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Abstract

Gambiense human African trypanosomiasis (gHAT) is one of several neglected tropical dis-

eases that is targeted for elimination by the World Health Organization. Recent years have

seen a substantial decline in the number of globally reported cases, largely driven by an

intensive process of screening and treatment. However, this infection is highly focal, con-

tinuing to persist at low prevalence even in small populations. Regional elimination, and ulti-

mately global eradication, rests on understanding the dynamics and persistence of this

infection at the local population scale. Here we develop a stochastic model of gHAT dynam-

ics, which is underpinned by screening and reporting data from one of the highest gHAT inci-

dence regions, Kwilu Province, in the Democratic Republic of Congo. We use this model to

explore the persistence of gHAT in villages of different population sizes and subject to differ-

ent patterns of screening. Our models demonstrate that infection is expected to persist for

long periods even in relatively small isolated populations. We further use the model to

assess the risk of recrudescence following local elimination and consider how failing to

detect cases during active screening events informs the probability of elimination. These

quantitative results provide insights for public health policy in the region, particularly

highlighting the difficulties in achieving and measuring the 2030 elimination goal.

Author summary

Gambiense human African trypanosomiasis (gHAT) is a vector-borne infectious disease

that causes sleeping sickness across many African countries. Reported gHAT cases show a

continued decline, but it is unclear if this is sufficient to reach the WHO goal of stopping

transmission by 2030. We develop a stochastic model necessary to address the critical

question of persistence of gHAT infection at the local-scale. In contrast to other com-

monly studied infections, we predict long-term persistence of gHAT in small populations

(< 1, 000 people) despite very low prevalence. Our local-scale predictions (together with

previous larger-scale studies) suggest that, to achieve regional elimination, controls need
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to be widespread and intensified in the worst affected regions, while the movement of

infected people could rapidly lead to re-emergence.

Introduction

Gambiense sleeping sickness (gambiense human African trypanosomiasis, referred to here as

gHAT) is a tsetse-borne neglected tropical disease (NTD) caused by the parasitic protozoa,

Trypanosoma brucei gambiense. There has recently been a decline in global cases, with just

1,420 cases reported in 2017, compared to 10,466 reported in 2007 [1]. This decline is largely

attributed to improvements in the active screening and treatment campaigns that have been

carried out in many regions [2]. In 2012, the World Health Organization (WHO) set targets

for elimination of gHAT as a public health problem; these were updated in 2017 to: reducing

the area at risk of reporting more than 1 case per 10,000 people per year by 90% as compared

to the baseline for 2000–2004 [2], and for fewer than 2,000 reported cases per year, by 2020 [3].

There is also a more stringent goal of stopping transmission of gHAT by 2030 [3].

Cases of gHAT primarily occur in West and Central Africa, but the distribution of infection

is heterogeneous, with highly clustered incidence resulting in disease foci [4, 5]; reported prev-

alence often varies greatly over short distances, even between neighbouring villages [6]. This

local variation suggests there is a complex spatial structure to the infection. With the observed

global decline in reported cases and with many (but not all) foci likely to achieve less than 1

case per 10,000 people by 2020 [7, 8], it is increasingly important to understand both where

the disease is most likely to persist and why this might be the case.

In regions where gHAT cases are no longer observed (and where local elimination has been

achieved), it is possible for the disease to be re-introduced through movement of either

infected humans or infected tsetse, and it may become re-established especially if active case-

finding has not been maintained [9]. It is therefore clear that, while the current active screen-

ing is highly successful in many regions, an understanding of stochastic re-invasion and re-

establishment in local populations is also essential to guide post-elimination policy planning.

There are two stages of gHAT, with Stage 1 following initial infection and Stage 2 defined

after trypanosomes have crossed the blood–brain barrier [10]; these stages currently require

very different treatments. Patients are hospitalised for the treatment duration and are advised

to recover at home afterwards, on average, for a total time of 6 months [11]. Without the treat-

ment, individuals typically progress from Stage 1 to Stage 2 after 18 months and most would

likely be expected to die from meningoencephalitis after approximately 3 years [12].

