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Abstract

Creeping fat (CrF), also known as fat wrapping, is a significant disease characteristic

of Crohn's disease (CD). The transmural inflammation impairs intestinal integrity

and facilitates bacteria translocation, aggravating immune response. CrF is a rich

source of pro‐inflammatory and pro‐fibrotic cytokines with complex immune

microenvironment. The inflamed and stricturing intestine is often wrapped by CrF,

and CrF is associated with greater severity of CD. The large amount of innate and

adaptive immune cells as well as adipocytes in CrF promote fibrosis in the affected

intestine by secreting large amount of pro‐fibrotic cytokines, adipokines, growth

factors and fatty acids. CrF is a potential therapeutic target for CD treatment and a

promising bio‐marker for predicting response to drug therapy. This review aims to

summarize and update the clinical manifestation and application of CrF and the

underlying molecular mechanism involved in the pathogenesis of intestinal inflam-

mation and fibrosis in CD.
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INTRODUCTION

Mesenteric adipose tissue (MAT) hypertrophy, also known as fat

wrapping or creeping fat (CrF), is a hall‐marker of Crohn's disease and
was firstly reported by Dr. Burrill B. Crohn himself to be a unique

feature of the disease.1 The relationship between mesentery and in-

testine derives from embryological development. The mesenteric

mesoderm surrounded by the intestinal endoderm promotes devel-

opment of the intestine with cellular and connective tissue contribu-

tions.2,3 This pathobiological relationship is retained until adulthood

and this is now accepted to be implicated in the pathological alteration

in Crohn's disease. The inflamed and stricturing intestine is often

wrapped by CrF, and CrF is associated with the clinical activity of CD

and inflammation severity.4,5 The pre‐inflammatory, fibrotic nature of
CrF and the protective effect from transmural inflammation expan-

sion endow CrF “dual role” in the pathogenesis of Crohn's disease. Of

note, CrF is primarily seen in the small bowel, and most often the

ileum, but not in ulcerative colitis, the other form of inflammatory

intestinal diseases.6 CrF has now been recognized as an anatomical

marker for surgeons to determine the margin of resection during

surgery.7 It has also been found that mesentery‐based surgery for CD
is associated with improved postoperative long‐term outcome.8

The adipose tissue is composed of a large variety of cell types,

including mature adipocytes, endothelial cells, fibroblasts, pre‐
adipocytes, stem cells and immune cells. Remarkably, the adipocytes

only make up 20%~40% of the cellular content, and the number of the

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2022 The Authors. United European Gastroenterology Journal published by Wiley Periodicals LLC. on behalf of United European Gastroenterology.

United European Gastroenterol J. 2022;10:1077–1084. wileyonlinelibrary.com/journal/ueg2 - 1077

https://doi.org/10.1002/ueg2.12349
https://orcid.org/0000-0002-9745-1363
mailto:liyi.jlh@hotmail.com
https://orcid.org/0000-0002-9745-1363
https://onlinelibrary.wiley.com/journal/20506414


stromal vascular cells are 2~3 times over adipocytes.9 In circumstance

of CD, both non‐immune and immune cellular lineages are notably

increased in CrF.10,11

CrF has been proved as a rich source of TNF, IL‐6, IL‐10 and

other pro‐inflammatory and pro‐fibrotic cytokines.12 In CD, the

integrity of intestinal barrier is impaired and this facilitates bacteria

antigen translocation, resulting in subsequent Th17 and Th1 re-

sponses.13 Th1 response is a hallmark of CD, with downstream

secretion of IL‐22, IL‐1, IFN‐γ, IL‐2 and other soluble cytokines.14 As

a matter of fact, Th1 cells predominate in CrF as compared to which

in mucosa, whereas the mucosa demonstrates higher infiltration of

Th17 cells against bacterial infection. Notably, it contains higher

amount of M2 than M1 cells in CrF, in contrast to the lamina propria

where M1 are more common.15,16 The M2 preferential polarization

might promote fibrosis in the affected intestine by secreting large

amount of pro‐fibrotic cytokines. The complex immune microenvi-

ronment in CrF and the crosstalk with inflamed intestine play an

important role in the pathogenesis and disease progression of CD.

