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The interleukin-10 gene-deficient (Il10−/−) mouse is a model of human inflammatory bowel disease and Ppara has been identified
as one of the key genes involved in regulation of colitis in the bacterially inoculated Il10−/− model. The aims were to (1) characterize
colitis onset and progression using a histopathological, transcriptomic, and proteomic approach and (2) investigate links between
PPARα and IL10 using gene network analysis. Bacterial inoculation resulted in severe colitis in Il10−/− mice from 10 to 12 weeks
of age. Innate and adaptive immune responses showed differences in gene expression relating to colitis severity. Actin cytoskeleton
dynamics, innate immunity, and apoptosis-linked gene and protein expression data suggested a delayed remodeling process in
12-week-old Il10−/− mice. Gene expression changes in 12-week-old Il10−/− mice were related to PPARα signaling likely to control
colitis, but how PPARα activation might regulate intestinal IL10 production remains to be determined.

1. Introduction

The interleukin-10 gene-deficient (Il10−/−) mouse is a well-
established model of human inflammatory bowel disease
(IBD) and used to study the complex host-environment (e.g.,
diet, bacteria) interactions and the action of potential ther-
apeutics [1]. Il10−/− mice develop a Crohn’s disease (CD)-
like colitis when exposed to commensal bacteria, whereas
no colitis is observed in the wildtype and germ-free Il10−/−

mice, which suggests an important role for IL10 in controling
tolerance towards commensal bacteria and in preventing
colitis in these mice [2, 3]. IL10 signals through Janus kinase

1/signal transducer and activator of transcription 3 and
p38 mitogen-activated protein kinase-dependent pathways
to induce suppressor of cytokine signaling-mediated [4] or
heme oxygenase 1-dependent [5] anti-inflammatory mecha-
nisms. The immunopathology in Il10−/−mice represents a T-
helper cell type 1 (Th1)- and Th17-polarized inflammation
with high colonic expression of interferon gamma (IFNγ) as
the main Th1-derived pro-inflammatory cytokine and IL17
[6, 7].

Both the severity and time-course of colitis in Il10−/−

mice are influenced by the inbred strain background when
maintained under the same conditions. The colitis in Il10−/−
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mice on the C57BL/6J background is mild to moderate
[6], compared with when the Il10 tm1Cgn allele is bred into
the 129/SvEv, C3H/HeJBir, or C3H.SW background strains,
where colitis is severe and progressive [8–10]. This suggests
that other genes or gene interactions particular to the genetic
background of each strain modify the development of colitis.
Intestinal inflammation also develops more consistently
when Il10−/− mice (C57BL/6J background) raised under
conventional conditions are inoculated with a mixture of
pure Enterococcus isolates (E. faecalis and E. faecium) alone,
or combined with conventional intestinal flora derived
from healthy C57BL/6J mice [11]. The timeline of colitis
development is unknown in these bacterially inoculated
Il10−/− (C57BL/6J) mice.

Studies to date have mostly applied transcriptomic [11–
14] and proteomic [15] methods separately to intestinal
tissue samples of various murine models of experimental
colitis and of IBD patients. It is important to integrate
gene and protein expression data to get a more compre-
hensive understanding of phenotypic changes. A previous
study showed that conventional non-inoculated Il10−/−

mice (C57BL/6J background) developed increasing colonic
inflammation, peaking at 12 weeks of age [16].

The first hypothesis of this study was that distinct gene
and protein expression patterns could be defined in non-
inflamed (7 weeks of age) and colitic (12 weeks of age)
Il10−/− mice. Since the time-course of colitis in the bacterially
inoculated Il10−/− mouse model (C57BL/6J background)
used by Roy et al. [11] is undefined, the first aim was to
characterize colitis onset and progression in this model and
to extend previous studies [11–15] by using a combined
histopathological, transcriptomic, and proteomic approach.

Gene network analysis identified the Ppara gene as one of
the key genes with decreased expression levels associated with
severe colitis when comparing bacterially inoculated Il10−/−

and C57 mice [17]. A critical role for PPARα in regulating
inflammation was first identified by Devchand et al. [18] who
observed a prolonged inflammatory response in Ppara−/−

mice. PPARα-ligands showed anti-inflammatory effects in
experimental colitis including the Il10−/− mouse model [19,
20]. Based on these studies [17–20], the second hypothesis
was that PPARα and IL10 signaling pathways are interlinked
during colitis. The secondary aim was to investigate the
involvement of PPARα regulation in Il10−/− mice before and
after colitis onset using gene network analysis.

2. Methods and Materials

2.1. Animals and Induction of Colitis. A total of 30
male Il10−/− (C57BL/6J background, formal designation
B6.129P2-Il10<tm1Cgn>/J) and 30 male C57 control
(C57BL/6J) mice were obtained from The Jackson Labo-
ratory (Bar Harbor, Maine, USA). For convenience and
consistency in reporting, their age was defined as 35 days or 5
weeks of age at the start of the study. Mice were individually
housed in standard shoebox size cages containing untreated
wood shavings (Hi Tech Security Disposals Ltd., Auckland,
New Zealand) and maintained under conventional condi-

tions with a temperature of approximately 22◦C, 50% relative
humidity, and a 12-hour light-dark cycle.

After 4 days, all mice were inoculated orally with a
mixture of pure E. faecalis and E. faecium strains and
complex intestinal flora derived from healthy C57BL/6J
mice raised under conventional conditions to obtain a
more consistent and reproducible intestinal inflammation, as
described previously [11].

2.2. Experimental Design. The objective of this experiment
was to study the onset and progression of colitis and asso-
ciated changes in gene and protein expression in bacterially
inoculated Il10−/− mice as a model for future nutrigenomics
studies to explore the effects of nutrition on IBD pathophys-
iology. Mice were randomly assigned to 5 sampling groups
(7, 8.5, 10, 12, and 14 weeks of age). The mice had free
access to water and were fed an AIN-76A standard powder
diet prepared in-house. The diet composition has been
described previously [11]. Throughout the experimental
period, dietary intake was estimated daily by weighing
uneaten food and adjusted to equal the mean amount of
food consumed by the Il10−/− mice on the previous day. All
mice were weighed thrice a week and carefully monitored for
disease symptoms (weight loss, soft feces, inactivity).

Tissue sampling was performed at 7, 8.5, 10, 12, and 14
weeks of age. Mice were euthanized by CO2 asphyxiation
and cervical dislocation, and cardiac puncture was then
performed. There was a fast-feed period prior to sampling as
described previously [17], and the intestine was isolated and
cut open lengthwise. One piece of each intact intestinal sec-
tion (duodenum, jejunum, ileum, and colon) was stored at
room temperature in 10% phosphate-buffered formaldehyde
for histopathological assessment; another was immediately
frozen in liquid nitrogen and kept at −80◦C for gene and
protein profiling.

2.3. Histology. The histopathological assessment of the full
thickness intestinal sections (duodenum, jejunum, ileum
or colon) and the scoring method have been described
previously [17]. This method produces a histological injury
score (HIS) for each sample. It is the sum (total HIS) of
principal histological aspects (inflammatory cell infiltration,
tissue destruction, and tissue repair). A total HIS score
of each intestinal section from 0–3 was regarded as no
inflammation, from 4–6 as moderate inflammation and ≥7
as severe inflammation.