Active detection of gHAT occurs through population-level screening, which is imple-

mented in many endemic regions by mobile teams travelling to settlements and testing the

available population [6]. Teams are generally able to screen substantial proportions of the local

population (often over 70%) [13]; however, some socio-demographic groups (notably working

adult males) frequently do not present for testing. Previous work has indicated that the indi-

viduals missed in screening are also more likely to be more highly exposed to tsetse bites [14,

15], potentially due to working in tsetse-infested forested and riverine areas. Such high risk

core-group individuals pose a barrier to elimination [8, 16–18]. In parallel with active screen-

ing, passive detection occurs when individuals voluntarily attend medical facilities for testing,

usually after the onset of more significant symptoms, and are thus most often in Stage 2 of the

disease [11].

Mathematical models of gHAT have been beneficial in identifying the effectiveness of dif-

fering control strategies and predicting when elimination is likely to occur [19]. However,
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much of the modelling work on the gHAT infection dynamics has been done in large popula-

tions using deterministic models, either for an entire regional infection focus or at a health

zone level (approximately 100,000 people) [8, 15, 17, 20, 21]. Here we translate the determin-

istic model of Rock et al. [17] to a stochastic framework, designed to capture the infection

dynamics and chance extinction at the village-scale. As such, our model is mechanistic and so

captures details of the biology and epidemiology, allowing modification of model components

to predict a number of different scenarios and control options.

Much of the previous work on the stochastic persistence of infection has tended to focus on

measles in developed countries [22, 23]. Measles is directly transmissible, has a high reproduc-

tive ratio (12–18 compared to approximately 1–1.1 for gHAT [17]) and a high incidence before

immunisation programs were introduced; yet, in contrast to gHAT, measles only persists in

large populations of above approximately 300,000 and even then relies on frequent reintroduc-

tions [22, 23].

We use our model to address the dynamics of gHAT in the villages within the Yasa-Bonga

and Mosango health zones of the DRC (Fig 1); a region that has an extremely high incidence

of gHAT. The model has already been fitted to the available epidemiological data from the

WHO HAT Atlas (Fig 1) [7, 13], with parameters inferred from regional reporting patterns

and screening mimicking observed village-scale records (see Methods and S1 Appendix).

Methods

Data

The Democratic Republic of Congo (DRC) has the highest burden of gHAT cases (1,110 cases

out of 1,420 reported globally in 2017 [1]), and 46% of these cases are concentrated in the for-

mer Bandundu province [9]. We focus on models and data for two high-prevalence health

zones in this former province (now in Kwilu province): Yasa-Bonga and Mosango. Reported

case information made available by the WHO HAT Atlas [7, 13] details the locations of

settlements with estimates of population size, the years that active screenings took place, the

number of people screened and the resulting newly identified gHAT cases. In Yasa-Bonga and

Mosango, we consider 559 settlements, which experienced 2,701 active screenings in 2000–

2012, each where a full village population was targeted to be screened, resulting in 4,875

detected gHAT cases, as well as 2,496 additional cases from detected by passive surveillance.

Our model utilises these recorded screening patterns to simulate interventions, while the active

and passive cases detected in each settlement are stochastically generated by the model.

Population sizes for settlements are also obtained from census estimates within the WHO

HAT Atlas (Fig 1B) [7, 13]; we account for an estimated yearly population growth of 2.6%

[24]. Screening coverage from active surveillance is then calculated as the number of individu-

als screened divided by this population estimate in each year. Annual screenings larger than

the estimated accessible population (yellow and red bars in Fig 1D) may indicate either multi-

ple screenings in a year or misreporting of individuals attending from neighbouring settle-

ments. Low annual screening coverage (at less than 20% of the population size, gray bars in Fig

1D) is assumed to represent individuals screened outside their home settlement and therefore

is not considered as a complete active screening of any given village.

