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RapidEELS: machine learning 
for denoising and classification 
in rapid acquisition electron energy 
loss spectroscopy
Cassandra M. Pate  1, James L. Hart1,2 & Mitra L. Taheri1*

Recent advances in detectors for imaging and spectroscopy have afforded in situ, rapid acquisition 
of hyperspectral data. While electron energy loss spectroscopy (EELS) data acquisition speeds with 
electron counting are regularly reaching 400 frames per second with near-zero read noise, signal to 
noise ratio (SNR) remains a challenge owing to fundamental counting statistics. In order to advance 
understanding of transient materials phenomena during rapid acquisition EELS, trustworthy analysis 
of noisy spectra must be demonstrated. In this study, we applied machine learning techniques 
to denoise high frame rate spectra, benchmarking with slower frame rate “ground truths”. The 
results provide a foundation for reliable use of low SNR data acquired in rapid, in-situ spectroscopy 
experiments. Such a tool-set is a first step toward both automation in microscopy as well as use of 
these methods to interrogate otherwise poorly understood transformations.

Advances in electron imaging and spectroscopy instrumentation now allow for time-resolved data acquisition 
at rates over 1000 frames per second. Specifically, development of direct detection electron sensors, including 
both back thinned monolithic active pixel designs and thick hybrid pixel designs, enable counting of individual 
electron events for shot noise limited data acquisition1,2. This led to significant advancement in numerous areas of 
electron microscopy, including cryo-transmission electron microscopy (TEM)3 , low signal to noise ratio (SNR) 
electron energy loss spectroscopy (EELS) acquisition4, in-situ TEM/EELS5, and 4D scanning transmission elec-
tron microscopy (STEM)6. While novel EELS direct detection systems allow for rapid acquisition, this function 
has not been utilized to its full potential as any increase in speed comes at the expense of the signal-to-noise ratio, 
or SNR. To understand emerging and evolving phenomena, spectra need to be acquired in as short of timescales 
as possible to capture transient behavior. At high frame rates, however, the low SNR can render datasets too noisy 
for analysis (e.g. quantification of oxidation state). In transition metal oxides, for example, many methods used 
for valence determination, e.g. L3/L2 ratio, chemical shift, or O K-edge pre-peak analysis can yield contradic-
tory results regardless of SNR. A reduction in SNR degrades spectra as compared to those acquired at long time 
scales, and in some cases, renders data unusable or untrustworthy. In addition, calibration differences between 
different machines or the same machine at a different time, can further complicate spectra analysis by introducing 
translational shifts. Another problem is plural scattering, which leads to thickness dependent spectral changes.

Background
Machine learning tools present a solution to raise the information limit of rapidly acquired spectra, building a 
foundation for characterizing and tracking transient phenomena at shorter time scales. Convolutional neural 
networks (CNN), specifically, have become common in fields with challenges that cannot be overcome by more 
basic human-driven domain engineering and statistical analysis due the high-dimensionality of the input or a 
lack of ‘ground truth’, such as speech recognition and natural language processing7–9, image classification10–13 and 
feature extractions and classification of electroencephalography signals which tend to have a low SNR and be 
sensitive to background noise7,8. The ‘learned’ lower-dimension information may then be linked to other models, 
such as classifiers, clustering algorithms, or visualization techniques. Autoencoders (AEC) for image denoising is 
well established field14–17 with convolutional AECs specifically being highly successful even on small datasets18,19.
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The use of neural networks (NNs) for spectra classification in EELS has been limited, with the majority of 
NN-based spectra classification having been focused on other techniques, such as Raman or X-ray absorption 
spectroscopy12,20–22 or denoising of STEM images23–26. The application of NNs to EELS data has, to date, relied 
on feature engineering, use of a reference spectrum, and requiring a priori knowledge during post-processing 
to extract useful information. Linear models have been used for the determination of oxidation states in metal 
oxides27 and manganese valence states28. Kalinin et. al explored unmixing and supervised classification on het-
erogeneous self-assembled monolayer films of doped-semiconductor nanoparticles29. Blum et. al proposed a new 
algorithm for strong metal-support interactions and exploring encapsulation signals in heterogeneous catalysts30. 
Most notably, Chatzidakis et. al31 investigated EELS spectra oxidation state classification with a mix of fully dense 
and fully CNN architectures and samples augmented with varying simulated noise levels. Advances in STEM 
allows for EELS spectral images of beam-stable materials to be obtained with a high SNR32,33. However, the high 
current density and longer dwell time needed may damage sensitive samples33–35.