2.4. RNA Isolation, Microarray Hybridization, and Analysis.
RNA isolation and microarray hybridization have been
described previously [17]. The microarray experiment used
15 arrays based on the histopathological assessment of the
colon: three colon samples of Il10−/− mice at 7 weeks of age
(no colitis), four of Il10−/− mice at 12 weeks of age (moderate
colitis), four of C57 mice at 7 weeks of age (no colitis),
and four of C57 mice at 12 weeks of age (no colitis). At 7
weeks of age, one Il10−/− mouse died of unknown causes
and two others were already showing moderate signs of colon
inflammation and were thus excluded. Each individual RNA
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sample was hybridized with a reference sample onto the
array. Array data were submitted to the Gene Expression
Omnibus, accession number GSE17990.

Statistical analysis and quality assessment of the microar-
ray data were performed using linear models for microarray
analysis (limma) within the Bioconductor framework as
described previously [17]. All arrays passed the quality
control and were included in the analyses. Intensity ratios
for all microarray spots were normalized using a local
linear regression analysis (LOESS) to remove the effect of
systematic variation in the microarrays and no background
correction was necessary due to homogeneous hybridization.
The normalized array data of each time point were log2-
transformed and averaged. For each comparison of interest
(Il10−/− versus C57 mice 7 weeks and Il10−/− versus C57
mice 12 weeks), a list of differentially expressed genes was
generated.

2.5. Quantitative RT-PCR. Quantitative RT-PCR (qRT-
PCR) has been described previously [17]. Ten genes (ATP-
binding cassette subfamily B member 1, Abcb1A; alde-
hyde dehydrogenase 1 family member A1, Aldh1A1; car-
boxylesterase 2, Ces2; fatty acid binding protein 2, Fabp2;
insulin-like growth factor binding protein 5, Igfbp5; inter-
leukin 1 beta, Il1B; matrix metallopeptidase 13, Mmp13;
Ppara, sterol regulatory element binding protein 1, Srebf1
and sulfotransferase family 1A phenol-preferring member
1, Sult1A1) were used for quantification and microarray
verification. Genes were selected to include both significantly
and non-significantly regulated genes pertaining to pathways
affected by inflammation, for example, those related to
detoxification, transport, immunity, or metabolism. The
primer sequences for target and reference genes are available
upon request. The mRNA expression of all genes reported
was normalized to calnexin (Canx) gene expression.

2.6. Protein Isolation, LC-MS Analysis of Peptides, MS/MS
Data Processing, and Analysis. The protein-containing lower
layer of the same TRIzol processed sample from which
RNA was derived was used for protein isolation and fur-
ther identification by liquid chromatography and tandem
mass spectrometry (LC-MS/MS). The protein pellets stored
in 0.3 M guadinine hydrochloride in 95% ethanol were
processed according to manufacturer’s instructions (TRIzol
protocol, Invitrogen) through two washes and a final ethanol
wash, and then allowed to air-dry. Resolubilization buffer
(7 M urea (BioRad), 2 M thiourea (Sigma), 4% CHAPS
(BioRad), 40 mM Tris (Invitrogen)) was added and samples
incubated at 22◦C, 600 rpm, overnight in a Thermomixer
(Eppendorf). After centrifugation, supernatants were used
to determine protein concentration using the Bradford
protein assay with bovine serum albumin as a standard [21].
Volumes of samples that required pooling were calculated to
produce total aliquots of 50 μg per treatment. Gels were run
as duplicate biological replicates using the same samples as
described for the microarray design. The 50 μg total protein
of treatment and control samples were labeled with 200 pmol
of cyanine-2 and cyanine-5 dyes (GE Healthcare, Uppsala,

Sweden), respectively, as described by the manufacturer. The
labeled treatment and control sample were combined to
make 100 μg protein and run on Immobiline Drystrips (GE
Healthcare, 18 cm, pH 3–11 nonlinear) in an equal volume
of 7 M urea, 2 M thiourea, 4% CHAPS, a few grains of
Bromophenol Blue (Sigma), 2% pH 3–11 NL IPG buffer
(GE Healthcare), and 65 mM DTT buffer (Sigma) to separate
the proteins in the first dimension. The first dimension,
equilibration, and second dimension were performed as
previously described [22]. Precision Plus protein standard
plugs (BioRad) were used as molecular weight markers.
Immediately after electrophoresis, the gels were washed
in double-distilled H2O and visualized using a Typhoon
(TM) 9400 imager (GE Healthcare). The cyanine-2 images
were scanned using a 488 nm laser and a 520 nm band
pass 40 emission filter, whereas the cyanine-5 images were
scanned using a 633 nm laser and a 670 nm band pass 30
emission filter. All gels were scanned at a resolution of
200 μm, and analyzed using Phoretix 2D Evolution software
(Nonlinear Dynamics). Staining was performed by placing
gels into modified Neuhoff colloidal Coomassie stain (17%
ammonium sulphate, 3% phosphoric acid, 34% methanol,
0.1% Coomassie G-250) [23], after which gels were dried
on glass plates at room temperature under cellophane and
stored.

Differentially expressed proteins were only flagged as
significant where the fold abundance for each biological
replicate changed in the same direction and either both gave
a value either <−1.5- or >1.5- fold, or where one biological
replicate gave a value<−2-or >2-fold and the other biological
replicate gave a value <−1.3 or >1.3. Significant protein spots
were excised from the dried gels, rehydrated in deionized
water, and digested with trypsin. Briefly, 25 mM ammonium
bicarbonate in 50% acetonitrile was added to the gel pieces
which were then incubated in a Thermomixer (1400 rpm,
22◦C, 10 minutes) with up to two repeats of this step,
depending on the density of the original staining. The gel
pieces were then dried in a vacuum centrifuge (Speedyvac)
and rehydrated at room temperature in a trypsin/HCl mix
(20 μL trypsin of a stock made from 25 μg vial of Roche
modified trypsin (sequencing grade) in 50 μL 1 mM HCl
(BDH), 200 μL NH4HCO3 (Sigma) pH 8.0, 10 μL 100%
acetonitrile (BDH)). Following overnight incubation in the
Thermomixer (37◦C, 600 rpm), 30 μL of 5% formic acid
(Pierce) in 50% acetonitrile (Sigma) was added to the gel
pieces which were sonicated for 5 minutes. The samples
were briefly centrifuged and the supernatent removed which
was repeated twice. Two additional extractions in formic
acid/acetonitrile were repeated and pooled. Recovered pep-
tides were concentrated by reducing the final volume of
the extracts to approximately 10 μL in a vacuum centrifuge,
followed by resuspension to a volume of 20 μL with formic
acid/acetonitrile. The peptide solutions were stored at−20◦C
until MS was performed.