All relevant model data are displayed within the paper and the Supporting Information

files (Table 2 in S1 Appendix). Epidemiological data for the study were provided by the WHO

in the frame of the Atlas of gHAT which may be viewed at www.who.int/trypanosomiasis_

african/country/risk_AFRO/en and may be requested through Jose Ramon Franco

(francoj@who.int).
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Fig 1. Visualisation of WHO HAT Atlas data for the study health zones: Yasa-Bonga and Mosango. (A) Map of Africa, showing the DRC (lighter green) with

former Bandundu province highlighted in the lightest green. The area containing the health zones Yasa-Bonga and Mosango (presented in more detail in Fig 1C)

is covered in a purple box. (B) Histograms of the estimated population sizes of villages in the region for 2012. The inset figure highlights the distribution of

population sizes less than 2,000 individuals. Population sizes have a range of 3 to 12,645. (C) Detailed map of locations of settlements within the study region (Fig

1A, purple box), colour and radius of the circle represent population size of the individual settlements. The satellite image shown for the Yasa-Bonga and

Mosango health zones is from Landsat-8 accessed through https://earthexplorer.usgs.gov/ from the U.S. Geological Survey. (D) Histogram of the coverage

achieved in visits to settlements as part of the active screening programme. When annual screenings are larger than the estimated accessible population (yellow

and red bars), this may indicate either multiple screenings in a given year, or misreporting, when individuals are attending from neighbouring settlements.

https://doi.org/10.1371/journal.pntd.0007838.g001
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Modelling

The infection dynamics are described by a stochastic compartmental Ross–Macdonald-type

model [25–28] extended from the previous work of Rock et al. [17] (using the formulation of

Model 4 from that study) (Fig 1 in S1 Appendix). The model captures a population of humans,

which is initially partitioned into those at high and low risk of being exposed to tsetse bites.

Each person will transition between five different epidemiological compartments: susceptible;

exposed (or latent); Stage 1 infection; Stage 2 infection; and hospitalised (and temporarily

removed). We assume that there is natural mortality from all compartments, which leads to

replacement of that individual as a susceptible in the population.

The risk structure is used to capture the behaviour of the small proportion of individuals

that both work in the habitat of many tsetse and so have a higher biting exposure and also do

not partake in active screening, thereby acting as a human reservoir of infection [16–18]. The

proportion of the individuals in the high risk group is estimated through extensive model fit-

ting to be 7.6% of the population for these health zones [17]. While the high risk group have a

higher biting exposure, the probability of tsetse infection per single infective bite is the same

for both risk groups. This model structure, where individuals are either high risk and non-par-

ticipating in active screening or low risk and randomly participating in active screening, was

selected using the deviance information criterion (DIC), which assigns low scores for models

with high posterior mean log-likelihood and penalises models with more parameters.

Tsetse in the model are similarly compartmentalised into four epidemiological states: ten-

eral (unfed); non-teneral yet uninfected; exposed (or latent); and infected. The distinction

between teneral and non-teneral yet uninfected is used to capture the observation that tsetse

are far more susceptible to infection at their first blood meal than at any subsequent blood

meals [29]. The effect of a possible animal reservoir is not considered, since its role remains

unclear [15, 17, 20, 30, 41] and its inclusion does not significantly improve the match between

model outputs and currently available data in this setting [17].

Additional to the epidemiological and demographic processes, we simulate the effect of

active screening and passive detection of cases. Passive detection (and disease-induced mortal-

ity) is assumed to occur at a fixed (per capita) rate for all Stage 2 infected individuals [11].

Active screening takes place annually; the proportion screened is either replayed from the his-

toric pattern for that settlement or chosen randomly from the set of all screening coverages

recorded, allowing a greater range of scenarios to be explored. Since Yasa-Bonga and Mosango

are high endemicity regions, we assume that the screening coverage and frequency remains

constant over time but note that these quantities are somewhat affected by population size

(Fig 9 in S1 Appendix).

Individuals in the low risk group are selected randomly for screening, irrespective of epide-

miological status, and those that are found to be infected are moved to the hospitalised class.