Autoencoders are a type of unsupervised neural network model that maps high dimensional input features to 
a lower dimension and then reconstructs the original input from the lower dimensional layer, i.e. the latent space. 
Generally, AECs have a three-part symmetric structure: encoder, latent space, decoder. The encoder maps high 
dimension input data to a lower dimension representation. In doing so, it learns and builds patterns in the data 
that might be overlooked by or invisible to human-designed models or analysis. These patterns are represented 
in a reduced dimension vector space, also called latent space, that produce a more generalized characterization 
of the data. A decoder, inverse in structure to the encoder, is then trained to reconstruct the input from the latent 
space features extracted by the encoder. A variation of this, commonly used in the image reconstruction field, is 
the semi-supervised denoising auto encoder. The encoder maps a partially destroyed or incomplete input to the 
latent space, decodes as a non-destroyed (denoised) image, and is trained to minimize the average reconstruction 
error between the reconstruction and the ground truth image.

In this study, we utilize a dual Autoencoder-Classifier algorithm to denoise low SNR spectra collected at 
400FPS, as a starting point for rapid identification of real-time EELS data. The reduction of SrFeO3−δ ( δ repre-
sents the oxygen deficiency) is used as a model experiment, with the detection of oxidation state changes from 
nominally SrFeO3 ( Fe4+ ) to SrFeO2.5 ( Fe3+ ) as target metrics to benchmark our algorithms in terms of accuracy 
and effectiveness. Specifically, we employed a stacked convolutional denoising AEC and fully connected classifier 
on a model system to study noise reduction and oxidation state classification for low SNR EELS spectra collected 
at 400FPS. Classification accuracy on the latent space representations indicate how successfully the AEC learns 
relevant, unique features and can be expanded on in the future for more complex unsupervised applications, 
or high frame rates studies of non-equilibrium phenomena. The notebooks developed during this study can be 
found on GitHub (https://github.com/patecm/rapidEELS).

Methodology
As a model system to investigate EELS fine structure changes, we study the reduction of a SrFeO3−δ thin film. 
A SrFeO3−δ film of roughly 20 nm was grown via molecular beam epitaxy on a ( LaAlO3−δ)0.3(Sr2TaAlO6)0.7 
(LSAT) substrate36. Post-growth, the film was oxidized with an ozone anneal to produce perovskite SrFeO3 , with 
δ ≈ 037. For δ = 0, SrFeO3 is metallic and paramagnetic with a cubic perovskite structure and Fe is in a formal 
4+ oxidation state. With reduction to δ = 0.5, the brownmillerite SrFeO2.5 structure is stabilized, which is an 
insulating antiferromagnet with Fe in an average 3+ oxidation state38. While the metal-to-insulator and magnetic 
transitions hold technological relevance, we are mainly interested in the core-loss spectral changes associated 
with the altered Fe oxidation state and Fe-O bond geometry.

STEM-EELS measurements were performed with a JEOL 2100F instrument and a Gatan Imaging Filter 
Quantum equipped with a K2 direct electron detector operated in counting mode4. The STEM convergence 
semi-angle was 8 mR, and the EELS collection semi-angle was 24 mR. For EELS, the 5 mm aperture was used 
with a dispersion of 0.125 eV/channel. A focused ion beam (FEI DB235) was used to prepare a conventional lift-
out for TEM analysis. Final thinning was performed with 5 keV Ga ions. The FIB lift-out was then re-oxidized 
via the ozone anneal, assuming some loss of O during FIB sample preparation. After initial TEM and EELS 
analysis, the lift-out was removed from the TEM and reduced ex situ by annealing on a hot plate at 300 C in 
ambient atmosphere for 10 min Subsequently, the sample was placed back in the TEM for further TEM and EELS 
analysis. We note the presence of an interfacial region between the SrFeO3−δ film and LSAT substrate (present 
before and after ex situ annealing), characterized by planar defects observed with HRTEM and reduced intensity 
observed in STEM-ADF (indicating a lower average mass density). This defective interfacial region is excluded 
from subsequent imaging and spectral analysis.

