
Multiplatform metabolomic analysis of the R6/2 mouse
model of Huntington’s disease
Masayo Hashimoto1 , Kenichi Watanabe1, Kan Miyoshi2, Yukako Koyanagi2, Jun Tadano1 and
Izuru Miyawaki1

1 Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd, Osaka, Japan

2 Pharmacology Research Unit, Sumitomo Dainippon Pharma Co., Ltd, Osaka, Japan

Keywords

Huntington’s disease; metabolomics; R6/2

mouse

Correspondence

M. Hashimoto, Preclinical Research Unit,

Sumitomo Dainippon Pharma. Co., Ltd., 3-1-

98 Kasugade-naka, Konohana-ku, Osaka

554-0022, Japan

E-mail: masayo-hashimoto@ds-pharma.co.jp

(Received 21 June 2021, revised 3 August

2021, accepted 31 August 2021)

doi:10.1002/2211-5463.13285

Edited by Alberto Alape-Gir�on

Huntington’s disease (HD) is a progressive, neurodegenerative disease char-

acterized by motor, cognitive, and psychiatric symptoms. To investigate the

metabolic alterations that occur in HD, here we examined plasma and

whole-brain metabolomic profiles of the R6/2 mouse model of HD. Plasma

and brain metabolomic analyses were conducted using capillary elec-

trophoresis–mass spectrometry (CE-MS). In addition, liquid chromatogra-

phy–mass spectrometry (LC-MS) was also applied to plasma metabolomic

analyses, to cover the broad range of metabolites with various physical and

chemical properties. Various metabolic alterations were identified in R6/2

mice. We report for the first time the perturbation of histidine metabolism in

the brain of R6/2 mice, which was signaled by decreases in neuroprotective

dipeptides and histamine metabolites, indicative of neurodegeneration and

an altered histaminergic system. Other differential metabolites were related

to arginine metabolism and cysteine and methionine metabolism, suggesting

upregulation of the urea cycle, perturbation of energy homeostasis, and an

increase in oxidative stress. In addition, remarkable changes in specific lipid

classes are indicative of dysregulation of lipid metabolism. These findings

provide a deeper insight into the metabolic alterations that occur in HD and

provide a foundation for the future development of HD therapeutics.

Huntington’s disease (HD) is a progressive, neurodegen-

erative disease characterized by motor, cognitive, and

psychiatric symptoms. HD is caused by an expanded

CAG repeat in the huntingtin gene, which encodes a

polyglutamine stretch in the huntingtin protein [1].

Although various molecules interacting with mutant

huntingtin have been described, molecular and cellular

mechanisms underlying the pathogenesis of HD have

not been fully elucidated. There is no disease-modifying

treatment which can arrest or reverse the progression of

HD, and novel pathophysiological insights and thera-

peutic approaches are needed. A number of genetically

modified animal models of HD have been generated.

Among these models, the R6/2 mouse is the most widely

used animal model for HD and displays many signs and

symptoms similar to those of clinical HD, such as neu-

ronal intranuclear inclusions, cognitive deficits, and

locomotor disturbances [2–4]. The R6/2 mouse demon-

strates motor deficits beginning at 6 weeks of age. The

motor deficits are progressive and followed by early

death at 12–15 weeks of age [2,5,6].

Metabolomics is a technology to comprehensively

characterize the metabolites in biological systems. In

recent years, the metabolomic approach has been

increasingly used to understand disease mechanisms,

discover new biomarkers for disease diagnoses, and
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identify novel drug targets [7]. Since metabolites in

biological system have various physical and chemical

properties, metabolomic investigations require power-

ful analytical strategies. Nuclear magnetic resonance

spectroscopy (NMR), gas chromatography–mass spec-

trometry (GC-MS), liquid chromatography–mass spec-

trometry (LC-MS), and capillary electrophoresis–mass

spectrometry (CE-MS) are powerful and widely used

analytical techniques in metabolomics studies [8,9].

Each analytical technique has its own advantage

points; for instance, CE-MS is a robust technique suit-

able for highly polar and charged metabolite analyses,

while LC-MS is widely used in hydrophobic metabo-

lites and lipid analyses. Therefore, the combination of

these techniques enables to cover the broad range of

metabolites in complex biological samples.

Previous metabolomic studies of HD patients as well

as animal models have demonstrated several metabolic

alterations, such as changes in protein metabolism, car-

bohydrate metabolism, and cholesterol metabolism [10–
12]. However, these results are varied and inconsistent,

and there is still a lack of promising metabolomic

biomarkers or therapeutic targets that can be used for

exploring new HD therapeutics. In addition, many of

previous works of metabolomics on HD applied single-

platform approach, which is difficult to cover the wide

range of metabolites with different physiochemical

properties.