We assume that screening only applies to low risk individuals, such that screening coverages

greater than 92.4% (the estimated proportion in the low risk group) [17] are truncated (Fig

1D). In the field, the diagnostic process is complex and multi-stage [31]; however, in the

model, we collapse this into characteristics for the whole algorithm, which is assumed to be

91% sensitive [32] but 100% specific. False negatives remain undetected in the settlement, but

by assuming 100% specificity, there are no false positives as we assume confirmation by

microscopy will be carried out due to the low case numbers.

For the majority of this paper, we model the dynamics as a closed population, without emi-

gration or immigration, so that once the disease has gone extinct in a population it cannot be

re-introduced. This removes a critical dependency in model formulation, and greatly simpli-

fies the presentation of results. In reality, no population is ever completely isolated; however
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we show that the expected rate of infectious imports is very low and does not affect our main

results or conclusions (S1 Appendix).

Parameters

Model parameters for the underlying compartmental model are taken from the previous work

of Rock et al. [17]. The values of these parameters were taken from literature, where well-

defined, and otherwise inferred by model fitting using a Metropolis–Hastings MCMC algo-

rithm, which sought to match the deterministic model to observed cases and screening effort

in Yasa-Bonga and Mosango. The values used in this manuscript are the median of the distri-

butions inferred using MCMC methodology applied to the aggregate annual data from Yasa-

Bonga and Mosango. Therefore, the parameter values are specific to the study region, and the

model is well-matched with the incidence data from active and passive surveillance. A full list

of parameters is given in Table 2 in S1 Appendix.

Results

We use our model to address the dynamics of gHAT in the villages within the Yasa-Bonga and

Mosango health zones of the DRC (Fig 1), a region that has an extremely high incidence of

gHAT. Using the estimated population sizes and the reported levels of active screenings (Fig

1B and 1D), we validate the stochastic model by comparing the observed and predicted screen-

ings that did not detect any cases (which subsumes both local extinction and failure to detect).

We then consider the probability of local gHAT persistence across a range of population sizes

and different control scenarios, as well as the probability of re-invasion. Finally, we focus on

whether not detecting cases in a series of active screens can inform on whether local elimina-

tion has been achieved, noting that WHO guidelines suggest annual active screenings until

there have been three consecutive years of no new cases, followed by a further screening with

no cases after three years [31].

Comparison with data

While the underlying deterministic model has been fitted to the aggregate data from this

region, it is important to assess the behaviour of the stochastic model against village-scale

observations. Unfortunately, local disease extinctions cannot be directly observed; failure to

discover any cases does not necessarily mean that the infection is not present, simply that it

has not been detected. Thus, to validate our model, we make comparisons between the simu-

lated predictions and WHO HAT Atlas data [7, 13] for the probability of detecting no cases on

an active screening (termed zero-detections for brevity), which is a combination of failure to

detect and local extinction. We compare model predictions to observations by calculating the

percentage of zero-detections in aggregations of 100 active screenings with similar village pop-

ulation sizes (Fig 2A). We find very strong agreement between model predictions and data,

with a pronounced decline in zero-detections for larger populations.

For individual settlements, those where the number of zero-detections lie outside the 95th

percentile of model predictions are notably spatially clustered (Fig 2B). In 2.1% of settlements

(red), there are significantly fewer zero-detections than predicted and hence greater persis-

tence; these villages are generally localised around the main river through the region. In 6.3%

of settlements there are significantly more zero-detections than expected (yellow), and these

are clustered far from the major rivers and in upland areas. Since tsetse are most densely dis-

tributed surrounding riverine areas [33], this spatial clustering may indicate the need for spa-

tially heterogeneous parameters that reflect the suitability of the local environment for tsetse.

Village-scale persistence and elimination of HAT

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007838 October 28, 2019 6 / 15

https://doi.org/10.1371/journal.pntd.0007838


However, given that more than 90% of villages fall within our prediction intervals, we believe

the homogeneous parameters capture the general stochastic behaviour of this region.