HRTEM imaging and EELS show a clear transition in the SrFeO3−δ film after annealing. As shown in Fig. 1B, 
before the ex-situ anneal, the SrFeO3−δ shows cubic symmetry as expected for perovskite SrFeO3 . After the 
anneal, half-order peaks are observed in the HR-TEM Fourier transform, indicative of O vacancy ordering in 
the brownmillerite SrFeO2.5 structure. Spectrally, clear changes in both the O K-edge and Fe L-edge are observed, 
which are consistent with the perovskite SrFeO3 to brownmillerite SrFeO2.5 transition studied with X-ray absorp-
tion spectroscopy at the same edges39. Spectral analysis shows that the energy difference between the O K-edge 
onset and the Fe L-edge onset is reduced from 183.1 to 181.5 eV after annealing, and additionally, the Fe L3

/L2 white line ratio increased from 3.8 to 4.6. Both changes are consistent with a nominal decrease in the Fe 
oxidation state from ∼ 4+ to ∼ 3+ with annealing. Thus, while the precise value of δ in our film is not known, we 
conclude a clear transition was induced via the ex-situ anneal, and that the initial and annealed states roughly 
corresponding to SrFeO3 and SrFeO2.5.

Experimental EELS datasets were used to develop our algorithm. For the initial-state EELS data acquisi-
tion, multi-frame spectra images (SIs) were acquired with a pixel size of 1 nm2 , 0.0025 s dwell time, and lateral 
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dimensions of 10 638 pixels. Three frames were acquired, and a drift correction was performed between each 
frame. The SI was vertically aligned within the SrFeO3−δ layer to only probe the central region of the film, thereby 
excluding the defective interfacial layer as well as damage at the top of the film (the green box in Fig. 1A shows 
one representative SI area). Four multi-frame SIs were acquired in the initial-state. Each SI was shifted laterally 
along the SFO/LSAT interface, which, owing to the sample geometry and FIB preparation method, resulted in 
sampling various thicknesses of the SFO film. Based on low-loss EELS measurements, the four SIs covered a 
continuous thickness range from 0.6 to 1.3 inelastic mean free paths (MFPs). Note that the 4 multi-frame SIs give 
a total of 12 SIs. The exact same procedure was repeated after annealing the sample ex situ. Various irregularities 
in the protective layers above the SrFeO3−δ film were used to correctly position the annealed-state SIs with the 
corresponding initial-state SIs.

While the spectral differences associated with the SrFeO3 to SrFeO2.5 transition appear obvious in the data 
shown in Fig. 1, we note three experimental difficulties which make practical classification of spectra a challeng-
ing task. First, the SNR of spectra associated with individual pixel elements is extremely low. For each individual 
spectra, the average number of electron counts per channel at the O K-edge is ≈ 15 (for a local thickness of 0.8 
MFP), which gives a shot noise limited SNR of sqr(N) = 3.8. This low SNR is shown in Fig. 2A. Secondly, given the 
large range of sample thicknesses, plural scattering leads to significant spectral changes as a function of thickness. 
This is shown in Fig. 2B, which compares a thin versus thick region of the SFO in the initial state. Lastly, as the 
STEM beam scans across the sample, there is an associated shift of the EELS data in energy space. This artifact 
is shown in Fig. 2C, which compares spectra from the leftmost, central, and rightmost regions of a SI acquired 
from the annealed-state. Note that from the perspective of the classifier, the effects of thickness (plural scatter-
ing) and artificial energy shifts may be considered as additional ‘noise’ sources, which the classifier must deal 
with to accurately label spectra as ‘initial’ or ‘annealed’. However, from the perspective of the AEC, the effects of 
thickness and energy shifts on a given spectra should be preserved. The AEC is useless unless it preserves subtle 
features of interest within a given spectra. Of course, artificial energy shifts are not ‘of interest’ but they may act 
as a criteria on which to assess the AEC performance.