Moreover, adipocytes themselves are capable of exerting an

important effect on neighboring cells and regulating immune

response via fat‐derived autocrine, paracrine and endocrine mole-

cules.17 Adipokines secreted by adipocytes, such as adiponectin,

leptin and apelin, are demonstrated to be immune modulators in

CD.18 In addition to adipokines, free fatty acids (FFAs), which are

secreted by adipocytes and the relevant fatty acid metabolism

pathways, have aroused great interest among researchers. However,

the role of FFAs in the pathogenesis and the underlying mechanism

have not been fully investigated in the status of CD. Our recent study

has found that impaired fatty acid desaturation exists in CrF. The

relevant lipid mediator FADS2 in mesenteric adipocytes orchestrates

local immune response and contributes to the chronic inflammation

in CD.19

In this narrative review, we will discuss the crosstalk between

bacteria and CrF formation and their impact on the disease behavior

of CD. Imaging and clinical implication of CrF are summarized to

investigate the interaction between CrF and disease prognosis.

Recent studies and progress on this topic will also be reviewed to

investigate the underlying molecular mechanism and potential ther-

apeutic target.

BACTERIA AND CrF FORMATION

Damaged integrity of intestinal barrier facilitates gut‐derived bacteria
translocation (Figure 1). It has been demonstrated that up to 27% CD

patients (vs. 13% healthy controls) had bacteria translocation to

mesenteric fat and this has been also observed in experimental colitis

and ileitis.20 CrF presents microbiome signature enriched in Proteo-

bacteria21 and C. innocuum,22 and the relative abundance of bacteria in

CrF can be altered with the clinical status of CD. Additionally, lymph

flow plays an important role in transporting bacteria antigens and

immune cells.23 One possibility related to the discussion of lymphatic

F I GUR E 1 Bacteria translocation and components in creeping fat (CrF)
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vessels is that CrF is driven by the spillage into the mesentery of the

fatty chylomicrons carried in lymph by highly permeable or leaky

lymphatic vessels.24,25 Indeed, our study confirmed that the hyper-

trophy of MAT may result from mispatterned and ruptured lymphatic

system.26 Enhancing integrity and pumping function of lymphatics

could alter inflammation of MAT which further verified that leaky

antigens activated inflammatory response and adipogenesis of

MAT.27 Actually, single cell RNA sequence characterized CrF as both

pro‐fibrotic and pro‐adipogenic with a rich milieu of activated immune
cells responding to microbial stimuli.22 Pattern recognition receptor,

such as Toll‐like receptors,28 and nucleotide‐oligomerization domain‐
containing proteins (NOD)29 mediates inflammatory response and

adipogenesis in adipocytes and pre‐adipocytes, which are key to IBD.
All TLRs except TLR5, TLR730,31 and two NODs (NOD1 and NOD2)32

are expressed by adipocytes and preadipocytes which make them

respond to microbial molecules. NOD1 activation significantly sup-

pressed 3T3‐L1 adipocyte differentiation and lipid accumulation.29

PRR‐mediated secretion of TNF‐α and IL‐6 also impair cell differen-

tiation in preadipocytes.33,34 Meanwhile, LPS, which derived from

Gram‐negative bacteria, directly participates in the inflammatory re-

action in the adipose tissue through TLR‐4 signaling pathway activa-

tion.35 Large adipocytes are more metabolically active and more likely

stimulated to cell death by processes that involve LPS from the gut

microbiota.36 The factors aforementioned explained why there are

large amounts of immature, small‐size adipocytes with poor lipid

accumulation in the MAT, which is a critical character of CrF in CD.

Interestingly, it has been demonstrated that there is a strong corre-

lation between adipocyte size and extent of macrophage infiltration in

white adipose tissue (WAT).37

Adipose tissue expansion with the presence of smaller adipocytes

have been confirmed in several transgenic mouse models of meta-

bolically healthy obesity. Our cohort study revealed that mesenteric

adipocyte dysfunction was associated with hypoxia in CD.38 As we

know, hypoxia induces cellular mitochondrial dysfunction.39 Mito-

chondrial dysfunction subsequently enables preadipocytes adopt a

macrophage‐like inflammatory phenotype with increased expression

of pro‐inflammatory cytokines and decreased adipogenic capacity in

response to inflammatory stimuli.40 Reprograming of mitochondrial

metabolism drives preadipocytes preferentially differentiate to fibro‐
inflammatory progenitors and induces impaired adipogenesis and