Tryptic peptides were separated and analyzed using
an Ettan multidimensional liquid chromatography system
(GE Healthcare) coupled to an LTQ linear ion trap mass
spectrometer with a nanospray ionisation interface (Ther-
moQuest, Finnigan, San Jose, CA, USA). Samples (2 μL)
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Table 1: Body weight and dietary intake of Il10−/− and C57 mice at 7, 8.5, 10, 12, and 14 weeks of age.

Weeks of age
Body weight (g) Dietary intake (g)

C57 mice Il10−/− mice C57 mice Il10−/− mice

7 18.8 ± 0.4 18.2 ± 0.8 3.4 ± 0.1 3.3 ± 0.2

8.5 20.3 ± 0.9 19.0 ± 0.3 3.6 ± 0.1 3.9 ± 0.3

10 22.5 ± 0.6 19.9 ± 0.4∗ 3.7 ± 0.0 3.9 ± 0.1

12 24.8 ± 0.7 21.0 ± 0.8∗ 3.6 ± 0.1 3.5 ± 0.2

14 25.3 ± 0.4 19.8 ± 0.7∗ 3.6 ± 0.1 3.5 ± 0.3

Data shown as mean ± standard error of mean (SEM) per group of mice sacrificed. Body weight was measured thrice weekly and dietary intake was estimated
and adjusted daily to equal the mean amount of food consumed by Il10−/− mice on the previous day to ensure similar intakes between C57 and Il10−/− mice.
∗P < 0.05 comparing Il10−/− versus C57 mice of the same age.

were injected onto a 300 μm ID × 5 mm trap column
(Zorbax 300-SB C18) for in-line desalting and separated on
a nanoscale reverse phase chromatography column 75 μm
ID × 150 mm, 3 μm (LC Packings, San Francisco, CA, USA)
in high-throughput configuration at 280 nL/minute with a
linear gradient from 0 to 60% B over 50 minutes (A: 0.1%
formic acid; B: 84% acetonitrile and 0.1% formic acid). Data
were acquired using a top 3 experiment in data-dependent
mode with dynamic exclusion enabled.

MS/MS data were analyzed using TurboSEQUEST pro-
tein identification software [24, 25] and spectra were
searched against the NCBI (National Center for Biotech-
nology Information) Mus musculus database. Modifications
were set to allow for the detection of oxidized methionine
(+16) and carboxyamidomethylated cysteine (+57). The
criteria used for a positive peptide identification for a doubly
charged peptide were a correlation factor (XCorr) >2.0,
a delta cross-correlation factor (dCn) >0.1 (indicating a
significant difference between the best match reported and
the next best match), and a high preliminary scoring (Sp).
For triply charged peptides the correlation factor threshold
was set at 2.5. All matched peptides were confirmed by visual
examination of the spectra.

2.7. Bioinformatics Analysis of Pathways and Functions.
IPA (Version 7.0, Ingenuity Systems Inc., Redwood City,
CA, USA) was used for pathway, network, and functional
analyses of differentially expressed probes in the microarray
dataset as described previously [17] and of differentially
expressed proteins. EASE (software version 2.0, National
Institutes of Health, USA) was used to identify enriched
biological themes within gene lists using GO category over-
representation analysis [26]. A stringent set of gene probes
differentially expressed according to the microarray analysis
were uploaded into EASE along with a list of all genes on
the microarray to test for over-representation of annotation
classes. An EASE score (adjusted Fisher’s exact test for
statistical significance) was calculated for likelihood of over-
representation of hierarchical categories based on biological
processes, molecular functions, and cellular components
using the GO public database. Gene categories with an EASE
score <0.05 and an FDR or q < 0.05 were considered to
be significantly over-represented. The data files containing
gene and protein identifiers (gene and protein accession

number) and the corresponding changes in expression levels
were uploaded into the IPA program. Genes and proteins
from the dataset that satisfied the cut-off criteria of FC ≥
1.5 (up- or down-regulated), FDR or q < 0.05, and FC
≥ 1.5, respectively, were considered for analyses. Pathways
were considered to be affected by the development of colon
inflammation when the probability value calculated by the
Fisher’s exact test was <0.01 and where at least 20% of the
genes from a particular pathway were differentially expressed
in the microarray dataset.

2.8. Statistical Analysis. All statistical analyses (body weight,
dietary intake, HIS, and qRT-PCR data) were performed
using ANOVA in GenStat (10th edition, VSN International,
Hemel Hempstead, UK), on log-transformed data where
necessary in cases of unequal variances. A probability value
of less than 0.05 was considered as significant while a
probability value greater than 0.05 but lower than 0.10 was
considered a trend.

3. Results

3.1. Animal Body Weight and Dietary Intake. There was no
difference between Il10−/− and C57 mice in terms of average
body weight at the beginning of the experiment (16.5 ±
0.3 versus 16.9 ± 0.2 g, Table 1). During the course of the
experiment, Il10−/− mice gained weight more slowly (with
a loss in body weight observed between 12, and 14 weeks of
age) than C57 mice, resulting in a lower average body weight
at 7, 8.5, 10, 12, and 14 weeks of age when compared to
the C57 mice. This was significant (P < 0.05) at 10, 12, and
14 weeks of age. Dietary intake was not different between
Il10−/− and C57 mice at any time point in the study (Table 1).

3.2. Development and Characterization of Intestinal Inflam-
mation. Histological analysis showed that the average total
HIS in Il10−/− mice was highest in the colon, and only two
mice displayed moderate inflammation in the ileum. No
signs of inflammation were observed in the duodenum or
jejunum of Il10−/− mice or in any of the different intestinal
sections of C57 mice (Figure 1). Therefore, statistical analysis
was performed on the colon tissue of Il10−/− mice. There was
a significant difference in the average total HIS in the colon
between Il10−/− and C57 mice at 8.5, 10, 12 and 14 weeks of
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Table 2: Time of onset and incidence of colon inflammation in
Il10−/− mice.

Weeks of age 7 8.5 10 12 14

Number of mice sampled

Il10−/− mice (total 281) 5 6 6 6 5

C57 mice (total 30) 6 6 6 6 6

Number of mice with inflamed
colon2

Il10−/− mice 2 4 6 6 4

C57 mice 0 0 0 0 0

Incidence of colon inflammation (%)

Il10−/− mice 40 67 100 100 80

C57 mice 0 0 0 0 0
1
Two Il10−/− mice died during the study due to unknown causes. 2Mice

were regarded as inflamed when their total colon histological injury score
(HIS) was >3 (4–6 moderate inflammation, ≥7 severe inflammation). All
C57 mice had a total colon HIS ≤ 3.

age. Two Il10−/− mice at 7 weeks of age showed initial signs of
colon inflammation, but not the other three mice (Table 2).
Most Il10−/− mice developed moderate colitis already by 8.5
weeks of age. It became apparent that the average total colon
HIS of Il10−/− mice increased over time peaking between 10
and 12 weeks of age, and a decrease between 12 and 14 weeks
of age.