Local gHAT persistence

Local gHAT persistence, where human infection is maintained in a settlement, is affected by

many factors (Fig 3), including the population size of the settlement; the vector-to-host (tsetse-

to-human) ratio; the exposure to the tsetse; the screening procedure; and any movement of

infected individuals between populations. We calculate the probability of persistence by sto-

chastically simulating the epidemic for 16 years from the endemic (uncontrolled) disease equi-

librium. If there is zero gHAT infection in the human population after a given number of

years and no further human infection emerges in the following year from infected tsetse, we

say in this simulation there is local disease elimination with no immediate threat of re-emer-

gence (Fig 4A provides a justification for this criteria). This procedure is repeated for multiple

population sizes; the proportion of simulations that retain infection after a given number of

years determines the probability of persistence (Fig 3).

We focus on settlements with fewer than 2,000 inhabitants, typical of Yasa-Bonga and

Mosango (Fig 1B), and use regionally specific parameters. In all scenarios investigated, we find

that persistence increases with increasing population size (Fig 3). This echoes results from

other infections [22, 23, 34, 35], where small populations with low incidence experience a

Fig 2. Comparison of model predictions and data for active screenings with no detected cases (zero-detections). (A) Histogram by population size of the

percentage of active screenings that find no new gHAT cases for both the model and the HAT Atlas data. Each bar represents 100 screenings of simulated

results (averaged over 10,000 replicates) from the model that uses the observed pattern of screenings and compares to the data. Values where the model

predictions have more zero-detections than the data are in red, while the reverse is shown in yellow. Error bars represent the 95th percentile of model results.

(B) Map of populations in Yasa-Bonga and Mosango showing the settlements with significant differences (at the 95% level) in the expected proportion of

active screenings with no cases detected. Red circles are where the observed number of active screenings with zero-detections is below the 95th percentile of

the model; yellow circles are where the data falls above the 95th percentile; small blue circles are for data that lie within the 95th percentile of predictions and

therefore are well described by the model. The satellite image shown is from Landsat-8 accessed through https://earthexplorer.usgs.gov/ from the U.S.

Geological Survey.

https://doi.org/10.1371/journal.pntd.0007838.g002
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greater impact of stochasticity and chains of transmission that are more likely to be broken. In

addition, given that long-term persistence relies on persistence for shorter time intervals, the

probability of persistence decreases with time (Fig 10B–C in S1 Appendix). The relatively long

persistence times of gHAT, compared to the frequently studied persistence of childhood dis-

eases [22, 23], are attributable to the long time-scale of gHAT infection in the absence of active

interventions [36].

The addition of active screening (leading to the treatment of detected cases) decreases the

probability of persistence across all population sizes, since removing infected individuals leads

to a greater chance of breaking chains of transmission (Fig 3A). Increasing levels of screening,

beyond the observed 21% average, leads to further reductions for persistence. We compare

three assumptions for active screening (Fig 3B): that each population is screened annually at a

fixed coverage equal to the regional average (21%); that each population experiences screening

coverages sampled from the regional pattern including not screening in a given year; and sim-

ply replaying the recorded pattern of active screening in each village. Despite the very different

distributions of screening effort, all three of these assumptions produce comparable levels of

persistence.

Re-invasion probability

Following localised elimination of infection, populations remain vulnerable to re-invasion; we

investigate the potential for re-establishment of sustained transmission in a settlement for

Fig 3. Predicted probability of gHAT persistence in isolated settlements. Simulations are started at the endemic (uncontrolled) equilibrium and iterated

forwards (without infectious imports), while the persistence of infection is recorded. This is repeated 100,000 times for settlement population sizes between

50 and 2,000 individuals. The expected number of yearly new infections if the system were at equilibrium is proportional to the population size and is given

by the top scale. (A) Impact of active screening on gHAT persistence; annual screening at a fixed coverage per year yields a drop in persistence with increased

coverage. (B) Comparison of screening assumptions on the persistence of gHAT. The solid curve shows results where annual screening coverages were

randomly sampled from all observed coverages; dots represent the individual settlements recorded in the WHO HAT Atlas for Yasa-Bonga and Mosango

health zones [7, 13], where the reported coverage in each year is used. There were sufficient simulations such that confidence intervals are too small to be

visible.

