host, neither
was a thymus in the adoptive host (150). These studies in 1985
were the first to show suppressor/regulatory cells are CD4+, not
CD8+T cells.

In mice with adult induced transplant tolerance, tolerant
CD4+T cells promote induction of tolerance in host T cells, a
phenomenon called “infectious tolerance” (282).

In animals with specific unresponsiveness to an allograft,
removal of the allograft 50 days post-transplant results in a loss
of tolerance transferring CD4+T cells within 8 days and these
cells effect rejection in the adoptive host (150). Further,
cyclophosphamide treatment of the animals with specific
unresponsiveness depletes CD4+T cells with the ability to
transfer specific unresponsiveness (150). These experiments
show that a subpopulation of cells that suppress within
tolerant CD4+T cells, are rapidly dividing and need alloantigen
stimulation. Such activated T cells usually require cytokines to
promote their survival and activation. This led us to examine
which cytokines could promote their survival and proliferation.

Shortly after our description of a CD4+T cell mediated
suppression of rejection, Goran Moller in an editorial entitled
“Do Suppressor cells Exist?” (145), cited three reasons for
doubting the existence of T suppressor cells. First, there was
no marker for T suppressor cells to distinguish them from
CD8+cytotoxic T cells. Second, the gene for the purported
marker of suppressor cells “I-J” was not found in the MHC
region of mice (343). Third, there was no evidence that the alpha
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and beta chain of TCR are expressed in suppressor cells, making
the existence of antigen specific suppressor T cells impossible.

In the late 1980’s suppressor cells became unfashionable, and
many if not most immunologists considered they did not exist and
that the apparent suppression described were random artifacts.
Suppressor T cells could not bementioned in polite immunological
circles asmanifest by JanKlein (1990) in apreface tohis textbookon
immunology (344), stated “I have attempted tofind the fundamental
truth in immunology and to separate it fromhypothesis, regardless of
how fashionable they might have been at the time of writing.
Consequently, the reader will not find certain topics (such as
specific suppressor T cells) discussed at any length, as they are
judged not to be a fundamental truth.” The derision was as blunt
as that of Medawar’s dismissal of lymphocytes and T cells as
mediators of immune responses such as transplant rejection.

Our work in the mid 1980s shows suppression is mediated by
CD4+T cells not CD8+T cells. These cells transfer alloantigen
specific suppression and are not non-specific. Suppression by
thymocytes was natural and not antigen specific. In 1990, the role
of CD4+CD25+T cells as inhibitors in transplant tolerance was
first described (150). But work on suppressor cells became so
unfashionable, its grant funding was cut.

To address the paradox that CD4+T cells effect rejection and
could also maintain transplant tolerance, we looked for other
markers of the suppressor T cell subset.

Tolerance Promoting CD4+T Cells
Die Without Specific Alloantigen
and Cytokines
Weobserved in studies to characterize the specificity of suppression
by CD4+T cells, that culture of CD4+T cells with specific donor
antigenpresentingcells, led toa lossof capacity to suppress rejection
of specific donor and a gain in ability to effect rejection (340). This
occurred within three days of culture (150, 340). We then cultured
the tolerant CD4+T cells with specific donor stimulator cells and
supernatant from ConA activated splenocytes. This cytokine rich
media promoted survival of suppressorCD4+T cells, only if specific
donor stimulator cells were present.

We found IL-2 partially maintained suppressor function (345)
and that depletion of CD25 expressing cells from tolerant CD4+T
cells removed their capacity to suppress rejection in our adoptive
transfer assay (150).

As an anti-idiotypic response was suggested (346, 347),
CD4+T cells from hosts with specific unresponsiveness were
cultured with idiotype of donor alloantigen activated T cells from
a naïve host. Even in the presence of supernatant from Con A
activated splenocytes, suppressor function of tolerant CD4+T
cells was lost in culture with idiotype expressing cells (311, 345).