In this study, we investigated the metabolite profiles

of R6/2 mice to improve the understanding of the

metabolic alteration in HD. Plasma and whole-brain

metabolome of R6/2 mice at 8 weeks and 10 weeks of

age, both are disease progression stages and frequently

used in preclinical drug testing [6,13,14], were com-

pared with those of wild-type (WT) littermates. To

cover the broad range of metabolites, we applied mul-

tiple analytical techniques using CE-MS and LC-MS

to plasma metabolomic analysis. We also applied

metabolomic techniques using CE-MS to the brain,

which is the most pathologically affected tissue in HD.

Materials and methods

Animals and sample collection

Female R6/2 mice (B6CBA-Tg[HDexon1]62Gpb/3J) [2] and

WT mice at 3 weeks of age were obtained from Charles

River Laboratories Japan (Yokohama, Japan). The R6/2

mouse is transgenic for the 5’ end of the human HD gene car-

rying around 120 CAG repeat expansions. Mice were housed

in plastic cages under a 12-h light–dark cycle at 23 � 3 °C
with free access to standard diet and water. Plasma and

whole brain were collected from R6/2 mice and WT mice at 8

and 10 weeks of age (n = 5 each). On the sampling day, mice

were fasted for approximately three hours before sampling.

After the anesthetization with isoflurane, blood was collected

from the heart in tubes containing EDTA as anticoagulant,

and plasma was obtained by centrifugation. After the blood

collection, brain samples were collected. Plasma and brain

samples were stored at �80 °C until analysis. All procedures

of animal experiments described in this study were approved

by the Experimental Animal Welfare Committee of Sumit-

omo Dainippon Pharma Co., Ltd.

Chemicals and reagents

Internal standards for LC-MS/MS analysis, 2-morpholi-

noethanesulfonic acid and 12S-hydroxy-5Z,8Z,10E,14Z-

eicosatetraenoic-5,6,8,9,11,12,14,15-d8 acid (12S-HETE-d8),

were obtained from Dojindo (Kumamoto, Japan) and Cay-

man Chemical (Ann Arbor, MI, USA), respectively. The

MxP� Quant 500 kit was obtained from Biocrates Life

Sciences AG (Innsbruck, Austria). All solvents used for MS

were of high-performance liquid chromatography grade.

Metabolomic analysis

Capillary electrophoresis time-of-flight mass

spectrometry (CE-TOFMS) analysis

Plasma and brain sample analyses using CE-TOFMS were

conducted at Human Metabolome Technologies (HMT),

Tsuruoka, Japan. The analysis was performed using the Agi-

lent CE-TOFMS system (Agilent Technologies, Waldbronn,

Germany) with methods developed by Soga et al. [15–17].
Briefly, 50 µL of plasma was mixed with methanol contain-

ing internal standards (Solution ID: H3304-1002, HMT) and

ultrapure water. An aliquot of the mixtures was ultrafiltered

using a 5-kDa cutoff centrifugal filter (UltrafreeMC-

PLHCC, HMT). The filtrate was evaporated to dryness, and

the residue was dissolved in ultrapure water for CE-TOFMS

analysis. Whole-brain samples were homogenized with 50%

acetonitrile containing internal standards and the brain

homogenates were centrifuged; then, the supernatants were

ultrafiltered using 5-kDa cutoff centrifugal filters. The filtrate

was evaporated to dryness and the residue was dissolved in

ultrapure water for CE-TOFMS analysis. Data obtained by

CE-TOFMS were processed by MasterHands (Keio Univer-

sity, Tsuruoka, Yamagata, Japan) to extract peak informa-

tion including m/z, peak area, and migration time (MT).

Signal peaks corresponding to isotopomers, adduct ions, and

other product ions of known metabolites were excluded. The

remaining peaks were annotated according to the HMT

metabolite database based on their m/z values with the MTs.

The tolerance range for the peak annotation was configured

at �0.5 min for MT and �10 ppm for m/z. The areas of the

annotated peaks were then normalized based on internal

standard levels.
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Direct injection liquid chromatography–tandem mass

spectrometry (DI-LC-MS/MS) analysis (MxP� Quant

500 kit)

Plasma samples were also analyzed using the MxP� Quant

500 kit (Biocrates Life Sciences AG, Innsbruck, Austria).