Colitis was mainly characterized by inflammatory cell
infiltration (monocytes and neutrophils) but also featured
tissue destruction (crypt loss and oedema) and tissue repair
(hyperplasia). The colon of Il10−/− mice was highly inflamed
by 10 weeks of age and showed moderate inflammation
by 12 and 14 weeks of age (Figure 1). The total colon
HIS in 10-week-old Il10−/− mice was significantly higher
(P < 0.05) and a trend was observed at 12 weeks of age
(P = 0.07) compared to 7-week-old Il10−/− mice. There
was also less variability in the individual colon HIS at 8.5,
10, and 12 weeks compared to 7 and 14 weeks of age. The
inflammatory lesions were transmural involving most layers
of the intestinal wall. There was thickening of the mucosal
layer and formation of crypt abscesses with loss of goblet cells
(Figure 2).

3.3. Inflammation-Induced Changes in Expression Profiles.
Seven and 12 weeks of age were chosen to assess changes
in colon gene and protein expression because these two
time points represented no inflammation (7 weeks of age)
in most of the mice (two mice with signs of inflammation
were excluded) and moderate inflammation (12 weeks of
age) in Il10−/− mice. Pathway and network analysis using
IPA was conducted on the transcriptome and proteome
data. The transcriptome data were also subjected to GO
analysis using EASE to confirm and further support the IPA
analysis. As expected, at the gene level, more changes were
observed at 12 weeks than at 7 weeks of age in Il10−/− mice
compared to C57 mice of the same age, with genes mostly
being up-regulated at each time point in the colon of Il10−/−

mice. Those gene changes are illustrated in Figure 3 which

shows the genes over-represented in the EASE analysis when
comparing Il10−/− and C57 mice at 7 and 12 weeks of age.
The mean expression of selected genes obtained by qRT-PCR
mostly confirmed the changes in expression levels from the
microarray analysis. The changes in expression levels of Ces2,
Il1B, Igfbp5, and Srebf1 genes became significant in the colon
of 7-week-old and 12-week-old Il10−/− mice, respectively by
using the more sensitive qRT-PCR analysis (Table 3).

Only four consistent protein expression changes were
identified at 7 weeks of age in a direct comparison of Il10−/−

versus C57 mice across the pooled biological replicates (pool
1 and pool 2), with two decreased and two increased in
expression levels. Of these, only two met the threshold
criteria and were visible after staining for spot picking and
subsequent identification. At 12 weeks of age, 44 consistent
protein expression changes were observed in Il10−/− versus
C57 mice across the pooled biological replicates (pool 1 and
pool 2) with 22 decreased and 22 increased in expression
levels. Here, 42 protein expression changes met the threshold
criteria and were selected for subsequent identification. The
combined 44 spot-features identified over the two time
points represented 40 unique proteins (excluding multiple
isoforms due to post-translational modifications) and are
shown in the gel image depicted in Figure 4, and listed in
Table 4. In seven cases, two or more proteins or protein
isoforms were identified in the same 2D gel spot-feature.

Several of these biological functions and metabolic and
signaling pathways have previously been shown to be gov-
erned by PPARα after ligand-induced activation, including
fatty acid-, lipid and amino acid metabolism, cell cycle,
immune response, and cell death both in the small intestine
[27] and colon [17].

3.4. Gene Ontology, Network/Function, and Pathway Analysis
of Colonic Genes and Proteins of Il10−/− and C57 Mice at 7
Weeks of Age. Genes differentially expressed at 7 weeks in
the colon of Il10−/− compared to C57 mice were classified
into 1493 GO categories. Only 21 of these categories were
over-represented based on an EASE score <0.05 and q <
0.05; these are listed in Table 5. The EASE analysis of
gene expression indicated that several biological processes
were over-represented such as antigen presentation, carbo-
hydrate, and lipid metabolism for energy utilization and
steroid metabolism. Over-represented functional categories
included MHC class II receptor activity. Most of the colonic
genes in these GO categories showed up-regulated expression
in Il10−/− compared to C57 mice at 7 weeks of age.

In IPA, 50 networks were generated from the genes
differentially expressed in the colon of Il10−/− mice relative
to C57 mice at 7 weeks of age. The themes of the five
highest scoring networks (P < 0.05 using Fisher’s exact
test) which encompassed the highest number of differentially
expressed genes in the transcriptome dataset were cancer,
cell cycle, growth, proliferation, and death and cell-mediated
immune response (Table 6). As there were only two proteins
(adenylate cyclase-associated protein 1 and glutamate dehy-
drogenase 1) that had lower abundance, and one protein
(peroxiredoxin) with higher abundance between Il10−/− and
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Figure 1: Total histological injury score for duodenum, jejunum, ileum, and colon sections of Il10−/− and C57 mice at 7, 8.5, 10, 12, and 14
weeks of age. The individual scores and the average score (—) of each sampling group are shown. Statistical analysis was performed only for
total colon HIS of Il10−/− mice and different letters mean that total colon HIS differs compared to 7-week-old Il10−/− mice (a, b, P < 0.05
and c, 0.05 < P < 0.1).

C57 mice (both at 7 weeks of age), no network analysis was
carried out for protein in IPA.

The most significantly regulated pathways in IPA con-
taining most of the differentially expressed genes (20%)
included antigen presentation (MHC class II genes such
as Hla-Dm, Hla-Dq, and Hla-Dr members) and interferon
signaling pathway for which the expression levels of genes
were mostly increased (Table 7).

3.5. Gene Ontology, Network/Function, and Pathway Analysis
of Colonic Genes and Proteins of Il10−/−and C57 Mice at
12 Weeks of Age. At 12 weeks, differentially expressed genes
were classified into 1570 GO categories and 32 of these
categories were significantly over-represented with an EASE

score <0.05 and q < 0.05 and are listed in Table 8.
Genes in biological process categories associated with defense
response to biotic (e.g., pathogen) stimulus or stress were
the most over-represented among the up-regulated genes,
followed by humoral and innate immune response and anti-
gen presentation. Genes assigned to protein activation, such
as post-translational changes targeting membrane proteins,
were also over-represented, and were mostly up-regulated in
Il10−/−compared to C57 mice.

In IPA, 48 networks were generated from the colonic
genes differentially expressed in Il10−/−compared to C57
mice at 12 weeks of age. In Table 6, the top 3 biological func-
tions for the most significant transcriptomic and proteomic
networks are shown. These transcriptomic and proteomic
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(a) (b) (c)

Figure 2: Hematoxylin-eosin-stained colon sections of Il10−/− and C57 mice. (a) Colon section (×20) from a non-inflamed C57 mouse at 12
weeks of age. (b) Colon section (×100) from an Il10−/− mouse at 7 weeks of age with no inflammation. (c) Moderate to severe inflamed colon
section (×40) from an Il10−/− mouse at 12 weeks of age. Lesions involve most of the colon section with mainly monocyte and neutrophil
infiltration (←), crypt abscesses, and loss of crypt and goblet cells (�).

Table 3: Validation of gene expression results from microarray analysis using qRT-PCR.