As Con A supernatant is rich in IL-2, we examined if the cells
that transfer tolerance expressed the IL-2 receptor, which is now
known as CD25. In an attempt to phenotype the CD4+T cells that
suppress rejection from the CD4+T cells that canmediate rejection,
we deplete CD25+ cells from tolerant CD4+T cell. Depletion of
CD4+CD25+T cells, left a population of CD4+CD25-T cells that
mediate rejection of specific donor grafts (150, 348). This work
published in1990was thefirstdemonstrationofCD4+CD25+Tcells
Frontiers in Immunology | www.frontiersin.org 12
as a regulatory or suppressor cell. This observation, discussed with
the Sakaguchis, led them in 1995 to report CD4+CD25+T cells
prevent autoimmunity in mice thymectomized in the neonatal
period (151). The identification of CD4+CD25+T cells as
suppressor cells slowly led to rehabilitation of the concept of
regulation within the immune system.

There is now widespread acceptance that CD4+CD25+T cells
suppress all immune responses. The naïve Treg described by the
Sakaguchi’s are very different to the CD4+CD25+T cells that
mediate transplant tolerance. Naïve Treg suppression is not
antigen-specific, whereas our tolerant cells transfer donor
alloantigen specific suppression.

We also showed tolerance transferring CD4+Treg express
CD45RC (150), a marker of an activated Treg whereas naïve
Treg express CD45RA (349). Tolerance transferring Treg also
express Class II MHC, a marker of activated Treg (150).
CD45RA-(CD45RC+), Class II MHC+ remain two key markers
of activated Treg, that can be used to distinguish them from naïve
Treg (349, 350).

In Our Models of Tolerance, rIL-2 Alone
Did Not Sustain Suppressing CD4+T Cells
That Transfer Tolerance
Although specific transplant tolerance is transferred by CD25
expressing cells, and survival of these cells in culture requires a
cytokine rich supernatant from ConA activated lymphocytes, use
of recombinant IL-2 alone in culture does not fully sustain the
suppressor capacity of these cells (345). This raises the possibility
that the alloantigen activated CD4+CD25+Treg needed cytokines
other than IL-2 to promote their proliferation and survival. We
tested other cytokines and found key roles for several.

At that time the description of Th1 and Th2 responses (351)
resulted in a hypothesis that deviation to Th2 and reduced Th1
responses may explain specific unresponsiveness. We found
specific unresponsiveness could be induced by suppression of
either Th1 (338) or Th2 (308) responses. Specific alloactivated
CD4+Th2 cells generated in vitro, mediate rejection not tolerance
(352–354). Thus, alloantigen specific suppression is not mediated
by a switch to a Th2 response, albeit Th2 cytokines such as IL-4
(355, 356) and IL-5 (357, 358) inhibit rejection and promote
transplant tolerance induction.

Given IL-2 alone does not sustain full suppressor function in
CD4+T cells from animals with specific unresponsiveness (345),
we examined the possible role of other Th1 and Th2 associated
cytokines. Figure 3 shows the parallel pathway of activation of
Th1 and Th1-like Treg that we have described.

Todothese studiesweobtainedclonesorclonedavarietyof ratT
cell cytokine producing cell lines. Treating rats with fully allogeneic
neonatal heart allografts, we found IL-12p70 (359, 360), IL-4 (356),
IL-5 (357) and IL-13 (361) delay rejection, while rIL-2 promotes
rejection. To our knowledge no cytokine therapy induces specific
unresponsiveness to an allograft, except IL-5 in a chronic rejection
model with only Class I MHC incompatibility (358).

The mechanism by which these cytokines delay rejection is
unclear. Thus, we examined the effect of various cytokines on
CD4+CD25+Treg in culture with and without alloantigen. IL-13
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inhibits macrophage activation, not Th1 cell activation (361) and
to date has no reported effect on Treg.

First, we enriched naïve CD4+CD25+Treg and cultured them
with alloantigen or self-stimulator cells. Different cytokines were
assayed for their effects on proliferation. Both rIL-2 and rIL-4
induce proliferation to self and alloantigen. Alloantigen alone
induced a small proliferative response (312). rIFN-g, rIL-12, rIL-
5, rIL-13, rTGF-b and rIL-10 do not induce proliferation of naïve
CD4+CD25+FoxP3+T cells (312).