The assay covers 630 metabolites and lipids: 13 small mole-

cule classes (including amino acids and related metabolites,

bile acids, amines, carboxylic acids, fatty acids) analyzed

with LC-MS/MS, and 12 lipid classes (including acylcarniti-

nes, phosphatidylcholines, sphingomyelins, ceramides, cho-

lesteryl esters, diacylglycerols, triacylglycerols) and hexoses

analyzed with flow injection analysis tandem mass spec-

trometry (FIA-MS/MS). Plasma samples were processed

and analyzed according to the manufacturer’s instructions.

Briefly, 10 µL of plasma was added to the upper chambers

of a 96-well plate and dried in a nitrogen evaporator. Subse-

quently, a solution of 5% phenylisothiocyanate was added

for derivatization of the amino acids and amines. After

incubation, the metabolites were extracted using 5 mM

ammonium acetate solution in methanol. The extracts were

diluted for FIA-MS/MS analysis and LC-MS/MS analysis.

The analyses were carried out using a NexeraTM X2 high-

performance liquid chromatography (HPLC) system (Shi-

madzu Co., Kyoto, Japan) and a 6500QTRAP mass spec-

trometer (AB Sciex, Framingham, MA, USA).

In LC-MS/MS analyses, a reversed-phase column (a part

of MxP� Quant 500 kit) was used for chromatographic sepa-

ration. For mobile phases A and B, 2% formic acid in water

and 2% formic acid in acetonitrile were used, respectively.

The flow rate was 0.8 mL�min�1 (0–4.7 min) or

1.0 mL�min�1 (4.7–5.8 min). The column oven temperature

was set at 50 °C. For LC-MS/MS-positive mode analysis,

the gradient of mobile phase B concentration was pro-

grammed as 0% (0 min) – 0% (0.25 min) – 12% (1.5 min) –
17.5% (2.7 min) � 50% (4 min) � 100% (4.5 min) � 100%

(5 min) � 0% (5.1 min) � 0% (5.8 min). For LC-MS/MS

negative mode analysis, the gradient of mobile phase B con-

centration was programmed as 0% (0 min) – 0% (0.25 min)

– 25% (0.5 min) – 50% (2 min) – 75% (3 min) � 100%

(3.5 min) � 100% (5 min) � 0% (5.1 min) � 0% (5.8 min).

The mass spectrometer was operated using an electrospray

ionization source in positive or negative mode. The parame-

ters for the mass spectrometer were set as follows: ion spray

voltage, 5500 V (positive mode) or �4500 V (negative

mode); ion source heater temperature, 500 °C (positive

mode) or 650 °C (negative mode); nebulizer gas, 60 psi (posi-

tive mode) or 40 psi (negative mode); turbo gas, 70 psi (posi-

tive mode) or 40 psi (negative mode); curtain gas, 45 psi

(positive mode) or 35 psi (negative mode).

In FIA-MS/MS analyses, flow rate was set as 30 µL�min�1

(0 min) � 30 µL�min�1 (1.6 min) � 200 µL�min�1 (2.4 min)

� 200 µL�min�1 (2.8 min) � 30 µL�min�1 (3 min). The mass

spectrometer was operated using an electrospray ionization

source in positive mode. The parameters for the mass

spectrometer of two FIA methods were set as follows: ion

spray voltage, 5500 V (FIA methods 1 and 2); ion source

heater temperature, 200 °C (FIA methods 1 and 2); nebulizer

gas, 40 psi (FIA method 1) or 30 psi (FIA method 2); turbo

gas, 50 psi (FIA method 1) or 80 psi (FIA method 2); curtain

gas, 30 psi (FIA method 1) or 20 psi (FIA method 2).

Data were generated using Analyst (AB Sciex, Framing-

ham, MA, USA) software and transferred to MetIDQTM

(Biocrates Life Sciences AG) software for further data pro-

cessing and the technical validation.

LC-MS/MS analysis

A series of primary metabolites and lipid mediators in

plasma were analyzed using an LC-MS/MS system consist-

ing of a NexeraTM X2 HPLC system and a triple quadru-

pole mass spectrometer LCMS-8060 (Shimadzu Co.,

Kyoto, Japan). The analytical methods were set up using

LC/MS/MS Method Packages for primary metabolites and

lipid mediators (Shimadzu Co.). Each LC/MS/MS Method

Package provides optimized analytical conditions including

chromatogram acquisition, detection of mass spectral peaks

using an incorporated mass spectral library, and their chro-

matographic data processing for 98 primary metabolites

and 160 lipid mediators.

For primary metabolites analysis, the plasma sample

(10 µL) was mixed with 100 µL of methanol containing

internal standard (2-morpholinoethanesulfonic acid, 10 µM).