Gene symbol
Fold change microarray Fold change qRT-PCR Canx

Il10−/− versus C57
7 weeks

Il10−/− versus C57
12 weeks

Il10−/− versus C57
7 weeks

Il10−/− versus C57
12 weeks

Abcb1A −3.4 −2.8 −5.2 −4.9

Aldh1A1 −1.5∗ −3.0 −1.5# −3.4

Ces2 −1.8∗ −3.1 −2.9 −5.6

Fabp2 −1.9 −5.6 −1.5# −9.8

Igfbp5 −1.5∗ 1.6∗ −1.9# 2.8

Il1B 1.8∗ 6.4 3.4 8.5

Mmp13 1.0∗ 1.8 2.7# 9.9

Ppara −2.0 −1.7 −5.6 −3.8

Srebf1 1.0∗ 1.0∗ 1.2# 1.8

Sult1A1 −3.2 −3.1 −3.6 −3.3

Canx (calnexin) reference gene used to to normalize the data; ∗microarray result was not significantly different using moderated t-statistics and false discovery
rate (FDR) control in limma; genes that satisfied the criterion of FC ≥ 1.5 and q < 0.05 were considered to be significantly different; #qRT-PCR result was not
significantly different using ANOVA.

networks share the following biological functions: cell-
mediated immune response is represented in transcriptome
4 and proteome 1, cancer is represented in transcriptome
2 and proteome 3, and cell-to-cell signaling and interac-
tion is represented in transcriptome 1 and 4. Thus, the
theme linking transcriptomic and proteomic networks is
cell migration and changes in tissue structure (implications
for actin cytoskeleton dynamics) as well as cell death with
associated inter- and intracellular signaling and initiation of
the immune response.

The most significantly regulated pathways in IPA fea-
turing most of the differentially expressed genes (20–
40%) included signaling processes (Table 7). The signaling
pathways included antigen presentation pathway (MHC class

I, e.g., Hla members and MHC class II, e.g., Hla-Dm, Hla-Dq,
Hla-Dr members, genes); graft-versus-host disease signaling
and allograft rejection signaling (e.g., Il1B, Tnfa), interferon
signaling (e.g., Ifng), role of RNA-dependent protein kinase
(PKR) in interferon induction and antiviral response (e.g.,
Bcl), dendritic cell maturation and complement system, and
the genes in those pathways were mostly up-regulated.

4. Discussion

This study characterizes colitis onset and progression at
the histopathological, transcriptome, and proteome level in
bacterially inoculated Il10−/−mice (C57BL/6J background).
Here, we show that most Il10−/− mice developed moderate
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Figure 3: Genes over-represented in EASE analysis comparing Il10−/− and C57 mice at 7 or 12 weeks of age. Heat map represents the
expression levels of all differentially expressed genes in the significant GO categories (EASE score <0.05 and q < 0.05). The groups are clearly
defined within their clusters and differences in gene expression are seen for 12-week-old Il10−/− mice relative to 7-week-old Il10−/− mice and
12-week-old C57 mice.

colitis already by 8.5 weeks of age and severe colitis peaking
between 10 and 12 weeks of age when compared to 7-week-
old Il10−/− mice. The nature of colon inflammation was sim-
ilar to that displayed by conventionally housed Il10−/− mice
on the same genetic background not subjected to bacterial
inoculation and represented features characteristic of human
CD [16]. Several aspects of innate and adaptive immune
responses were affected at the gene expression level before

(7 weeks of age) and after (12 weeks of age) colitis onset
in Il10−/− mice. These findings agree with the inflammatory
and immune responses observed in CD patients who have a
defective interaction between their innate mucosal immune
system and luminal bacteria [28]. This study focuses on
those pathways linking the gene and protein expression
changes such as cytoskeletal rearrangement, cell migration,
and innate immunity that underlie colitis development in
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Figure 4: 2D-DIGE gel representing differentially expressed proteins identified in the colon tissue of Il10−/− mice compared to C57 mice at
7 and 12 weeks of age, respectively. Protein annotations are shown in Table 4. The approximate isoelectric point (pI) and molecular weight
(MW) in kDa are given on the x- and y-axes, respectively.

Table 5: Categories of genes with expression increase of 2-fold or more in Il10−/− mice compared to C57 mice at 7 weeks of age using EASE.

System Gene category EASE score FDR

GO Cellular Component spindle cell 3.91E-04 <0.001

GO Molecular Function MHC class II receptor activity 1.25E-03 <0.001

GO Biological Process antigen processing, exogenous antigen via MHC class II 1.37E-03 <0.001

GO Biological Process antigen presentation, exogenous antigen 1.37E-03 <0.001

GO Biological Process alcohol metabolism 2.27E-03 <0.001

GO Biological Process glucose metabolism 4.37E-03 <0.001

GO Biological Process main pathways of carbohydrate metabolism 6.39E-03 <0.001

GO Biological Process protein targeting 7.76E-03 <0.001

GO Biological Process steroid biosynthesis 1.02E-02 <0.001

GO Biological Process steroid metabolism 1.09E-02 <0.001

GO Biological Process sterol biosynthesis 1.29E-02 <0.001

GO Cellular Component microtubule cytoskeleton 1.75E-02 <0.001

GO Biological Process sterol metabolism 1.82E-02 <0.001

GO Biological Process carbohydrate metabolism 1.89E-02 <0.001

GO Biological Process hexose metabolism 1.92E-02 <0.001

GO Molecular Function oxidoreductase activity, acting on CH-OH group of donors 1.96E-02 <0.001

GO Biological Process energy derivation by oxidation of organic compounds 2.47E-02 <0.001

GO Biological Process catabolism 2.54E-02 <0.001

GO Cellular Component soluble fraction 2.82E-02 <0.001

GO Molecular Function
oxidoreductase activity, acting on the CH-OH group of donors, NAD or
NADP as acceptor

2.92E-02 <0.001

GO Biological Process monosaccharide metabolism 3.13E-02 <0.001
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Table 6: Proteome and transcriptome network analysis for expression profiles from the colon of 7- and 12-week-old Il10−/− mice compared
to C57 mice using IPA.

Network Top functional categories

Il10−/− versus C57 mice at 7 weeks of age

Transcriptome 1 Cancer, Dermatological disease and conditions, Endocrine system development and function

Transcriptome 2 Cardiovascular system development and function, Cancer, Tissue development

Transcriptome 3 Cancer, Cell death, Reproductive system disease

Transcriptome 4 Cell cycle, Cell-mediated immune response, Cancer

Transcriptome 5 Cellular growth and proliferation, Hematological system development and function, Hematopoiesis

Il10−/−versus C57 mice at 12 weeks of age

Proteome 1 Tissue morphology, Cellular movement, Cell-mediated immune response

Proteome 2 Cell death, Hematological disease, Immunological disease

Proteome 3 Cancer, Tumour morphology, Cellular development

Proteome 4 Cardiovascular disease, Gene expression, Molecular transport

Transcriptome 1 Antigen presentation, Cell morphology, Cell-to-cell signaling and interaction

Transcriptome 2 Cancer, Gastrointestinal disease, Dermatological diseases and conditions

Transcriptome 3 Lipid metabolism, Small molecule biochemistry, Carbohydrate metabolism

Transcriptome 4 Inflammatory disease, Cell-to-cell signaling and interaction, Cell-mediated immune response

The top 3 biological functions for the most significant transcriptomic and proteomic networks (representing subsets of focus genes and proteins highly
associated with those functions) are shown.

this Il10−/− mouse model. Since PPARα has previously been
identified as a potential key mediator in inflammation [17],
the findings of this study showed that Ppara is involved in
signaling processes before and after colitis onset likely to
control colitis. Further, a potential link between PPARα and
IL10 is suggested.