When CD4+CD25+FoxP3+Treg from animals with specific
unresponsiveness were assayed in MLC against self, specific
donor and third party, we observed a difference in response to
that of naïve CD4+CD25+FoxP3+T cells. Most interesting is that
their response to specific donor is at background levels, that is there
is no response (312). Their response to third party remains normal
(312). This result is consistent with our earlier observation that the
ability of CD4+T cells from specific unresponsive host was lost
within days of culturewith specific donor alloantigen in the absence
of Con A supernatant (340, 345). Again, rIL-2 and rIL-4 increase
proliferationof tolerantCD4+CD25+Tcells to self, specific donoror
third party. Three cytokines induce increased proliferation to
specific donor but not to self and third party (312). These are rIL-
5, IL-12 p70 and IFN-g whereas TGF-b, rIL-10, rIL-13 do not
promote proliferation to specific donor (312).

These studies showed tolerance transferring cells may depend
on these cytokines. We tested this by culture of tolerance
transferring CD4+T cells with specific alloantigen and one of
these cytokines. IFNg (362) and IL-5 (363) sustain their tolerance
transferring capacity, whereas cells cultured with rIL-4 cannot
transfer tolerance and mediate rejection (352). Further evidence
that cytokines other than IL-2 are required to sustain survival
and proliferation of tolerance mediating CD4+T cells.

Activation of Naïve CD4+CD25+FoxP3+Treg
by Alloantigen and T Cell Cytokines
Induces Expression of Other T Cell
Cytokine Receptors
These observations led us to examine cytokine receptor expression
after naïve CD4+CD25+FoxP3+Treg are cultured with alloantigen
and either rIL-2 or rIL-4 (364). This uncovered pathways whereby
naïveCD4+CD25+FoxP3+Tregare activated tomorepotent antigen
specific Treg, reviewed (365, 366). Those cultured with rIL-2 and
alloantigen or autoantigen are induced to express the receptor for
IFN-g and IL-12 (364, 367), but not the receptor for Th2 cytokines
such as IL-5 (364). We call the naïve Treg that had been activated
with the Type 1 cytokine IL-2 and express receptors for the Type 1
cytokines, IFNg and IL-12, Ts1 cells (364, 368). The naïve Treg
when activated by the Type 2 cytokine IL-4 and antigens they are
induced to express receptor for the Type-2 cytokine IL-5 (364, 369).
We call these rIL-4 and alloantigen activated cells Ts2 (364, 369).

In MLC, Ts1 and Ts2 cells suppress responses to specific donor
at ratios of 1:32-1:64 (364), whereas naïve CD4+CD25+T cells only
fully suppress MLC at 1:1 -1:2 (168). On adoptive transfer to
irradiated hosts restored with 5x106 naïve CD4+T cell, Ts1 or Ts2
cells suppress rejection at 1:10, whereas naïve CD4+CD25+Treg
only suppress at 1:1 to effector CD4+T cells (334).
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Ts1 cells are activated to express CD8 as well as CD4
becoming double positive cells (370). The double positive cells
are the cells with the increased potency (370). Further, activated
Ts1 cells have increased expression of CD62L (370), suggesting
they are programmed to migrate to other peripheral lymphoid
tissues, not to the site of inflammation in the graft.
Cytokines Other Than IL-2
Activate CD4+CD25+Treg
We next examined if Ts1 cells could be further activated by
culture with rIL-12p70 and specific donor alloantigen. In the
absence of rIL-2, rIL-12 induces Th1-like Treg (367). These Th1-
like Treg suppress in MLC at 1:1000 and are the most potent
Treg described. Small numbers of these cells can inhibit allograft
rejection in a normal host. Th1-like Treg express T-bet, the Th1
transcription factor, as well as FoxP3, and express IFN-g but not
IL-2 (367).

Ts2 cells can be further activated by rIL-5 in the absence of IL-
4, to develop a Th2-like phenotype, expressing the Type 2
transcription factors GATA3 and IRF4, as well as Type 2
cytokines IL-5 (358). They do not express Type 1 cytokines
and transcription factors (358).

Inman, there is increasing evidence that inparallelwith activation
of Th1, Th2, Th17, Tfh responses, there is activation of naïve
CD4+CD25+FoxP3+Treg to a phenotype similar to the effector
lineage (371, 372). That is T-bet and IFNg with Type-1 cytokines
(359) and GATA3, IRF4 and IL-5 with Type-2 cytokines (358).

