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The primary goal of red blood cell (RBC) transfusion is to supply oxygen to tissues

and organs. However, due to a growing number of studies that have reported negative

transfusion outcomes, including reduced blood perfusion, there is rising concern

about the risks in blood transfusion. RBC are characterized by unique flow-affecting

properties, specifically adherence to blood vessel wall endothelium, cell deformability,

and self-aggregability, which define their hemodynamic functionality (HF), namely their

potential to affect blood circulation. The role of the HF of RBC in blood circulation,

particularly the microcirculation, has been documented in numerous studies with animal

models. These studies indicate that the HF of transfused RBC (TRBC) plays an

important role in the transfusion outcome. However, studies with animal models must

be interpreted with reservations, as animal physiology may not reflect human physiology.

To test this concept in humans, we have directly examined the effect of the HF of

TRBC, as expressed by their deformability and adherence to vascular endothelium,

on the transfusion-induced effect on the skin blood flow and hemoglobin increment in

β-thalassemia major patients. The results demonstrated, for the first time in humans,

that the TRBC HF is a potent effector of the transfusion outcome, expressed by the

transfusion-induced increase in the recipients’ hemoglobin level, and the change in the

skin blood flow, indicating a link between the microcirculation and the survival of TRBC

in the recipients’ vascular system. The implication of these findings for blood transfusion

practice and to vascular function in blood recipients is discussed.

Keywords: microcirculation, red blood cells, blood transfusion, RBC deformability, RBC adhesion, RBC

hemodynamic functionality

INTRODUCTION

Blood transfusion has long been considered a routine life-saving therapy that has revolutionized
medicine (Diamond, 1980). Donated blood units, routinely stored as packed red blood cells (PRBC)
are routinely stored for up to 35 or 42 days, depending on the preservation solution (Hess, 2006).
However, in recent years, there has been a growing concern about the efficacy and safety of the
transfusion of allogeneic stored blood (Glynn, 2008; Hillyer et al., 2008; Redlin et al., 2014), as many
studies have shown that PRBC transfusion caused damage rather than benefit to recipients. This
included prolonged mechanical ventilation, renal failure and sepsis, with increased hospitalization
andmortality in transfusion recipients (Sherk et al., 2000; Ho et al., 2003; Gong et al., 2005; Aronson
et al., 2008; Glynn, 2008; Hillyer et al., 2008; Koch et al., 2008; Leal-Noval et al., 2008; Marin et al.,
2013; Almac et al., 2014; Zimring, 2015). In particular, studies with patients suffering from trauma
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(Weinberg et al., 2012), sepsis (Sakr et al., 2007; Damiani et al.,
2015), or thalassemia (Vasileiadis et al., 2013), as well as patients
in the medical-surgical intensive care (Creteur et al., 2009), have
reported that PRBC transfusion reduced blood perfusion (Sakr
et al., 2007; Weinberg et al., 2012), oxygen saturation (Creteur
et al., 2009; Vasileiadis et al., 2013), oxygen delivery, and induced
tissue hypoxia (Hayes et al., 1994).

Some studies have attributed that to storage-induced lesion
to PRBC, showing better outcome with fresher vs. long-stored
PRBC (Tinmouth and Chin-Yee, 2001; Gonzalez et al., 2007; Kor
et al., 2009; Hess, 2010; D’Alessandro and Zolla, 2013; Damiani
et al., 2015; Kim et al., 2015; Obrador et al., 2015; Antonelou and
Seghatchian, 2016; Parviz et al., 2016).

However, other studies have not found relation between
storage duration and negative transfusion outcome, showing no
clinical benefit to using fresher over long-stored RBC (Remy
et al., 2016; Shah et al., 2016). The role of storage duration on
transfusion outcome is thus still a matter of debate (Lelubre and
Vincent, 2013; Brunskill et al., 2015).

Blood donations are routinely tested, on day of donation, for
immune compatibility and infectious agents, and are supplied by
the first-in-first-out (FIFO) criterion. However, the functionality
of transfused RBC, namely their ability to affect the transfusion
outcome is ignored. RBC transfusion is aimed at increasing the
recipients’ hemoglobin and tissue oxygenation. However, RBC
have unique flow-affecting properties, which play a key role in
blood circulation, and define their hemodynamic functionality,
namely their capacity to affect the recipients’ blood circulation.
The present review focuses on the role of transfused RBC FP on
the recipients’ blood circulation.