4.1. Change in Transcriptomic Profile with Colitis. Increased
expression levels of membrane-bound Tlr2 and Tlr9 genes
in the colon of 12-week-old Il10−/− compared to C57 mice
were consistent with their reported function. Peptidoglycan
and lipoproteins from the cell wall of commensal bacteria are
recognized by TLR2 [28]. The underlying abnormal response
between the innate immune system to bacterial structures
is mediated via TLR and other pattern-recognition recep-
tors which then regulate antigen-specific adaptive immune
responses [29]. Dendritic cells, an important cellular compo-
nent of the mucosal innate immune system, sample intestinal
bacteria through pattern recognition with TLR [30]. The
recognition of bacterial structures by TLR2 can lead to
activation of NFκB-MAPK pathways and interferon regu-
latory factor family members [31]. This activation in turn
induces differentiation of cells producing pro-inflammatory
cytokines, such as IFNγ and IL17, responsible for CD-like
inflammation [28]. Increased mRNA abundance of the Tlr9
gene in 7-week and 12-week-old Il10−/− mice compared to
C57 mice may be associated with signaling events in order
to maintain or reestablish colonic homeostasis, respectively.
Lee et al. [31] reported distinct transcriptional responses
of TLR9 activation through apical and basolateral surface
domains to maintain colonic homeostasis and regulate
tolerance and inflammation. Basolateral TLR9 activation of
intestinal epithelial cells leads to NFκB signaling, whereas
apical TLR9 stimulation prevented NFκB activation. These

TLR-dependent innate immune responses seemed to be
important in the Il10−/− mouse colitis model in order to
adapt to luminal bacteria and their antigens.

The gene network analysis in our previous study linked
genes involved in inflammatory and immune response,
tryptophan and xenobiotic metabolism, and antigen pre-
sentation [17]. Several genes of these pathways were also
differentially expressed mostly in the 12-week-old Il10−/−

mice. The higher expression levels of MHC class I and class
II genes in the colon of Il10−/− compared to C57 mice
at 12 weeks were likely to be associated with mounting
antigen-specific adaptive immune responses to bacterial
invasion. The expression level of Ido1, a gene involved in
tryptophan catabolism, was increased at both 7 and 12 weeks
of age in colitic Il10−/− mice. High expression level of the
anti-inflammatory enzyme IDO was observed in intestinal
biopsies from CD patients [32]. The pro-inflammatory
cytokine genes Ifng and Tnfa, known as potent inducers of
INDO protein activity [33], had higher mRNA abundance
only in the inflamed colon of 12-week-old Il10−/− mice.
Elevated levels of IL10 and TGFB have also been found in
CD patients, and it was suggested that this modulated the
immune response and caused activation of B lymphocytes
[32]. The increased expression levels of tryptophan (e.g.,
Ido1) and antigen presentation (e.g., Hla class II members)
genes in the 12-week-old Il10−/− mice might be linked to
the restoration of tolerance towards bacterial antigens. In
7-week-old non-inflamed Il10−/− mice, increased Ido1 gene
expression might also be important in the early response to
commensal bacteria preceding colitis due to the deficiency of
the Il10 gene. Increased mRNA abundance of genes involved
in the complement activation, antigen presentation, and B-
cell receptor signaling in 12-week-old Il10−/− mice is in
agreement with functional implications of PPARα activation.
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Table 7: Differentially expressed genes in the colon of Il10−/− mice compared to C57 mice at 7 and 12 weeks of age.

Gene symbol Gene name
GenBank
accession

Il10−/− versus C57 Il10−/− versus C57

7 weeks of age 12 weeks of age

FC FDR FC FDR

Actg2 actin, gamma 2, smooth muscle, enteric NM 007392 −1.3 0.315 −1.6 0.02

Arhgap12 Rho GTPase activating protein 12 NM 029277 −1.1 0.549 −1.5 <0.001

Arhgdib Rho GDP dissociation inhibitor (GDI) beta NM 007486 1.1 0.562 2.0 <0.001

Arhgef10L
Rho guanine nucleotide exchange factor (GEF)
10-like

AK028648 2.4 <0.001 2.3 <0.001

Bcl2A1 BCL2-related protein A1 NM 007534 1.6 0.001 2.7 <0.001

Bcl3 B-cell CLL/lymphoma 3 NM 033601 1.6 0.044 1.7 0.015

C1Qa
complement component 1, q subcomponent, A
chain

NM 007572 1.1 0.67 1.6 0.003

C1Qc
complement component 1, q subcomponent, C
chain

NM 007574 1.3 0.29 1.8 0.005

C1R complement component 1, r subcomponent NM 023143 1.5 0.018 2.0 <0.001

C1S complement component 1, s subcomponent NM 144938 1.3 0.059 1.9 <0.001

C2 complement component 2 NM 013484 1.2 0.337 2.6 <0.001

C3 complement component 3 NM 009778 1.8 0.015 4.5 <0.001

C4B complement component 4B (Chido blood group) NM 009780 −1.0 0.976 1.6 0.005

Ccl5 chemokine (C-C-motif) ligand 5 (Rantes) NM 013653 1.1 0.7 2.3 <0.001

Cd74
CD74 molecule, major histocompatibility
complex, class II invariant chain

NM 010545 4.0 <0.001 5.5 <0.001

Fas Fas (TNF receptor superfamily, member 6) NM 007987 1.9 <0.001 1.5 <0.001

Gsn gelsolin NM 146120 −1.8 0.006 −2.0 <0.001

Hla-A major histocompatibility complex, class I, A NM 010391 1.4 0.201 2.3 <0.001

Hla-B major histocompatibility complex, class I, B NM 008199 −1.4 0.104 1.9 <0.001

Hla-C major histocompatibility complex, class I, C NM 010380 1.4 0.005 2.3 <0.001

Hla-Dma
major histocompatibility complex, class II, DM
alpha

NM 010386 1.5 <0.001 2.1 <0.001

Hla-Dmb
major histocompatibility complex, class II, DM
beta

NM 010387 4.9 <0.001 6.6 <0.001

Hla-Dqa1
major histocompatibility complex, class II, DQ
alpha 1

NM 010378 1.8 <0.001 2.9 <0.001

Hla-Dqb2
major histocompatibility complex, class II, DQ
beta 2

NM 010379 3.1 <0.001 5.3 <0.001

Hla-Drb1
major histocompatibility complex, class II, DR
beta 1

NM 010382 2.5 <0.001 4.5 <0.001

Hla-G major histocompatibility complex, class I, G NM 013819 1.4 0.013 2.0 <0.001

Hmgcr
3-hydroxy-3-methylglutaryl-Coenzyme A
reductase

NM 008255 1.7 0.005 1.5 0.005

Ido1(Indo) indoleamine 2,3-dioxygenase 1 NM 008324 6.6 <0.001 8.1 <0.001

Ifng interferon, gamma NM 008337 1.4 0.071 1.7 0.003

Il1B interleukin 1, beta NM 008361 1.8 0.211 6.4 <0.001

Il1Rn interleukin 1 receptor antagonist NM 031167 1.3 0.442 1.8 0.024

Il10 interleukin 10 NM 010548 1.1 0.461 1.1 0.421

Mapk13 mitogen-activated protein kinase 13 NM 011950 1.8 <0.001 1.7 <0.001

Mapk9 mitogen-activated protein kinase 9 NM 016961 1.5 0.004 1.6 <0.001

Nfkbia
nuclear factor of kappa light polypeptide gene
enhancer in B-cells inhibitor, alpha

NM 010907 1.6 0.002 1.6 0.001
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Table 7: Continued.