In humans, CD4+CD25+FoxP3+ Treg can be isolated by their
lack of expression of the IL-7 receptor CD127 (373). Focussing on
the CD4+CD25+FoxP3+CD127- Treg memory/activated Treg can
be distinguished from resting Treg by their low expression of
CD45RA (349). Some activated/memory Treg express CXCR3,
CCR6 or CCR8, the chemokine receptors respectively expressed
byTh1 (371), Th17 (374) andTh2 cells (371). These cells calledTh-
like Treg respectively express transcription factors T-bet, RORgt
andGATA3. CXCR3 promotes cellmigration to its ligandCXCL10
expressed at sites of Th1 mediated inflammation (375). CCL20 is
inducedby IL-17 andproducedbyTh17 cells, promotingmigration
to sites of Th17 inflammation (376, 377). Th1 like Treg produce
more IFN-g than other Th-like Treg (372). Th17-like Treg produce
more IL17 and Th2-like Treg produce more Th2 cytokines,
including IL-4, IL-5 and IL-13 (372). A proportion of activated
CD4+CD25hiFoxP3hiCD45RA-Treg express both CXCR3 and
CCR6 and are Th1/17 like Treg. Th2-like Treg express CCR8, the
Th2 chemokine receptor.

CCR4 is expressed by all Th-like Treg and promotes migration
to its ligands CCL17 and CCL22 produced by dendritic cells in
lymphoid tissues (378). Expression of CCR4 by CD25+FoxP3+T
cells is required for induction of tolerance (88).

This activation of potent Treg is a two-step process that
produces effector Treg that can migrate to the site of
inflammation by expression of the relevant chemokine
receptor, such as CXCR3 on Th1-like Treg. These activated
Treg do not migrate from blood to lymph, as we observed in
the 1980s (289). In the site of immune attack, they can inhibit
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effector lineage T cells. This inhibition may include killing
effector cells, producing a quasi-clonal deletion in the graft.

Nature of activation and survival pathways for Treg is
complex and may involve different Th1, Th2, Th17 and Tfh
responses. IL-15 (379), TGF-b (380), IFN-g (381), IL-12 (360),
IL-4 (364) , IL-5 (369), IL-27 (382), IL-33 (383), IL-35 (384).
Frontiers in Immunology | www.frontiersin.org 14
Activated Treg in Transplant
Tolerance Are Different to Naïve
CD4+CD25+FoxP3+Treg
The precise mechanisms that effect suppression are not fully
known but include CD39 on Treg producing adenosine (385),
IL-35 inducing Treg (386, 387), or consumption of essential
FIGURE 3 | A schematic representation of two subpopulations of CD4+T cells produced by the thymus and one of several pathways for their activation by an
antigen and cytokines in peripheral lymphoid tissues and sites of inflammation. The activation by an antigen of effector lineage CD4+CD25-CD127+CD45RA+Foxp3-