https://doi.org/10.1371/journal.pntd.0007838.g003
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different invasion scenarios. For a village of 1,000 individuals, following the elimination of

infection in humans, the level of infection in tsetse falls rapidly, even when starting at the

endemic level in these vectors (Fig 4A). In approximately 65% of simulations, the initially

infected tsetse generate human cases, and the level of infection in vectors rapidly plateaus; oth-

erwise, infection is eliminated from the location within six months due to short vector life

expectancies in comparison to the human hosts. This validates the previous simulation

assumption (Fig 3) that local disease elimination can be considered achieved after a period of

one year in which there are no infected humans, as the number of infected tsetse will also

become negligible.

The probability that a population of tsetse, infected at the endemic equilibrium (0.02% of

tsetse exposed or infected), will lead to re-establishment of infection is predicted to be a func-

tion of settlement size (Fig 11A in S1 Appendix). Small populations are unlikely to see any new

human infections, and those that are generated fail to persist. However, even for large popula-

tion sizes of 2,000 individuals, the chance of continued transmission beyond one year is only

55% and is less than 10% over 15 years. For lower levels of infection in the tsetse population,

the risk of successful re-establishment is proportionally reduced.

In contrast, if re-invasion of an infection-free population is due to the movement of an

infected person into the settlement (in the absence of infected tsetse) the probability of re-

establishment over different time-frames is largely unaffected by the population size (Fig 4B).

We predict a high probability (> 70%) of short term re-invasion, but a more limited chance

(< 20%) that this will generate persistent infection for 15 years or more. This is typical of

Fig 4. Dynamics of extinction and reintroduction. (A) Starting with no infected humans but the tsetse population at its endemic equilibrium and a

settlement size of 1,000 individuals, the model predicts a dramatic decline in the infected tsetse population, depending on whether subsequent human cases

are generated by the infected tsetse. (B) Extending this model further for a range of initial conditions, we examine the probability that at least one human case

is generated and the infection persists for a given time, when starting with one infected human and no infected tsetse for both uncontrolled and random

screening.

https://doi.org/10.1371/journal.pntd.0007838.g004
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stochastic dynamics of infection with low basic reproductive ratio (R0), where, although short

chains of transmission are likely, it is difficult for the infection to fully establish.

Detecting elimination

As discussed above, zero-detections may be an indication that there is no infection in a settle-

ment; however, it may simply be that infected individuals were not screened or were false neg-

atives. Despite this, there is a temptation to associate zero-detection with zero infection; we

therefore use our simulations to tease apart this complex relationship. The model replays the

observed pattern of screening in each settlement, but we perform multiple simulations to

ascertain the probability that infection has been locally eliminated following one, two or three

consecutive zero-detection screenings, in which at least 20% of the population are screened

(Fig 5). We also insist that no passive cases were detected between the screening events. Our

standard assumption, in agreement with parameter inference for this region, is that 26% of

Stage 2 infections, where people either self-report or likely die of gHAT infection, are detected

and reported [17], but we also investigate 0% (no passive reporting) and 100% (all passive

cases and deaths are reported) for comparison.

For small settlements, given that long-term persistence is unlikely (Fig 3), even a single

zero-detection screen (Fig 5, blue) is frequently associated with local elimination. For larger

populations, a single zero-detection has limited predictive power and three consecutive zero-

detections are needed to have any degree of confidence, in which case the reporting of passive