adipose tissue fibrosis.41 Meanwhile, WNT and TGF‐β/SMAD3

signaling pathway are significantly elevated in CrF in CD, and both of

which are most established examples for suppression of adipo-

genesis.42,43 The paradox is the pathologic adipose tissue expansion of

CrF. The key molecule for activation of adipogenesis is peroxisome

proliferator‐activated receptor‐γ (PPARγ) and CCAAT/enhancer‐
binding protein‐α (C/EBPα), and the PPARγ‐C/EBPα complex forma-

tion facilitates preadipocytes differentiation.44,45 As we have afore-

mentioned, Th1 cells predominate in CrF with upregulated secretion

of IL‐22, IL‐1, IFN‐γ, IL‐2 and other soluble cytokines, and these pro‐
inflammatory cytokines were suppressed by PPARγ.46 Over-

expression of PPARγ has been demonstrated in CrF,12 which supports
the fact that PPARγ actively participates in the lipogenesis and

adipogenesis process in CrF. Interestingly, PPARγ also involves in

adipokines secretion by increasing adiponectin and suppressing

resistin.47 Adiponectin in turn promotes the nuclear receptor

expression involved in PPARγ signaling pathway.48,49 The complex

regulation mechanism of CrF formation involves multiple factors and

needs further investigation.

CrF AND INTESTINAL INFLAMMATION

CrF is composed of immune cells and non‐immune cells, and both of

which are markedly increased in CrF compared to healthy con-

trols.10,50 CrF is a rich source of pro‐inflammatory and anti‐
inflammatory cytokines and adipokines, as well as chemokines,

which actively participate in the onset of intestinal inflammation. The

transformed CrF contains large amount of macrophages, NK cells and

T‐cells.51 Among these immune cells, Th1 cells predominate in CrF as

compared to which in mucosa, whereas the mucosa demonstrates

higher infiltration of Th17 cells against bacterial infection.15,51

Notably, it contains higher amount of M2 than M1 cells in CrF, in

contrast to the lamina propria where M1 are more common.15,16

Interestingly, anti‐TNF treatment notably decreased the infiltration

of immune cells and the gene expression of antigen‐presenting
markers of adipose tissue macrophages, as well as the gene expres-

sion of pro‐inflammatory cytokine (IL1β, IL‐6, TNF‐α).52 T‐cell sub-
populations differed between CrF and the corresponding mucosa.

Comparing fat and mucosa, the total percentage of Th1, Th17 and

Treg populations were significantly higher within CrF than in the

mucosa in ileal CD patients.53 Meanwhile, CD8+ central memory cells

(TCM), normally representing the memory population in lymph nodes,

were demonstrated having a higher tendency in the fat tissue than

mucosa. Of note, the proportion of Th17 cells infiltration in CrF had a

negative correlation with disease activity.53 These results suggest

that there is unique immune cell signature in CrF, which is a potential

bio‐marker for CD diagnosis and disease activity prediction.

Furthermore, innate lymphoid cells (ILCs, including ILC1, ILC2 and

ILC3) are innate counterparts of CD4+ T‐cells (Th1, Th2, Th17) by
secreting a range of cytokines favouring effector T‐cell responses.54

Among which, ILC2s are distributed in visceral adipose tissue and

orchestrate the eosinophil and M2 macrophage recruitment in adi-

pose tissue by secretion of IL‐4, IL‐5 and IL‐13.55,56 The interaction

between ILCs and other immune cells in CrF need to be addressed

with further investigation.

CrF has its own cytokine and adipokine signature, which shapes

immune cells compartment and polarization in CrF and exerts further

influence on intestinal inflammatory profiles. It has been proved that

CrF is an important source of pro‐inflammatory cytokines, such as

TNF‐α, IL‐1β, and IL‐6, and approximately 30% circulating IL‐6 is

secreted by WAT.57 CrF‐related IL‐6 levels reflected the clinical

response during steroid therapy and could predict clinical relapse

after steroid‐induced remission.58 The overexpression of IL‐10 con-

tradicts the pro‐inflammatory profile of CrF, which orchestrates Treg
response and plays an essential role in IFN‐γ‐secreting CD4+
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T‐cells.11,59 Meanwhile, adipokines stem from the MAT also actively

participate in the gut immune response. Leptin (an adipokine with

pro‐inflammatory and pro‐fibrotic nature) is mainly secreted by WAT

and regulates the differentiation, function and metabolism of a va-

riety of immune cells' subpopulations and intestinal epithelial

cells.60–62 On the contrary, the overexpression of adiponectin in CrF

presents anti‐inflammatory effect based on the antagonistic effect of

TNF‐α63 and inhibits the expression of adhesion molecules, metal-

loproteinases, and proinflammatory mediators.64 Other adipokines,

such as chemerin, ghrelin, resistin and visfatin, also play an important

role in regulating immune homeostasis in mesentery and the adjacent

intestine.65 The complex immune microenvironment in CrF and the

crosstalk with inflamed intestine play an important role in the

pathogenesis and disease progression of CD.