cells induces them to produce cytokines that promotes activation of CD25+CD127loCD45RA+Foxp3+Treg that have been activated by antigen. This figure shows the
parallel pathways of activation of effector and regulatory CD4+T cells, when producing and being activated by Type-1 cytokines. The cytokines produced by the
effector cells are required for the full activation of Treg. Both lineages of cells have been produced by thymus and have migrated to peripheral lymphoid tissue. Their
subsequently recirculation from lymphoid tissue to blood and back to lymphoid tissue, is promoted by expression of CD62L and CCR7. This recirculation increases
their chances of recognizing antigens. In peripheral lymphoid tissue upon recognition of an antigen, both effector and regulatory CD4+T cell populations are activated
and proliferate. Effector lineage CD4+T cells start producing IL-2 and express IL-2R including CD25 (IL-2Ra chain). Naïve resting Treg expand polyclonally. During an
immune response naïve/resting CD4+CD25+CD127loCD45RA+Foxp3+T-bet-CCR7+Treg are activated by an antigen and the IL-2 produced by activated T effector
cells and are induced to express the receptor for late Th1 cytokines IL-12 and IFN−g. Naïve CD4+CD25+CD127+CD45RA+Foxp3-T-bet-CCR7+T cells also acquire
CD25, Foxp3 and T-bet expression but no longer express CD45RA. Transient expression of Foxp3 and CD25 on activated effector T cells blurs the distinction
between Treg and effector T cells. In the event of ongoing immune response, activated T effector cells, in the presence of IL-2 and IFN-g get further activated to
express the transcription factor t-bet and the chemokine receptor CXCR3. These activated effector CD4+T cells produce IFN-g, which together with IL-12 further
activate Treg to Th1-like Treg (CD4+CD25hiCD127loCD45RA-Foxp3hiT-bet+IFN-g+ CXCR3+). Th1-like Treg express mRNA for Th1 transcription factor T-bet, Th1
cytokine IFN-g and Th1 chemokine receptor CXCR3. Expression of CXCR3 enables these Treg to migrate to inflamed tissues, where they control immune
inflammation as in the graft and promote tolerance. Th-like Treg, such as Th1-like Treg are the mediators of transplant tolerance and are a hundred to a thousand-
fold more potent at suppression of rejection than naïve resting Treg. This figure only represents one pathway of activation of Treg and there are others such as Th-2
like Treg promoted by Th2 cells and Type-2 cytokines. The survival of highly activated Treg is dependent on continued antigen stimulation and key cytokines
produced by the inflammatory response, IL-2 alone does not sustain these cells and may inhibit them.
April 2022 | Volume 13 | Article 810798

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hall et al. Mechanisms of Transplant Tolerance
amino acids (388). Class II MHC expression may contribute to
control of inflammation.

It is the activated Treg that maintain immune tolerance, not the
resting naïve Treg described by the Sakaguchis. Such highly
activated Treg cells have not been generated in vitro as a therapy,
as most studies use polyclonal expansion of naïve Treg cultured with
rIL-2 with anti-CD3 and anti-CD28 mAb (206, 389). Some naïve
Treg cultured with rIL-2 and donor alloantigen have been trialled
(390). Therapy with Treg is beyond the scope of this review,
however the current limited understanding of the processes that
activate alloantigen specific Treg of high potency limits these cells
full potential when applied to the clinic. To our knowledge no highly
activated Th-like T reg have been trialled in the clinic.

Relevant to the key role of antigen activated, inflammation
seeking potent CD4+CD25+FoxP3+Treg, the main features are:

I. they suppress rejection at ratios of 1:1000 to effector
CD4+T cells and are more potent than naïve CD4+CD25+

FoxP3+Treg (391).
II. they are a small fraction of the CD4+CD25+FoxP3+ T cells

population and this population remains <5% of CD4+T cells
in hosts with transplant tolerance.

III. their survival is key to the maintenance of transplant
tolerance (392).

In contrast, naïve CD4+CD25+FoxP3+T cells only suppress
rejection when ratios of 1:1 are achieved. Such high ratios of naïve
CD4+CD25+T cells has only been achieved with rIL-2/anti-IL-2
complex therapy (393). As homeostatic mechanism prevents Treg
exceeding 10% of CD4+T cells. Other differences between naïve and
antigen activated CD4+CD25+FoxP3+Treg have been summarized
elsewhere (341, 366, 394, 395). Naïve Treg are identified as
CD4+CD25+FoxP3+CD127loCD45RA+T cells, and those that are
recent migrants from the thymus express CD31 (123, 396).
CONCLUSIONS- THE FULL NATURE OF
ALLOANTIGEN SPECIFIC TREG REMAINS
TO BE FULLY RESOLVED

For over 60 years the concept of “clonal deletion” has dominated
the mechanism of self- non self and transplant tolerance. At the
time the theory was proposed, there was no knowledge of T cells
or regulatory processes. The prime role of peripheral T cells, not
antibody, in allograft rejection was not appreciated.

The study of T cells, led to the discovery of numerous
pathways for the activation of effector T cells to distinct
functional subtypes including Th1, Th2, Th17, Tfh. Suppressor
T cells were described early in the T cell era but the reliance on
CD8 and I-J as markers of these cells led to a belief that
suppression was an artefact. Suppressor T cells were taboo
from the mid 1980s until the early 2000s.