After centrifugation, the supernatant (50 µL) was mixed

with water (200 µL) and chloroform (200 µL) and cen-

trifuged. The aqueous phase (20 µL) was evaporated to dry-

ness, and the residue was dissolved in 0.1% acetic acid

(40 µL) prior to LC-MS injection (10 µL). A reversed-phase

column (discovery HS F5-3, 2.1 9 150 mm, 3 lm, Sigma-

Aldrich, St Louis) was used for chromatographic separa-

tion. For mobile phases A and B, 0.1% formic acid in water

and 0.1% formic acid in acetonitrile were used, respectively.

The flow rate was 0.25 mL�min�1. The column oven tem-

perature was set at 40°C. The gradient of mobile phase B

concentration was programmed as 0% (0 min) � 0%

(2 min) � 25% (5 min) �35% (11 min) � 95% (15 min) �
95% (20 min) � 0% (20.1 min) � 0% (25 min). Mass spec-

trometer parameters for positive/negative electrospray ion-

ization mode were as follows: drying gas flow rate,

10 L�min�1; nebulizer gas flow rate, 3 L�min�1; desolvation

line temperature, 250 °C; interface temperature, 300°C; heat
block temperature, 400 °C. The compounds were identified

using the LC-MS/MS method PACKAGE for primary metabo-

lites and LabSolutions Insight SOFTWARE (Shimadzu Co.).

The peak height of each compound was calculated and nor-

malized to the peak height of the internal standard.

For lipid mediator analysis, the plasma sample (10 µL)
was mixed with 100 µL of methanol containing internal

standard (12S-HETE-d8, 5 ng�mL�1). After centrifugation,
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the supernatant (50 µL) was mixed with water (200 µL)
and chloroform (200 µL) and centrifuged. The organic

phase was collected prior to LC-MS injection (5 µL). A

reversed-phase column (Kinetex C8, 2.1 9 150 mm, 2.6

µm, Phenomenex, Torrance, CA) was used for chromato-

graphic separation. For mobile phases A and B, 0.1% for-

mic acid in water and acetonitrile were used, respectively.

The flow rate was 0.4 mL�min�1. Column oven temperature

was set at 40 °C. The gradient of mobile phase B concen-

tration was programmed as 10% (0 min) � 25% (5 min) �
35% (10 min) � 75% (20 min) � 95% (20.1 min) � 95%

(25 min) � 10% (25.1 min) � 10% (28 min). Fifteen

microliters of water was co-injected with each sample to

prevent chromatographic peak leading of highly polar

metabolites. Mass spectrometer parameters for positive/

negative electrospray ionization mode were as follows: dry-

ing gas flow rate, 10 L�min�1; nebulizer gas flow rate,

2.5 L�min�1; desolvation line temperature, 250 °C; interface
temperature, 270 °C; heat block temperature, 400 °C; colli-
sion-induced dissociation gas, 230 kPa. The compounds

were identified using the LC-MS/MS method package for

lipid mediators and LabSolutions INSIGHT software. The

peak height of each compound was calculated and normal-

ized to the peak height of the internal standard.

Data analysis

There were some overlaps in the plasma metabolite datasets

obtained using each analytical method. The overlapping

metabolites include amino acids and its derivatives, nucleo-

tides, and nucleosides. For these overlapping metabolites,

the CE-TOFMS analysis data were retained for further anal-

ysis. Then, the metabolite data from each analysis were com-

bined. Metabolites that were detected in less than 2 animals

in each group were filtered out. Data processing, normaliza-

tion, and univariate and multivariate analyses were con-

ducted using MetaboAnalyst 5.0 [18]. In the normalization

process, the data were mean-centered and divided by the

standard deviation of each metabolite. Missing values were

replaced by 1/5 of the minimum positive value for each

metabolite. Fold change analysis, Wilcoxon rank-sum test,

and principal component analysis (PCA) were conducted

with normalized metabolite data. False discovery rate (FDR)

was calculated by Benjamin–Hochberg method. Differential

metabolites were identified based on thresholds of fold

change (< 0.77 or > 1.3), P-value (< 0.05), and FDR (< 0.2).

Results

In the plasma metabolomic analysis, multiple analytical

techniques were applied to cover the broad range of

metabolites. As a result, many metabolites were

detected and identified: 202 metabolites by CE-TOFMS

analysis, 408 metabolites by DI-LC-MS/MS analysis

using the Biocrates MxP� Quant 500 kit, and 87

metabolites by LC-MS/MS analysis for primary

metabolites and lipid mediators. The overlapped

metabolites identified by different analytical methods

were removed, and finally, 598 metabolites were

retained for further data analysis. In the brain metabo-

lomic analysis using CE-TOFMS, 186 metabolites were

identified and used for further data analysis. The PCA

score plots (Fig. 1) show a distinct separation between

the R6/2 and WT mouse groups.