Training data was grouped into four categories for comparison purposes, based on thickness-based spectral 
changes and oxidation state. 12 SIs are initial ( SrFeO3 ) state and 12 have been annealed to SrFeO2.5 using the 
methodology previous described. Each oxidation state contained six “thin” datasets, with a MFP between 0.65 
and 0.80, and six “thick” datasets, with a MFP of 0.83–1.33. Hence, the four categories are thin initial, thick initial, 
thin annealed, and thick annealed, and each category contains 6 SIs. EELS data is collected in a 3D cube, where 

Figure 1.   (A) STEM ADF of the SrFeO3−δ film. The green box shows the location of one SI. (B, C) are HRTEM 
images of the SrFeO3−δ before and after the ex situ anneal, respectively. The insets show Fourier transforms 
(FT) of the SrFeO3−δ layer, excluding the defective interfacial region. To obtain adequate SNR for the FT of the 
annealed sample, FTs from multiple HRTEM images were summed together. D. and E. are the O K-edge and the 
Fe L-edge, respectively, comparing the initial and annealed SrFeO3−δ . The data was averaged over 10 200 pixels, 
with a local thickness of 0.7 MFP. A power-law background subtraction was applied to both edges, and the edges 
were normalized to their post-edge continuum intensity.
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each 2D pixel of the TEM image has an associated energy spectrum. Each of the twenty-four EELS SIs produced 
STEM images with 638 by 10 spatial pixels, for a total of 153,120 input spectra. Of these, four SIs were withheld 
for testing, one from each of the four main categories: thin initial, thick initial, thin annealed, thick annealed. 
Twenty percent of the remaining training input spectra were used as a validation set.

To facilitate real-time classification of spectra in the future, pre-processing for the ML framework was kept as 
minimal as possible. Training spectra were imported from dm4 files and cropped from 520 to 580 eV around the 
O K-edge using the HyperSpy package40, and binned from 0.125  to 0.25 eV/channel, resulting in 240-feature long 
spectra. Spectra were normalized from 0 to 1, without any background subtraction. Five-fold cross-validation 
was performed prior to model training to select the dimensions of the latent space representation, learning rate, 
percent dropout, training batch-size, and number of training epochs. Mean centering standardization was not 
performed on the training data, as it was also determined in cross-validation to be unnecessary and in some 
cases to degrade the reconstruction. Translational shifts between scans or varying sample thicknesses were not 
corrected for.

To train the AEC toward denoising, ‘ground truths’ were created with a convolution filter across the spatial 
dimensions of the raw input spectra. Because the oxidation state was uniform across each EELS sample, convo-
lution simulates a lower frame rate and therefore less noisy spectra. A simulated frame rate of 1FPS (filter size 
10x40) was chosen since it was shown to produce spectra where oxidation states are visually distinguishable from 
one another. Fig.  3B shows the difference in the SNR for different simulated frame rates. In contrast to most 
denoising AEC, where the ground truth is corrupted by adding Gaussian noise, the spectra collected at 400FPS 
at each pixel was used as the noisy data. The addition of noise has been shown to improve reconstructions and 
prevent overfitting in denoising AECs41–43. Because the noise intrinsic to electron exposure (shot noise) follows a 
Poisson distribution44, Poisson noise was added to the input instead of the more commonly used random noise. 
PowerLaw background subtraction was performed only on the “ground truth” spectra before normalizing from 
zero to one for input to the AEC. Thus, the AEC is also trained to perform a background subtraction on the input 
data, which allows easier analysis on the denoised spectra.

The encoder architecture of the AEC consisted of five one-dimensional (1D) convolution hidden layers, 
which increase in filter size but decrease in kernel size. An overview of the model can be found in Fig. 4 with 
more details in Table 1 of the Supplemental Information. For some AEC applications, Dropout has proven more 

Figure 2.   (A) Comparison of mean versus single pixel, centered at the same region of the sample. The single 
pixel values were multiplied by 4230 for comparison. (B) Effect of thickness of the initial state O K-edge. (C) 
Effect of spatial position of the STEM probe on the EELS energy shift. Scanning the STEM probe across the  600 
nm SI box results in an energy shift of  1.5 eV. A power-law background subtraction was performed on all edges.

Figure 3.   Illustration of the relationship between the (A) region of interest (ROI) and frame rate, and the (B )
impact on the signal to noise ratio when summing all spectra within the ROI. At high frame rates, the low signal 
to noise ratio makes it impossible to visually analyze or assign structure, as the signal is mostly noise.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19515  | https://doi.org/10.1038/s41598-021-97668-8

www.nature.com/scientificreports/

effective at preventing over-fitting than other regularization methods such as L1 norm45–48.During framework 
development, Dropout was found to produce better results than L1 regularization. Therefore, a twenty percent 
Dropout layer between layers is included, with the last convolution layer of the encoder also having a twenty 
percent dropout bottleneck. Pooling was not used between layers to avoid discarding finer details and features 
for the reconstructions49. Each hidden convolution layer had ReLU activation with the exception of the output 
layer of decoder, which used a linear activation. The decoder was structured as the inverse of the encoder, but 
without dropout between layers to preserve the reconstruction of the latent space. Connecting the encoder to 
the decoder is the latent space, which learns a five-dimension representation of the spectra. The model was fit 
using the Adam optimizer and minimizing the reconstruction mean square error (MSE) loss function. MSE 
was chosen over mean absolute error (MAE) because it is more sensitve to outliers50 and after demonstrating a 
higher overall MSE for denoised spectra during cross-validation.