Our work on alloantigen specific T regulatory cells in
transplant tolerance identified they were CD4+CD25+T cells
and were alloantigen-specific. FoxP3 expression is essential for
functioning Treg (397) and the induction of transplant tolerance
Frontiers in Immunology | www.frontiersin.org 15
(398). Studies of activated alloantigen-specific Treg were difficult
as they die rapidly ex vivo even if stimulated by specific
alloantigen (150, 340, 345). Recently others have reported that
activated CD4+CD25hiFoxP3hiCD45RA-Treg die and are hard to
get to proliferate (349, 399). What promotes the survival and
function of these activated Treg, is a key question to be resolved
to maximize their use in promoting transplant tolerance.

Our studies described above are one of the few to have
addressed this question, and identify at least three cytokines
(IL-12, IFN−g and IL-5) produced late in the immune response
by effector cells. These cytokines appear after production of
early cytokines such as IL-2 and IL-4 wanes. It is in this late
chronic phase of the allograft response that the activated
effector cells produce cytokines that activate alloantigen
specific Treg that mediate transplant tolerance by inhibition
of the rejection response at the site of inflammation.

At present and for the last 25 years, studies on Treg have
focussed on resting naïve Treg. These cells can be expanded by the
presence of IL-2 or IL-4, and possibly other cytokines that are yet to
be defined. The Treg that mediate transplant tolerance die without
activation by specific alloantigen and cytokines produced by the
ongoing effector response to the allograft. They do not mature in the
presence of IL-2, and do not need IL-2 to survive.

While cytokines such as IL-2 and IL-4 activate naïve
CD4+CD25+Foxp3+Treg they cannot sustain the highly
potent Treg, which become dependent on cytokines produced
in the late stages of activation of effector T cells when
production of IL-2 and IL-4 wanes. In Type 1 responses,
these are IFN-g and IL-12p70. In Type 2 responses, IL-5
continues to be produced as does IL-13, both of which are
anti-inflammatory (358, 361).

The early studies on neonatal thymectomy unmasked a dual
and parallel function of the thymus, first producing effector T
cells that were not fully deleted of auto-reactive clones, and a few
days later releasing T cells that suppress autoimmunity. We now
know these inhibi tors of autoimmunity are naïve
CD4+CD25+FoxP3+Treg. In neonatal tolerance induction, the
alloantigen could selectively activate the newly produced Treg to
suppress the allograft response. There were early cues that
neonatal tolerance was in part maintained by inhibitory forces.
It could be argued that tolerance induction in neonates uses the
same processes that protect against autoimmunity, where
CD4+CD25+FoxP3+Treg control the activation of auto reactive
cells that are not deleted during ontogeny.

There are many other immune mechanisms that can come
into play, including response of the graft, loss of donor antigen
presenting cells, and overactivation of the immune response,
leading to exhaustion. We are still some way from understanding
all these mechanisms, especially the multiple pathways of
activation of naïve Treg, We recently reported that naïve
CD4+CD25+Treg cultured with IL-2 and alloantigen are
induced to express CD8 as well as CD4, and the CD4+CD8+T
cells are the potent alloantigen specific Treg (370). This finding
raises the possibility naïve CD4+CD8-CD25+FoxP3+Treg could
produce CD8+Treg. Many other types of regulatory cells have
been described but our focus was on alloantigen specific
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CD4+CD25+FoxP3+Treg as this is the most common and
dominant regulatory cell.

It is increasingly apparent that specific alloantigen activated
CD4+CD25+FoxP3+Treg, not naïve Treg mediate alloantigen
specific transplant tolerance. How to induce them and monitor
them remains a challenge. Harnessing the potent antigen-specific
Treg, may lead to tolerance to grafts in patients. It is also
apparent that in many models of Transplant Tolerance, clonal
deletion is not present and is not necessary.

Within the heterogenous populations of CD4+CD25+FoxP3+

CD127loTreg, the highly activated Treg express more CD25 and
FoxP3. These cells die and are thought not to proliferate, leading
to the belief they serve little or no function. This has parallels
with Medawar and Florey’s dismissal of small lymphocytes and
thymus derived cells, mentioned above. More intense study of
these cells may draw us closer to solving how to induce
transplant tolerance.
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