Metabolite datasets from plasma and brain of R6/2

mice were compared with those from plasma and brain

of WT mice. All the results of fold change analysis

and Wilcoxon rank-sum test are shown in Tables S1

to Tables S4. Using thresholds of fold change (< 0.77

or > 1.3), P-value (< 0.05), and FDR (< 0.2), differen-

tial metabolites were identified, 260 and 77 in plasma,

31 and 45 in brain at 8 weeks and 10 weeks of age,

respectively. The lists of differential metabolites were

partially different between 8 weeks and 10 weeks of

age, both in plasma and in brain. Many differential

metabolites were related to histidine metabolism, argi-

nine metabolism, cysteine, and methionine metabolism.

The results of the fold change analysis and Wilcoxon

rank-sum test of these metabolites are summarized in

Table 1. Histidine metabolism (Fig. 2) was altered in

the brain of R6/2 mice at both 8 and 10 weeks of age,

highlighted by the decreases in histidine-containing

dipeptides (carnosine and anserine) and histamine

metabolites (1-methylhistamine and 1-methyl-4-imida-

zoleacetic acid). Arginine metabolism (Fig. 3) was

altered in the R6/2 mice, highlighted by the increases

in the urea cycle metabolites (arginine, ornithine,

citrulline, and arginosuccinic acid) in plasma and

brain, and guanidino compounds (guanidinoacetic acid

and phosphocreatine) in brain. Cysteine and methion-

ine metabolism (Fig. 4) was altered in the brain of R6/

2 mice especially at 10 weeks of age. Alterations in

specific lipid classes were also detected in the plasma

of R6/2 mice (summarized in Table 2). Among the

lipid species analyzed in this study, triacylglycerols,

phosphatidylcholines, glycerophosphocholine, choles-

terol esters, ceramides, and hexosylceramides were

increased in R6/2 mice. In contrast, minor or no

changes were detected in plasma acylcarnitines,

lysophosphatidylcholines, sphingomyelins, hydroxysph-

ingomyelins, and diacylglycerols.

Discussion

In this study, multiplatform metabolomic analysis

revealed many perturbed metabolic pathways in R6/2

mouse model of HD. We found the altered histidine

metabolism in the brain of R6/2 mice for the first time.
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In addition, changes in metabolism of arginine, cys-

teine, and methionine, and various lipid species were

observed in R6/2 mice.

Little has been reported on the change of histidine

metabolism in HD. In this study, we demonstrated the

decreases in carnosine, anserine, 1-methylhistamine,

and 1-methyl-4-imidazoleacetic acid in the brains of

R6/2 mice (Fig. 2). Carnosine and anserine are present

in mammalian skeletal muscle and brain tissues and

perform various functions including pH buffering,

antioxidation, metal ion chelation, and antiglycoxida-

tion [19,20]. In addition, there is a growing evidence

indicating neuroprotective effects of these dipeptides.

Recent studies have revealed the neuroprotective

effects of carnosine and anserine for Alzheimer’s dis-

ease [21,22]. Furthermore, supplementation with car-

nosine and anserine helps preserve verbal episodic

memory in healthy elderly people and protects from

Fig. 1. Principal component analysis scores plots of plasma and brain of R6/2 mice and WT mice: (A) plasma, 8 weeks; (B) plasma,

10 weeks; (C) brain, 8 weeks; (D) brain, 10 weeks.
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cognitive decline in mild cognitive impairment [23,24].

Various mechanisms have been proposed for the neu-

roprotective effects of carnosine and anserine, such as

reduction of the intracellular levels of reactive species,

and activation of production of brain-derived

neurotrophic factor (BDNF) and nerve growth factor

(NGF) [25]. Decreased levels of carnosine and anserine

observed in R6/2 mice might reflect the neurodegener-

ative status of HD and indicate their therapeutic

potentials. Decreased levels of 1-methylhistamine and

Table 1. Representative metabolite profiles in R6/2 mice. HMBD, Human Metabolome Database; FC, fold change in R6/2 mice compared

with WT mice; -, no data.