RBC FLOW-AFFECTING PROPERTIES (FP)

IN BLOOD CIRCULATION

RBC FP refer mainly to the cells’ deformability, potential
adherence to blood vessel all endothelium, and self-aggregability
(Shiga et al., 1990; Barshtein et al., 2007; Simmonds et al., 2013).

RBC deformability is the cells’ ability to adapt their
shape to enable their passage through microvessels, especially
the capillaries, which are narrower than the RBC. Reduced
deformability (increased rigidity) hinders blood perfusion and
impairs oxygen delivery in peripheral tissues (Parthasarathi and
Lipowsky, 1999; Sakr et al., 2007; Matot et al., 2013). Rigid
RBC can attenuate perfusion in peripheral tissues and directly
block microvessels, capillaries in particular (Mchedlishvili, 1998;
Cabrales, 2007). It has been shown that exchange transfusion
of rigid, aldehyde-fixated RBC reduced the flow rate in swine
(Pantely et al., 1988), and the functional capillary density in
hamsters (Cabrales, 2007). RBC deformability is also a major
determinant of their passage through the splenic vasculature;
reduced deformability hinders the cells passage and increases
splenic RBC sequestration and destruction (Warkentin et al.,
1990; Mohandas and Chasis, 1993; An and Mohandas, 2008;
Huang et al., 2014).

RBC adherence to endothelial cells (EC) of the blood
vessel walls (“adherence”) is normally insignificant, but it is

abnormally enhanced in many disease states. RBC/EC adhesion
decreases blood flow and increases the residence time of RBC
in the microcirculation (Yedgar et al., 2008). Enhanced RBC/EC
adhesion contributes to microcirculatory disorders observed in
diverse pathologies, particularly those associated with oxidative
stress (OS). In particular, it has been suggested that micro-vessel
occlusion observed in sickle cell disease and malaria, especially
cerebral malaria, is due to the adherence of sickle/malaria-
infected RBC to EC of the micro-vessel wall (Yedgar et al., 2008).
RBC/EC adherence is thus considered a potent catalyst of micro-
vessel occlusion (Hebbel et al., 1981; Kaul and Nagel, 1993; Kaul
et al., 1998, 2008; Hebbel, 2000).

RBC aggregability refers to the cells’ ability to form
multi-cellular aggregates, normally in a rouleau shape, in the
presence of plasma proteins, especially fibrinogen, or other
macromolecules (Skalak et al., 1981; Barshtein et al., 2007).
Under normal conditions, the flow-induced shear stress is
sufficient to modulate the aggregation as physiologically required
to enable adequate blood flow in the diverse blood vessels.
However, in pathological states, mainly those with low-flow or
RBC abnormalities, aggregates that are larger and stronger-than-
normal are formed, and higher shear stress is required for their
disaggregation (Chen et al., 1995; Ami et al., 2001). Elevated RBC
aggregation has been shown to be associated with cardio-vascular
diseases (Mohandas and Chasis, 1993; Barshtein et al., 2007), and
found to be correlated well with inflammatory indices of patients
with unstable angina, myocardial infarct and sepsis (Ami et al.,
2001). Increased RBC aggregation elevates blood viscosity and is
associated with the formation of an RBC-free layer at the wall of
large blood vessels. Accordingly, some studies suggested that the
increased viscosity elevates vascular resistance. However, other
studies suggested that RBC aggregation facilitates blood flow due
to the formation of a cell-free layer at the vessel wall. In addition
the viscosity-elevated shear stress leads to the production of the
vasodilator nitric oxide (Kim et al., 2006, 2009; Namgung et al.,
2011; Cho et al., 2015; Katanov et al., 2015; Ng et al., 2016).
These led to disparate views as to the role of RBC aggregation
in circulatory functions and disorders.

It is well known that pathological conditions or experimental
treatments of RBC usually affect multiple properties, whereas the
studies of RBC FP have generally focused on one property at a
time, thereby leaving the derivation of the specific, differential
effect of individual FP unclear.

This question was specifically addressed in a study, in which
the adherence of human RBC was differentially elevated by
treatment with H202 concentration that increased the adherence
without affecting the deformability. The perfusion of these RBC
into rat mesocecum, in a medium which did not induced
aggregation (free of macromolecules) induced a considerable
elevation of vascular resistance in rat mesocecum (Kaul et al.,
2008). In another study (Matot et al., 2008), rat blood was
stored for 7 days, during which its RBC deformability was
markedly decreased, while their adherence and aggregation
were insignificant, which is typical of rat RBC (Schlager et al.,
2010). The perfusion of this blood to rats reduced the liver
oxygenation, which led to liver necrosis. These studies (Kaul
et al., 2008; Matot et al., 2008) thus provide direct evidence
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for the independent contribution of RBC/EC adherence and
deformability to circulatory disorders.