CrF AND INTESTINAL STRICTURE

Intestinal stricture is challenging in the management of CD. More

than one‐third CD patients develop stenotic disease phenotype and

need at least one surgical intervention.66 However, there are no

specific anti‐fibrogenic agents to reverse the process. Although the

molecular mechanism of the intestinal stricture formation remains

unclear, it is well recognized that strictures are resulted from

transmural inflammation and tissue repairing. The abnormal deposi-

tion of extracellular matrix (ECM) induced by immune cells, non‐
immune cells and microenvironmental factors leads to hyperplasia

of connective tissue, tissue remodeling, and ultimately intestinal

fibrosis.67 The presence of fat wrapping surrounding the inflamed

intestine is closely associated with muscularis propria hyperplasia

and stricture formation. It has been shown that the extent of serosal

fat wrapping correlates significantly with the degree of acute and

chronic inflammation, especially the transmural inflammation.68 In a

consecutive and unselected group of 27 performed on 25 patients

with CD, fat wrapping was identified in 12 of 16 ileal resections and

in 7 of 11 colon resections. Fat wrapping was found to be associated

with connective tissue changes including fibrosis, muscularization

and stricture formation.69 A recent study developed a novel

mesenteric creeping fat index (MCFI) using computed tomography

(CT) in CD patients, MCFI showed an excellent correlation with

extent of fat wrapping and could accurately differentiate the degree

of intestinal fibrosis.70 The current accumulated results suggest that

CrF is a potential bio‐marker for prediction of stenotic phenotype

disease extent in CD.

Basic character for intestinal fibrogenesis is excessive ECM

deposition, which is comparable to fibrogenesis in other organs.

Multiple soluble factors produced by immune cells and non‐immune
cells during an inflammatory response promote fibrogenesis. For

instance, the M2 preferential polarization in CrF might promote

fibrosis in the affected intestine by secreting large amount of pro‐
fibrotic cytokines such as TGF‐β. TGF‐β is an important mediator

of fibrogenesis through activating mesenchymal cells, which is also

capable of regulating immune response by inducing regulatory T cells

(T‐reg). Other fibrogenic‐related molecules include connective tissue

growth factor, activins, insulin‐like growth factors 1 and 2, platelet‐
derived growth factors, and others. The activation of the down-

stream signaling pathway of these molecules directly results in

fibrogenesis. In addition to the classic molecules, CrF‐derived FFAs

has aroused great interest among researchers in recent years. The

CrF‐derived FFAs induce specific proliferative response by human

intestinal fibroblast and human intestinal muscle cells. Our study

demonstrated that the metabolism of lysophospholipids was mis-

patterned in MAT from CD patients.19 Impaired desaturation fluxes

towards the n−6 and n−3 pathways was observed in the levels of

metabolites involved in the synthesis of long‐chain polyunsaturated

fatty acids (PUFAs). The metabolic dysfunction was shown to be

regulated by fatty acid desaturase‐2 (FADS2). The disturbance of

fatty acid desaturation with decreased FADS2 expression contrib-

utes to chronic inflammation in CD. We further confirmed that the

disturbed expression of the enzymes which are involved in the lipid

metabolism, in CrF from CD. Among which, the activation of auto-

taxin (ATX) and lysophosphatidic acid (LPA) axis promoted prolifer-

ation and differentiation of fibroblasts and aggravated intestinal

fibrosis.71 Although the mechanism of fibrogenesis is still unclear in

IBD, the reversibility of stricturing seems promising. Clinical obser-

vations suggest that intestinal fibrosis is not a one‐way street. The

intestinal wall thickness was significantly reduced with strictur-

eplasty for CD patients. Additionally, a large pipeline of anti‐fibrotic
drugs is stepping into clinical trials for organ fibrosis, such as for the

kidney, lung, liver, heart and skin.