Metabolite HMDB ID

Plasma, 8 weeks Plasma, 10 weeks Brain, 8 weeks Brain, 10 weeks

FC P FDR FC P FDR FC P FDR FC P FDR

Histidine metabolism

Histidine HMDB0000177 0.94 0.841 0.891 1.22 0.095 0.331 1.15 0.016 0.091 1.10 0.343 0.493

Carnosine HMDB0000033 1.11 1.000 1.000 0.52 0.095 0.331 0.51 0.012 0.087 0.50 0.011 0.054

Anserine HMDB0000194 0.54 0.008 0.041 1.03 0.841 0.953 0.69 0.020 0.100 0.69 0.032 0.09

beta-Alanine HMDB0000056 0.84 0.151 0.218 0.78 0.016 0.132 0.81 0.015 0.091 0.82 0.016 0.063

1-Methylhistidine/

3-Methylhistidine

HMDB0000001/

HMDB0000479

1.17 0.151 0.218 1.23 0.032 0.194 1.48 0.012 0.087 1.17 0.058 0.140

Urocanic acid HMDB0000301 0.72 0.016 0.045 0.79 0.151 0.431 - - - - - -

Histamine HMDB0000870 1.36 0.690 0.775 0.86 1.000 1.000 0.88 0.674 0.869 1.03 0.841 0.908

1-Methylhistamine HMDB0000898 1.06 0.675 0.775 0.91 1.000 1.000 0.36 0.008 0.087 0.35 0.008 0.054

1-Methyl-4-imidazoleacetic

acid

HMDB0002820 1.05 1.000 1.000 0.70 0.008 0.121 0.39 0.012 0.087 0.34 0.012 0.054

Imidazole-4-acetic acid HMDB0002024 0.91 0.690 0.775 0.65 0.008 0.121 - - - - - -

Arginine metabolism

Arginine HMDB0000517/

HMDB0003416

0.99 1.000 1.000 2.16 0.008 0.121 1.40 0.031 0.129 1.73 0.012 0.054

Ornithine HMDB0000214/

HMDB0003374

0.81 0.151 0.218 2.05 0.008 0.121 1.05 0.834 0.972 1.79 0.012 0.054

Citrulline HMDB0000904 0.89 0.421 0.520 1.95 0.008 0.121 0.80 0.142 0.293 1.12 0.209 0.342

Argininosuccinic acid HMDB0000052 1.02 0.841 0.891 1.34 0.032 0.194 1.07 0.598 0.812 1.41 0.020 0.071

Urea HMDB0000294 0.86 0.310 0.399 0.94 0.151 0.431 0.87 0.205 0.378 0.92 0.145 0.261

Aspartic acid HMDB0000191/

HMDB0006483

1.05 0.841 0.891 1.03 0.841 0.953 0.83 0.010 0.087 0.97 0.670 0.776

Fumaric acid HMDB0000134 0.99 1.000 1.000 0.91 0.829 0.953 0.86 0.046 0.147 0.83 0.203 0.338

Glycine HMDB0000123 1.27 0.008 0.041 1.33 0.016 0.132 1.32 0.012 0.087 1.41 0.012 0.054

4-Guanidinobutyric acid HMDB0003464 0.59 0.032 0.066 3.40 0.008 0.121 0.89 0.289 0.477 1.18 0.057 0.140

Guanidoacetic acid HMDB0000128 0.97 1.000 1.000 1.33 0.095 0.331 1.64 0.012 0.087 1.89 0.012 0.054

Creatine HMDB0000064 1.25 0.032 0.066 1.16 0.095 0.331 1.09 0.130 0.293 1.16 0.019 0.071

Phosphocreatine HMDB0001511 1.00 1.000 1.000 0.62 0.016 0.132 1.30 0.021 0.100 1.42 0.094 0.186

Creatinine HMDB0000562 0.89 0.151 0.218 0.86 0.016 0.132 0.95 0.334 0.531 1.00 0.911 0.949

Cysteine and methionine metabolism

Methionine HMDB0000696 0.74 0.151 0.218 1.19 0.222 0.526 1.11 0.141 0.293 1.31 0.015 0.063

S-Adenosylmethionine HMDB0001185 - - - - - - 1.14 0.036 0.135 1.30 0.012 0.054

S-Adenosylhomocysteine HMDB0000939 - - - - - - 0.99 0.832 0.972 0.83 0.092 0.186

Homocysteine HMDB0000742 0.95 0.548 0.653 0.90 0.421 0.715 - - - - - -

Cystathionine HMDB0000099 0.90 0.222 0.303 1.05 1.000 1.000 1.46 0.015 0.091 2.42 0.012 0.054

Cysteine HMDB0000574 1.73 0.016 0.045 1.38 0.059 0.257 0.85 0.841 0.974 2.81 0.012 0.054

r-Glu-Cys HMDB0001049 - - - - - - 1.07 0.829 0.972 1.28 0.168 0.300

Glutathione (GSH) HMDB0062697 - - - - - - 1.16 0.140 0.293 2.16 0.059 0.140

Oxidized glutathione

(GSSG)