Notably, RBC aggregates, even with the high aggregability
observed in pathological conditions, can be disaggregated by a
relatively low shear stress, such as 3–4 dynes/cm2, while a RBC
with increased adherence or reduced deformability might remain
adherent or rigid at a shear stress of 30–40 dynes/cm2 (Yedgar
et al., 2008). It thus seems that the potency of RBC aggregation to
induce vascular occlusion is much less significant.

TRANSFUSION OF PRBC AND

RECIPIENTS’ MICROCIRCULATION

The effect of PRBC transfusion on the recipients’ blood
circulation has been investigated in numerous studies, which
together presented inconclusive, even opposing results.

Nielsen et al. (2017) reviewed 17 studies to examine whether
or not PRBC transfusion improves tissue oxygenation and/or
the microcirculation in critically ill patients. They concluded
that the heterogeneity of study designs, methodologies and
study populations did not enable an appropriate meta-analysis.
Yet, in the majority of cases, RBC transfusion failed to result
in significant improvement in either tissue oxygenation or
microcirculatory flow in ICU patients.

A number of studies have made attempts to answer
the question whether the microcirculatory response to the
transfusion is sensitive to the storage duration of the transfused
PRBC (Walsh et al., 2004; Bennett-Guerrero et al., 2009; Kiraly
et al., 2009; Weinberg et al., 2013; Yürük et al., 2013; Stowell
et al., 2017). While some studies reported that long-stored
units impaired circulatory functions, such as gastric mucosal
oxygenation status (Marik and Sibbald, 1993), and perfused
capillary vascular density (Weinberg et al., 2013), others have
not observed a significant correlation between the PRBC storage
duration and the transfusion-induced change in the recipients’
circulatory functions (Walsh et al., 2004; Stowell et al., 2017).

ROLE OF RECIPIENTS’

PRE-TRANSFUSION CONDITIONS IN

TRANSFUSION-INDUCED CHANGE IN

CIRCULATORY FUNCTIONS

On these grounds, of particular interest are the studies that
pointed to the pre-transfusion conditions of the patients as
an important factor in the transfusion-induced change in the
recipients’ circulation. These studies (Casutt et al., 1999; Sakr
et al., 2007; Creteur et al., 2009; Sadaka et al., 2011; Weinberg
et al., 2012) have suggested that patients who had lowered
tissue oxygenation or microcirculatory flow indices prior to
transfusion, have benefitted by the transfusion, showing a
significant improvement in these indices. Conversely, patients
who had normal values of these indices showed either no
improvement or a decline after transfusion.

This is further supported by our recent study, showing that
the transfusion-induced change in the recipients’ skin blood
flow (1SBF) was inversely related to the recipients’ SBF before

transfusion (SBFB).1SBF decreased, and was even negative, with
increasing SBFB (Barshtein et al., 2016). This implies that patients
with the most severe tissue oxygenation or microcirculatory
derangements (prior to transfusion) benefit the most from the
transfusion.

This phenomenon also provides partial explanation for
the discrepancy between the above studies showing opposing
effects of PRBC transfusion on the recipients’ blood circulation
(Friedlander et al., 1998; Sakr et al., 2007).

RBC deformability had been shown to decrease in critically
ill patients (Friedlander et al., 1998). As noted above, RBCs
with decreased deformability are assumed to hinder the passage
through the microvessels. However, Friedlander et al. found that
the RBC deformability of transfused septic patients was elevated
by the PRBC transfusion, and suggested that this improvement
is due to the replacement of previously rigidified cells with
newer, more functional RBCs (Friedlander et al., 1998). Hence,
transfusion may be deleterious in patients with adequate RBC
deformability, but may have positive outcome in patients with
reduced RBC deformability.

The mechanism of this phenomenon is not fully understood,
but we can speculate that for patients with relatively rigid RBC,
such as those with critical illness, e.g., sepsis (Baskurt et al., 1998;
Condon et al., 2003; Donadello et al., 2015), the transfusion of
PRBCs may enter to the bloodstream RBC with relatively higher
deformability, resulting in the improvement of microcirculatory
perfusion (Friedlander et al., 1998). This points to the effect of
PRBC FP on circulatory functions in transfusion recipients.