Fig 5. Probability of elimination in a settlement, given consecutive zero-detections with no detected passive cases. (A) Consecutive zero-detections

means consecutive in the observed years of screenings, not necessarily in consecutive years, and with no passive cases detected in between. Each point

represents the average from multiple simulations of individual settlements where the reported pattern of screenings is replayed. The points and solid

lines assume a reporting rate of 26% [17], while the dashed and dotted lines show reporting rates of 0% and 100%, respectively. Sufficient simulations are

used such that the confidence intervals are small (unobservable on the scale of this graph). Lines represent a weighted local regression fit. Active

screenings where fewer than 20% of the population are assessed are excluded from our analysis due to the small sample sizes (alternative cut-offs of less

than 10% and less than 50% are presented in Fig 13 in S1 Appendix).

https://doi.org/10.1371/journal.pntd.0007838.g005
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cases plays a noticeable role. There is, however, significant variation between settlements,

reflecting very different patterns of reported screening. Moderate population sizes of between

200 and 1,000 individuals show extreme variation in the ability to predict local elimination,

while smaller villages have less variation, in part due to rarely being screened before 2009 (Fig

9C in S1 Appendix).

Importation rates

Regional persistence relies on more than independent persistence in individual settlements. It

is likely that the occasional movements of infected people lead to a stochastic meta-population

paradigm [40], where rare local extinctions of infection are balanced by external imports.

However, the agreement between model and data (Fig 2), together with the low prevalence of

infection, indicates that imports are likely to be rare.

We make this more quantitative by fitting an importation rate of infection, proportional to

the size of the population. Before interventions, the presence/absence of infection in a popula-

tion reflects the equilibrium balance between extinction and re-colonisation; we can therefore

use the presence of infection at the first recorded active screening within a village as measure

of the equilibrium state. Fitting the external importation rate to the probability of detecting

infection in a village at the first active screen gives the best fit when the rate is small at just

3.4 × 10−6 per person per day (Fig 6A). Moreover, it is assumed that the importation rate

declines over time as the overall prevalence in DRC reduces.

For most population sizes in the region, the expected time to importation is therefore rela-

tively long (Fig 6B), and in many cases a single importation will not cause further transmission

Fig 6. Simulating external importations of infection into village populations. (A) By running simulations with different values for the external infection

parameter, we find the best fit—to data binned by population size from the WHO HAT Atlas on whether there are any detected cases on the first active

screening—is when imports per susceptible individual are equal to 3.4 × 10−6 days−1 (solid line). (B) Curves of the expected time for an external importation

into a village population using the fitted importation parameter. The importation parameter is assumed to decay at the same rate as total number of cases in

time in the DRC (see Fig 5 in S1 Appendix).

https://doi.org/10.1371/journal.pntd.0007838.g006

Village-scale persistence and elimination of HAT

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007838 October 28, 2019 11 / 15

https://doi.org/10.1371/journal.pntd.0007838.g006
https://doi.org/10.1371/journal.pntd.0007838


events (Fig 4), leading us to conclude that in general the level of importation will not qualita-

tively change our results. This is made more explicit in the supporting information (Fig 6 in S1

Appendix), where it is shown that the model with the fitted level of infectious imports gener-

ates comparable results to those described in the main paper. This justifies our modelling

assumptions that villages act as isolated populations and that importation of infection is

unlikely to perturb the dynamics; instead, we are able to separate the processes of local elimi-

nation and re-invasion.

Discussion

Despite global declines in reported cases over the last decades, gambiense gHAT remains a

problem in many focal areas [37]. These regions, concentrated primarily in the DRC, represent

a significant challenge to achieving the WHO 2020 and 2030 goals of elimination as a public

health problem and zero transmission, respectively. Robust models, matched to the available

data, are the only viable means of quantitatively assessing future dynamics and the long-term

impact of controls [8, 17, 18, 21]. Active screening followed by treatment is one of the main

control measures, but this action is deployed at the village level suggesting that village-scale

models (which recognise the effects of small population size) may be needed to optimise

deployment; these results can then be scaled to an infection focus or national level to measure

regional elimination, which is especially important as we approach zero transmission.