CLINICAL IMPLICATIONS OF CrF

Surgeons harness CrF as an anatomical marker to determine the

surgical margin of intestinal resection.7 In a cohort study, Coffey et.al

showed that the surgical recurrence rate was significantly lower in

the group which underwent intestinal resection with excision of the

mesentery, compare to the control group undergoing conventional

ileocolic resection where mesentery was divided flush with the in-

testine (2.9% vs. 40%).8 These results demonstrate that inclusion of

mesentery in ileocolic resection for CD is associated with reduced

recurrence requiring reoperation, which further suggests the pro‐
inflammatory and pro‐fibrotic profile of CrF in the pathogenesis of

gut inflammation. Meanwhile, advanced mesenteric disease corre-

lated with increased surgical recurrence, and the mesenteric disease

activity was closely associated with the mucosal disease activity in-

dex. Our recent report indicated that, in patients with Crohn's colitis,

extensive mesenteric excision is associated with similar short‐term
outcomes and improved long‐term outcomes compared to limited

mesenteric excision.72 However, some old data showed the radical

operation with excised mesentery for CD led to early relapse

compared to more restricted procedure.73 Taken the fact that CrF is

a protective factor against transmural inflammation and bacterial

translocation, more randomized clinical trials are needed to find out

whether CrF is a friend or foe for CD treatment.
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On the meantime, clinical manifestation of CrF can predict the

intestinal disease activity to some extent. A recent research estab-

lished a novel CrF index (MCFI) based on vascular finding on CT, and

validated the efficiency of MCFI in a prospective cohort.70 The re-

sults found that MCFI could accurately differentiate intestinal

fibrosis severity, while neither visceral to subcutaneous fat area ratio

nor fibrofatty proliferation score correlated well with the degree of

gut fibrosis. This is interesting and has clinical implication as identi-

fying CrF or fat wrapping on imaging is of great significance and this

method could be used as a non‐invasive method to evaluate the

severity and extent of gut inflammation and fibrogenic alteration. Of

note, the mesenteric fat alteration or lymphadenopathies may be of

great value to evaluate the response to drug therapy. The existing

research has already used these two parameters to assess the early

and long‐term therapeutic efficiency in patients starting treatment

with anti‐TNF agents.74 Based on MRE data, another prospective

longitudinal study showed that the presence of CrF was an inde-

pendent negative predictor of long‐term healing of severe inflam-

mation in clinically active CD patients requiring anti‐TNF drugs.75

These results suggest CrF as valuable predictor for assessing thera-

peutic effect with biological treatment in CD patients.

Targeting CrF is an interesting and promising research going. We

have discussed that CrF formation and pathological alteration are

associated with lymph leakage. Our preliminary study demonstrated

that targeting mesenteric lymphatics with chylomicrons‐simulating
nanoparticles could restore the microstructure of leaky mesenteric

lymphatic vessels and notable alter pathologic inflammatory cells

infiltration in the mesenteric fat.27 This study contributed the first-

hand reliable pharmacokinetics data in the mesentery in experi-

mental colitis. In fact, intraperitoneal administration with anti‐TNF
increased the production of IL‐10 and resistin in mesenteric fat and

significantly restored the morphology of adipocytes and upregulated

PPAR‐γ expression.76 These results suggest that targeting CrF and

exploring more therapeutic targets will shed light on developing

alternative treating method for CD patients.

CONCLUSION

CrF as a hallmark of CD actively participates in the pathogenesis of

intestinal inflammation. Given its protective nature, CrF formation is

responsive to the transmural inflammation and microorganism stim-

uli translocation. However, the pro‐inflammatory and pro‐fibrogenic
profiles of CrF promote ECM deposition and intestinal fibrogenesis.

Therefore, it is suggested that CrF determines the surgical margin for

intestinal resection and is used to predict the severity of gut fibrosis

on imaging. Despite the clinical manifestations, the underlying

mechanism for CrF formation and the molecule interaction between

CrF and pathological alteration of the inflamed intestine are not fully

clarified and worth further investigation. We do believe that with

deeper understanding on the immune microenvironment, endocrine

function and metabolism characterization of CrF, more and more

potential therapeutic target and agents will be mined out which will

shed light on the alternative choice for CD treatment.
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