ROLE OF TRANSFUSED RBC

FLOW-AFFECTING PROPERTIES (FP) IN

TRANSFUSION-INDUCED CHANGE IN

RECIPIENTS’ BLOOD CIRCULATION

As noted above, the experimental evidence in animal studies
supports the hypothesis that FP of transfused RBC are
important determinants of the transfusion outcome, especially
the recipients’ blood microcirculation. However, as already
stated, “animal studies must be interpreted with a number of
caveats, as animal biology may not reflect human biology”
(Zimring, 2015).

To bridge this gap, we directly studied, for the first time
in humans, the effect of the HF of TRBC, expressed by their
deformability and adherence, on the immediate transfusion
outcome. This was measured by the transfusion-induced change
in the recipients’ skin blood flow, 1SBF, determined by the
difference in SBF before (SBFB) and after transfusion. In this
study we employed β-thalassemia major (TM) patients, who
are treated with long-life, frequent blood transfusions (every
2–4 weeks). It was clearly found that 1SBF increased with
increasing deformability of the TRBC (Barshtein et al., 2016).
This was further supported by the data of the individual patients
who received four consecutive transfusions over a period of
8–10 weeks. For each of the nine patients, 1SBF increased
with increasing TRBC deformability (Barshtein et al., 2016). In
some cases, when the TRBC deformability was low and SBFB
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was relatively high, the transfusion reduced the recipients’ SBF
(1SBF < 0) (Barshtein et al., 2016).

In another study (unpublished), we have found that 1SBF
depended on the difference in deformability and adherence
between the TRBC and the recipients RBC; when the PRBC
adherence/rigidity were lower than those of the recipients’ RBC,
the recipients’ blood flow was increased (1SBF > 0). Conversely,
when the TRBC rigidity/adherence was higher, the recipients’
blood flow was decreased (1SBF < 0). This corresponds to the
suggestion of Friedlander et al. (1998) that PRBC transfusion to
critically ill patients improved their blood circulation, as their
RBC deformability is especially low.

Taken together, these findings demonstrate, for the first time
in humans, the important role of the hemodynamic functionality
of transfused RBC, as expressed by their FP, in transfusion
outcome.

TRANSFUSED RBC HEMODYNAMIC

FUNCTIONALITY AND VASCULAR

FUNCTION

Transfused RBC (TRBC) can modulate vascular function in
differing and opposing ways via their effect on the plasma NO
level. On one hand, TRBC may induce vasodilation in two ways:
the release of ATP, which activates NO production in the blood
vessel wall endothelial cells (EC) (Cao et al., 2009; Cortese-Krott
and Kelm, 2014; Sikora et al., 2014), and the direct release of
NO from the S-nitrosylated hemoglobin (SNO-Hb) (Bennett-
Guerrero et al., 2007; Reynolds et al., 2007). On the other hand,
a significant part of the TRBC are hemolyzed in the vascular
system shortly after transfusion, and release free Hb, which is a
scavenger of NO, thereby exerting vasoconstriction (Rusak et al.,
2014; Damiani et al., 2015). Notably, the lysis of TRBCs has been

shown to correlate with the fraction of the rigid, undeformable
RBC in the TRBCs (Orbach et al., 2017), and transfusion of rigid
PRBC causes elevation of cell-free Hb level in the bloodstream
(Damiani et al., 2015).

Taken together, the HF of TRBC seems to play a complex
role in modulating vascular function, which seems to depend
on the ratio between the cells with normal HF and those with
impaired HF. Yet, further investigation is required to elucidate
this complex mechanism.

CONCLUSION

The findings and considerations summarized above demonstrate
the important role played by the HF of TRBC in the response
of the recipients’ vascular function. However, this is a complex
response consisting of various effects of the deformability and
adherence of the transfused RBC. These include direct effects on
blood flow, primarily in the microcirculation, and their differing
and opposing effects on vaso-modulation.

The present review presents direct evidence, in animal models
and in humans, that the HF of transfused PRBC, as expressed
primarily by their deformability and adherence to EC, is a
potent effector of transfusion outcome. This strongly supports
the need for considering the hemodynamic quality of transfused
RBC in blood banking. The assessment of PRBC HF would
introduce a powerful tool for reducing transfusion-related risks
and improving transfusion therapy.
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