We have introduced a dynamic, mechanistic, stochastic gHAT model, which is applied to

559 settlements in the Yasa-Bonga and Mosango health zones within the former Bandundu

province of the DRC (Fig 1). Using parameters inferred from a deterministic model fitted to

aggregated reported cases, our model reliably captures observed detection patterns at the vil-

lage-scale (Fig 2). This comparison highlighted some spatial heterogeneity associated with the

local environmental conditions (significantly fewer zero-detections than predicted occurred in

regions close to large rivers, where the tsetse density is presumably high); however, 91.6% of

settlements fell within the model (95%) prediction intervals, giving us confidence in our pre-

dictive ability. The inclusion of such local environmental factors, which modify the underlying

parameters, is clearly an area for further research into refining this small-scale model and may

help to practically focus localised control measures, in particular for planning tsetse control.

Throughout our simulation experiments, we consistently find that gHAT persists better in

larger populations. This is as expected and agrees with theoretical work and analysis of other

diseases [22, 23, 34, 35, 38, 39]; in small populations, the behaviour of the individual is more

important, and hence stochastic effects are magnified. The degree of persistence predicted is,

however, surprising; settlements of around 2,000 inhabitants, where yearly incidence is only

13 new infections, frequently persist for 15 years or more (Fig 3). This should be contrasted

with frequently studied, highly transmissible diseases, such as measles, where local extinctions

are common in population sizes of less than 300,000 [22, 23]. We attribute this pronounced

difference to the much longer time scales associated with gHAT, meaning single individuals

can maintain infection, and the vector-borne nature of gHAT transmission, such that the

tsetse act as a short-lived reservoir. We consistently find that incorporating active screening

reduces the persistence of infection (Fig 3A), although the distribution of screening across

years has only a small effect (Fig 3B). Increasing the screening coverage beyond the average

reported levels (of 21% per year) is predicted to lead to further reductions in persistence, but

infection is still predicted to be maintained for over 15 years in many larger populations.

Throughout, we have generally ignored the impact of new infectious individuals entering

the population, and indeed have shown that this rate of importation is very low. If re-invasion

following local elimination is due to the movement of a single infected individual into the
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settlement (Fig 4B), we predict that the probability of subsequent cases is high (70–80%) and

largely independent of population size. However, only a small proportion (10–20%) of such

invasions lead to long-term persistence of over 15 years. Re-establishment of infection due to

the movement of a limited number of infected tsetse is even less likely. Current uncertainties

about the impact of potential reservoirs—either a human reservoir of asymptomatic infections

or an animal reservoir—mean there is insufficient knowledge for resurgence to be explicitly

modelled by these mechanisms [41], but an animal reservoir that can maintain infection in the

absence of humans is likely to represent a worst-case scenario.

A key question, as we approach the 2030 goal of zero transmission, is to ascertain when

local elimination has been achieved, allowing policy-makers to scale back control if the infec-

tion is no longer present. Due to only a limited proportion of each settlement being screened

and the potential for false negatives, a screening can fail to detect any cases even when there is

infection in the population. We have shown that, while a single zero-detection screening pro-

vides relatively little information of the probability of local gHAT elimination, multiple conse-

cutive zero-detection screenings are a strong indicator of elimination (Fig 5). This can be

further strengthened if only large screens (> 50%) are included in the analysis (Fig 13B in S1

Appendix), providing valuable public health information. This concurs with WHO guidelines

for active screenings, as villages are no longer considered in planning by mobile screening

teams after three consecutive years of zero-detections, followed by a further zero-detection

after three years [31]; our model would predict local elimination with large probability for this

level of surveillance. Consistent with the observed patterns in high endemicity regions, we

have assumed that the screening coverage and frequency remains constant over these time

scales but note that in other regions it may be important to consider the reduction in active

screening as reported gHAT cases decline and elimination is approached.

Conclusion

The ability to capture the stochastic dynamics and persistence of gambiense gHAT infection at

the village-scale is a major advance in public health modelling, with far-reaching consequences

for informing policy decisions. This is particularly pertinent as our models operate at the same

spatial scale as controls and can capture the local elimination of infection that is a prerequisite

of achieving the 2030 goal of zero transmission globally.
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