HMDB0003337 0.44 0.008 0.041 0.72 0.222 0.526 0.97 0.463 0.678 0.88 0.295 0.438

Cystine HMDB0000192 1.50 0.008 0.041 1.34 0.056 0.254 - - - - - -

Hypotaurine HMDB0000965 0.68 0.151 0.218 0.79 0.222 0.526 1.09 1.000 1.000 1.95 0.011 0.054

Taurine HMDB0000251 1.21 0.095 0.149 1.06 0.548 0.806 1.14 0.012 0.087 1.22 0.012 0.054

Serine HMDB0000187/

HMDB0003406

1.20 0.016 0.045 1.37 0.016 0.132 0.85 0.046 0.147 0.89 0.141 0.260
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1-methyl-4-imidazoleacetic acid were also observed in

the brain of R6/2 mice. These metabolites are unique

products of histamine metabolism and have been used

as metabolic markers of histamine. In the brain, his-

tamine acts as neurotransmitter and neuromodulator.

The histaminergic system of the brain is involved in

various physiological functions, such as modulation of

sleep–wake cycle, sensory and motor functions, learn-

ing and memory [26]. Recent evidence suggests aber-

rant brain histamine signaling in several

neurodegenerative diseases. In HD patients, post-

mortem study showed functional increase of

histaminergic signaling in the brain [27]. Further inves-

tigations in both human and animal models are needed

to clarify the relationship between brain histaminergic

signaling and metabolic changes in HD brain.

Various metabolites related to arginine metabolism

were altered in R6/2 mice (Fig. 3). Arginine is the

intermediate in the urea cycle, which plays an impor-

tant role in eliminating toxic ammonia from the body.

Metabolites in the urea cycle were increased in R6/2

mouse plasma and brain, in agreement with previous

reports in HD patients and animal models [28–30].
The alterations in urea cycle metabolites were more

Fig. 2. Overview of histidine metabolism in plasma (A) and brain (B) of R6/2 mice. Blue and red arrows indicate the metabolic changes of

8 weeks and 10 weeks, respectively.

Fig. 3. Overview of arginine metabolism in plasma (A) and brain (B) of R6/2 mice. Blue and red arrows indicate the metabolic changes of

8 weeks and 10 weeks, respectively.
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obvious at 10 weeks than 8 weeks of age, indicating

that these metabolites may reflect the HD progression.

Guanidino compounds derived from arginine, namely,

guanidinoacetic acid and phosphocreatine, were also

increased in the brains of R6/2 mice. Guanidinoacetic

acid serves as a precursor of creatine, an essential

metabolite involved in the energy homeostasis of ner-

vous tissue [31]. Phosphocreatine is a reservoir of high-

energy phosphates, and both creatine and phosphocre-

atine play pivotal roles in maintaining the energy

homeostasis in the brain [32]. Increased levels of

guanidinoacetic acid and phosphocreatine in the R6/2

mouse brain may be related to the alteration of energy

homeostasis in the brain, one of the key characteristics

of HD [33].

The metabolism of cysteine and methionine was also

altered in R6/2 mice (Fig. 4). Significant increase in

brain cystathionine was observed in R6/2 mice. This

result is supported by a previous report demonstrating

cystathionine c-lyase (CSE), which converts cystathion-

ine to cysteine, was depleted in the brains of R6/2 mice

as well as HD patients [34]. Interestingly, cysteine was

Fig. 4. Overview of cysteine and methionine metabolism in plasma (A) and brain (B) of R6/2 mice. Blue and red arrows indicate the

metabolic changes of 8 weeks and 10 weeks, respectively. CSE: cystathionine c-lyase.

Table 2. Overview of lipid analysis in R6/2 mice plasma.

Lipid class Measured

Detected

Differential metabolites

(increased/decreased)*

8 weeks 10 weeks 8 weeks 10 weeks

Triacylglycerol 242 196 194 141/0 3/0

Phosphatidylcholine 76 66 67 49/0 4/0

Glycerophosphocholine 1 1 1 1/0 1/0

Cholesterol ester 22 15 14 9/0 7/0

Ceramide 28 9 7 5/0 1/0

Hexosylceramide 34 7 6 5/0 4/0

Acylcarnitine 40 9 8 0/1 0/0

Lysophosphatidylcholine 14 9 9 0/0 2/0

Sphingomyelin 10 9 10 1/0 1/0

Hydroxysphingomyelin 5 5 5 1/0 0/0

Diacylglycerol 44 17 16 3/0 0/0

*Number of metabolite with fold change > 1.3 (increased) or < 0.77 (decreased), P < 0.05 and FDR < 0.2.
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increased in the brain of R6/2 mice at 10 weeks of age,