Gene symbol Gene name
GenBank
accession

Il10−/− versus C57 Il10−/− versus C57

7 weeks of age 12 weeks of age

FC FDR FC FDR

Nfkbie
nuclear factor of kappa light polypeptide gene
enhancer in B-cells inhibitor, epsilon

NM 008690 1.5 0.001 1.7 <0.001

Ppara peroxisome proliferator-activated receptor alpha NM 011144 −2.0 <0.001 −1.7 0.001

Ppargc1A
peroxisome proliferator-activated receptor
gamma, coactivator 1 alpha

NM 008904 −1.7 0.008 −1.4 0.052

Tlr2 toll-like receptor 2 NM 011905 1.1 0.857 1.9 0.001

Tlr9 toll-like receptor 9 NM 031178 1.9 <0.001 1.9 <0.001

Tnf
tumour necrosis factor (TNF superfamily,
member 2)

NM 013693 1.3 0.064 1.7 <0.001

Tnfrsf1B
tumour necrosis factor receptor superfamily,
member 1B

NM 011610 1.3 0.115 1.5 0.003

Txn thioredoxin NM 011660 −1.2 0.494 −1.0 0.932

Genes were grouped into one or more of the following IPA pathways: antigen presentation, graft versus host disease signaling, allograft rejection signaling,
interferon signaling, role of PKR in interferon induction and antiviral response, dendritic cell maturation, complement system, endoplasmic reticulum stress,
and steroid metabolism. Genes with fold change (FC) ≥1.5 and false discovery rate (FDR) or q < 0.05 were considered for pathway analysis.

PPARα has been associated with the innate immune response
of the small intestine using Ppara−/−and wildtype mice, and
its pharmacological activation inhibited complement activa-
tion, antigen presentation, and B-cell receptor signaling [27].

4.2. Change in Proteomic Profile with Colitis. Proteins differ-
entially expressed in inflamed Il10−/− mice were involved in
cytoskeletal rearrangement, cell-mediated immune response,
and pathogen-influenced signaling. The cytoplasmic actin
gamma 1 and smooth muscle actin gamma 2 proteins
(ACTG1 and ACTG2) were less abundant in the colon
of Il10−/−compared to C57 mice at 12 weeks of age.
Pro-inflammatory cytokines and bacteria can modify tight
junctions interconnecting intestinal epithelial cells via the
actin cytoskeleton so disruption of actin leads to disruption
of tight junctions and loss of barrier function with increased
paracellular permeability [34]. This is further supported by
a study reporting decreased actin-binding gene expression
levels in peripheral blood mononuclear cells of IBD patients
suggesting that disruption of the actin cytoskeleton might
contribute to CD pathogenesis in humans [35]. The ACTG2
protein was also decreased in expression at the gene level
in the 12-week-old Il10−/− mice compared with C57 mice,
but the Actg2 gene remained unchanged in Il10−/− mice at 7
weeks of age when the intestinal barrier was presumably still
intact.

Actin-binding proteins including gelsolin (GSN)
involved in the regulation of actin-based motility by
calcium-dependent Rho-family GTPases (e.g., RhoA, Rac1
and Cdc42) were differentially expressed in the colon
of Il10−/− mice at 12 weeks of age. Rho-family proteins
share growth-promoting and anti-apoptotic functions,
regulation of gene expression through activation of signaling
molecules, for example, NFκB [36]. They can promote actin

cytoskeleton reorganization, but Rho-family proteins differ
in their effect on cell movement; for example, RhoA induces
the formation of stress fibers and focal adhesions [36]. Rho
GDP dissociation inhibitor (GDI) beta (Rho GDIβ) protein,
which is encoded by the Arhgdib gene (mRNA abundance
was increased in 12-week-old Il10−/− mice), regulates
RhoGTPase activity by inhibiting GDP dissociation to leave
RhoGTPases inactive [37]. This suggests that in the inflamed
colon of those Il10−/− mice, Rho protein activity is being
inhibited by Rho GDIβ and thus inhibits actin cytoskeleton
reorganization. Enhanced T-cell migration as a consequence
of the inflammatory state of the intestine is maintained by
pro-inflammatory cytokines and has been associated with
increased expression levels of GSN protein in smooth muscle
cells in the small intestine of CD patients [38]. However, the
expression level of GSN protein and Gsn gene was reduced
in the colon of 12-week-old Il10−/−mice which might reflect
a declining inflammatory cell movement. This is supported
by the decreased inflammatory lesions in the colon of
Il10−/− mice from 12 weeks to 14 weeks of age and might
be associated with reduced inflammatory cell migration.
Gelsolin-null mice have shown reduced neutrophil and
fibroblast movement [39].

The actin cytoskeleton is a flexible system that is built
up or broken down depending on antigen recognition, cell
polarization, and cell adhesion or cell migration. Actin-
binding proteins are involved in surface receptor clustering
during T-cell activation and migration to dynamic cytoskele-
tal rearrangements at the interface between T-cells and
antigen presenting cells [40]. A study using an in vitro
model of simulated ischemia-reperfusion showed an involve-
ment of Rho-kinase-dependent cytoskeletal rearrangement
in apoptosis initiation [41]. In the colon of the 12-week-
old Il10−/− mice, Rho GDIβ may have inhibited or delayed
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Table 8: Categories of genes with expression increase of 2-fold or more in Il10−/−mice compared to C57 mice at 12 weeks of age using EASE.