indicating the compensatory response to the perturbed

cysteine biosynthesis. There were no significant differ-

ences in plasma cystathionine levels in R6/2 and WT

mice, in agreement with a previous study demonstrating

that plasma cystathionine level in HD patients was the

same as those in control subjects [35]. In the R6/2 mice

brain, hypotaurine was also increased at 10 weeks of

age. Hypotaurine and cysteine have antioxidative and

cytoprotective functions and play essential roles in

responses to oxidative stress [36]. Increased oxidative

stress is one of the mechanisms underlying neuronal

death in HD [37]. Elevated levels of antioxidative

metabolites in the R6/2 mouse brain at the later age of

10 weeks might be the response to increased oxidative

stress caused by disease progression.

Alterations in lipid metabolism were also shown in

the plasma of R6/2 mice. Lipids play essential roles in

biological membrane formation, cell signaling path-

ways, and the physiological functioning of the nervous

system [38–40]. Impaired lipid metabolism is one of

the characteristics of neurodegenerative disorders

including HD, AD, and Parkinson’s disease (PD) [41].

Previous studies have demonstrated that the increased

triacylglycerols are linked to the AD pathogenesis [42].

One report also noted increased levels of plasma cera-

mides and hexosylceramides in PD patients [43]. In

HD, mutant huntingtin protein plays a key role in dys-

regulation of cholesterol and fatty acid metabolism,

interacting with transcription factors such as sterol

regulatory element binding proteins [44,45]. It has also

been reported that mutant huntingtin protein causes

direct disturbance in the stability of the phospholipid

bilayer and this process is related to the mutant hunt-

ingtin aggregation [46,47]. The results of our system-

atic lipid analysis demonstrated that the altered lipid

profiles in R6/2 mice are specific to certain lipid

classes. The increased levels of lipids such as phos-

phatidylcholines, glycerophosphocholine, cholesterols,

ceramides, and hexosylceramides indicate the alter-

ation of membrane biogenesis, which could affect

membrane trafficking and the cell signaling cascade

[48], and might be the compensatory homeostatic

response for membrane disruption. The increased

levels of triacylglycerols may be related to the

increased levels of phosphatidylcholines, since biosyn-

thesis of these lipids is closely related [49,50]. The lipid

classes discriminating between R6/2 and WT mice

were partially different in 8 and 10 weeks of age.

Increases in hexosylceramides, cholesterol esters, and

glycerophosphocholine were observed both at 8 and at

10 weeks of age, indicating the chronic alteration in

metabolism of these lipids. In contrast, increases in

triacylglycerols, phosphatidylcholine, and ceramides in

R6/2 mice were remarkable at 8 weeks rather than

10 weeks of age. Whether these changes in specific

lipid classes begin at an earlier stage remains to be

addressed in future research. Recent studies with HD

patients proposed some potential lipid markers. Mas-

trokolias et al. reported the decreased level of serum

phosphatidylcholine acyl-alkyl C36:0 and its associa-

tion with HD severity in HD patient [51]. Cheng et al.

reported decreased levels of phosphatidylcholine acyl-

alkyl C36:0 and C34:0 and lysophosphatidylcholine

acyl C20:3 in HD plasma [52]. In this study, these

changes in specific phosphatidylcholines and lysophos-

phatidylcholine were not observed or not detected,

though many phosphatidylcholines showed elevated

levels in the plasma (Tables S1 and S2). Further inves-

tigations are needed to compare the lipidomic profiles

in HD patients and animal models.

This study has a couple of limitations. Our findings

should be interpreted with caution since this study

includes only female mice with a small sample size.

There are gender differences in HD both in human and

in animal models, although they seem to be not so dis-

tinct [53,54]. All biological findings in this study need to

be reproduced in a larger sample set with both males

and females. In addition, metabolomic investigation

with broader time course as well as specific brain regions

or cerebrospinal fluid can provide deeper insights into

pathogenesis of HD and useful information for explor-

ing biomarkers.

In conclusion, multiplatform metabolomic analysis

revealed many perturbed metabolic pathways in R6/2

mouse model of HD. In particular, obvious perturba-

tion of histidine metabolism in brain indicates the neu-

rodegenerative status and altered histaminergic system.

Differential metabolites related to arginine metabolism

and cysteine and methionine metabolism indicate the

upregulation of the urea cycle, perturbation of energy

homeostasis, and increase in oxidative stress. In addi-

tion, remarkable changes in specific lipid classes indi-

cate the dysregulation of lipid metabolism. These

findings add a deeper insight into the metabolic alter-

ation in HD and provide implications in future devel-

opment of HD therapeutics.
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