System Gene category EASE score FDR

GO Biological Process defence response 5.92E-14 <0.001

GO Biological Process response to biotic stimulus 7.39E-14 <0.001

GO Biological Process response to external stimulus 1.38E-12 <0.001

GO Biological Process immune response 4.06E-12 <0.001

GO Biological Process antigen presentation 4.14E-07 <0.001

GO Biological Process antigen processing 4.52E-06 <0.001

GO Molecular Function defence/immunity protein activity 6.14E-06 <0.001

GO Molecular Function MHC class I receptor activity 2.67E-05 <0.001

GO Biological Process response to pest/pathogen/parasite 1.43E-04 <0.001

GO Biological Process physiological process 1.47E-04 <0.001

GO Molecular Function antigen binding 2.31E-04 <0.001

GO Biological Process response to stress 2.49E-04 <0.001

GO Biological Process antigen presentation, endogenous antigen 1.21E-03 <0.001

GO Molecular Function MHC class II receptor activity 1.56E-03 <0.001

GO Biological Process
antigen processing, exogenous antigen via MHC
class II

1.67E-03 <0.001

GO Biological Process antigen presentation, exogenous antigen 1.67E-03 <0.001

GO Cellular Component extracellular space 1.75E-03 <0.001

GO Biological Process protein targeting 2.57E-03 <0.001

GO Biological Process humoral immune response 2.97E-03 <0.001

GO Cellular Component plasma membrane 7.23E-03 <0.001

GO Biological Process
antigen processing, endogenous antigen via MHC
class I

8.44E-03 <0.001

GO Biological Process response to wounding 1.07E-02 <0.001

GO Molecular Function
oxidoreductase activity, acting on CH-OH group
of donors

1.15E-02 <0.001

GO Molecular Function
oxidoreductase activity, acting on the CH-OH
group of donors, NAD or NADP as acceptor

1.71E-02 <0.001

GO Molecular Function hydrolase activity 1.86E-02 <0.001

GO Biological Process collagen catabolism 2.07E-02 <0.001

GO Biological Process posttranslational membrane targeting 2.18E-02 <0.001

GO Biological Process innate immune response 2.22E-02 <0.001

GO Cellular Component vesicular fraction 2.51E-02 <0.001

GO Biological Process response to chemical substance 3.06E-02 <0.001

GO Biological Process inflammatory response 3.06E-02 <0.001

actin rearrangement, and in part attenuated apoptosis, anti-
apoptosis genes such as Bcl2A1 gene was increased in expres-
sion. BCL3, a component of the cellular cytokine-induced
inflammatory signaling cascade, has been shown to interact
cooperatively with PPARGC1α to activate estrogen-related
receptors and PPARα resulting in increased expression of
target genes involved in cellular energy metabolism [42].
Although Bcl3 mRNA abundance was increased, Ppara and
Ppargc1a gene expression levels decreased in 7-week, and 12-
week-old Il10−/− mice which imply an impaired energetic
adaptation of the colonocytes to bacterial- or cytokine-
induced cellular stress at an early and late stage, respectively.
This is supported by findings from others that the failure
of regulatory mechanism in Il10−/− mice under developing

colitis primes the epithelium towards energy deficiency and
uncontroled cellular stress leading to tissue damage [15].
IL10 and also PPARα seem to be important in this regulatory
mechanism.

The thioredoxin (TXN) protein, known to function
as an antioxidant in the maintenance of cellular redox
homeostasis, was more highly expressed in 12-week-old
Il10−/− mice compared with C57 mice. Thioredoxin has
previously been identified as a PPARα target gene and a
negative autoregulation of PPARα activity by thioredoxin
was suggested as a novel mechanism for controling PPARα
activities and PPARα-related physiological or pathological
processes [43]. The finding of the present study may also be
explained by a functional down-regulation of normal PPARα
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activities such as lipid and inflammatory regulation through
the thioredoxin-mediated negative autoregulation of PPARα
transcriptional activity.

4.3. Il10−/− Colitis Model and PPARα Signaling. Several of
the gene expression changes in colitic Il10−/− mice at 12
weeks of age were related to PPARα signaling. A regulatory
role for PPARα in inflammation was first shown by the
prolonged duration of inflammation in Ppara−/− mice [18],
and network analysis identified Ppara as a key mediator gene
decreased in expression during colitis in Il10−/− compared to
C57 mice [17]. Furthermore, PPARα and also PPARγ ligands
exerted anti-inflammatory effects in inflammatory disease
models. For example, administration of PPARα (bezafi-
brate) and PPARγ (troglitazone) ligands reduced dextran
sulphate sodium-induced colitis and cell proliferation in
colonic mucosa [19], PPARα ligand fenofibrate decreased
expression levels of pro-inflammatory Ifng and Il17 genes
in Il10−/− mice [20], PPARγ ligand rosiglitazone delayed
colitis onset in Il10−/− mice [7], and fenofibrate prevented
the progression of autoimmune myocarditis in rats through
increased cardiac Il10 mRNA levels [44].

PPARα is expressed in colonic immune and epithelial
cells where it acts in an anti-inflammatory manner upon
activation by a PPARα ligand [20]. In the present study, the
expression level of the Ppara gene was decreased in inflamed
and non-inflamed colons of Il10−/− mice when compared
to C57 mice without exogenous ligand-mediated PPARα
activation. It is known that PPARα governs inflammation
mainly by down-regulating gene expression such as acute
phase response genes [45]. PPARα (mRNA and protein)
expression levels were decreased in colorectal cancer in
the APCMin /+ mouse model of familial adenomatous poly-
posis compared with matched non-malignant tissue [46].
Ppara−/− mice show enhanced susceptibility dinitroben-
zene sulfonate (DNBS)-induced colitis [47]. PPARα ligands
reduce colitis in chemically induced and genetic (including
Il10−/− mice) models of colitis [19, 20], whereas the absence
of PPARα abolishes the protective effect of the PPARα ligand
WY14643 in DNBS-induced colitis [47]. Thus, activation of
PPARα appears to be a target for controling colitis including
in this inoculated Il10−/− mouse model. The decreased Ppara
gene expression level in 7-week-old Il10−/− mice suggests
that immune cells might have been activated due to increased
bacterial invasion and a lack of regulatory mechanisms
through Il10 gene deficiency, even though histopathological
signs of colitis were not clearly evident yet. It has been
reported that PPARα expression in murine lymphocytes is
rapidly decreased following T-cell activation suggesting a role
for PPARα in immune cells [48].

The anti-inflammatory effect of fenofibrate by delaying
colitis onset and progression in Il10−/− mice indicates that
IL10 is not required in PPARα signaling [20]. In contrast,
another study emphasized the stimulation of the IL10 path-
way in rats treated with fenofibrate to suppress myocarditis
[44]. This implicates a potential PPARα-dependent regula-
tion of IL10. So far, it has been shown that rosiglitazone
induced IL10 production from human mature dendritic cells

and CD4+ T-cells [49]. This effect was PPARγ-dependent
due to a functional PPAR response element for PPARγ in the
human IL10 promoter region.

In conclusion, the findings from this study identified
distinct colonic gene and protein expression profiles for 7-
and 12-week-old Il10−/− mice. Gene and protein expression
data linked actin cytoskeleton dynamics, innate immunity,
and apoptosis and suggested a delayed remodeling process in
the colitic Il10−/− mice. PPARαmight be one of the key medi-
ators in these signaling processes before and after colitis onset
in Il10−/− mice. Ligand-mediated PPARα activation and IL10
production may be important for the anti-inflammatory
effects of PPARα observed in inflammatory disease models
and possibly in the resolution of inflammatory disease in
humans. Confirmation of a role for PPARα activation in
intestinal IL10 production, and clarification of the mecha-
nism by which this occurs, warrants further investigation.
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