Post-Autoencoder training, encoder layers were frozen before training the classifier. The latent space contain-
ing features extracted by the Encoder were used as input to the classifier, which consist of a single, two neuron 
dense layer with Softmax activation. All models were trained for 500 epochs each on a NVIDIA GTX1080Ti 
GPU, with CUDA v10.1 and cuDNN v7.6, using Keras and Tensorflow 2.3.0 back-end. Total training time was 
approximately 20 min (Fig. 5).

Results and discussion
Testing data consisted of four SIs, one of each oxidation state and thickness range, for a total of 25520 spectra. 
The training data was prepared in the same manner as previously described for the test dataset but without the 
addition of noise. Additional background subtraction was not performed on the predictions, as the “ground truth” 
training data had background removed prior to training the autoencoder which results in denoised spectra that 
are background subtracted. Two key concerns addressed by this study were if fine details and subtle features 
were maintained in the denoised reconstruction spectra and how well the autoencoder performed compared 
to common denoising techniques. Principle component analysis (PCA) was selected to benchmark fine feature 
reconstruction. While commonly used as a dimensionality reduction technique, PCA is also used in the computer 

Figure 4.   Visualization of the Neural Networks. The autoencoder learns a lower dimensional representation 
(latent space) of the input data and constructs denoised spectrum as output. The latent space representation of 
the ‘noisy’ spectrum is passed to the classifier, which determines if the input is initial or annealed state.

Figure 5.   (A) Comparison of mean squared error (MSE) between three different PCA reconstructions 
and the AEC reconstructions, sorted by type of SI in the test dataset. MSE was calculated by comparing the 
corresponding Ground Truth spectra. (B) MSE versus frame-rate for raw denoised spectra.
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vision field as a noise reduction technique51,52. To establish general performance, Gaussian curves were fit to the 
pre-peak and K-edge peaks for each denoised pixel result (see Figure 1 of the Supplemental Information), using 
a least squared approximation to minimize the sum of squared residuals. Gaussian curves were also fit to the 
pre-peak and Oxygen K-edge of the Ground Truth spectra that corresponded to each pixel. Reconstruction errors 
of each sample class were determined by mean square error (MSE). Visualizations of the PCA reconstructions 
and AEC densoised SI are shown in Fig. 6. While the AEC denoised spectra had a lower MSE than the 5 and 7 
component PCA reconstructions, 3 component PCA reconstruction had a comparable or lower MSE than the 
AEC denoised spectra, with the exception of the thicker annealed samples. The changes in peak position and 
height of the pre-peak and K-edge from the Ground Truth pixels, after Gaussian fitting, are shown in Table 2 of 
the Supplemental Information.

Also of importance was the level of detail maintained in the denoised samples. Overall intensity trends in 
thickness-related variation (Fig. 2B) were maintained in the denoised 400FPS spectra (Fig. 7C). However, while 
translation variation from STEM probe position (Fig. 2C) were seen in the predictions (Fig. 7D), it was not as 
pronounced as in the ground truth spectra. This is likely do to the pooling nature of convolution minimizing 
variation between similar spectra and was expected due to previous applications by Chatzidakis and Botton in 
mitigating spectral shifts due to calibration difference31. Relative peak intensity, on average, was maintained in 
the denoised and PCA reconstruction spectra are displayed in Table 2 of the Supplemental Information.

Lastly, classification accuracy of the framework was evaluated for the 400FPS raw data and three other simu-
lated frame rates. Using the 5-dimension latent space representation of the 400FPS input spectra, the classification 
algorithm achieved 82.0 percent accuracy in determining if the input spectra had oxidized. This indicates the 
encoder is successfully learning unique features of the low signal to noise ratio input data and is able to overcome 
shifts in the spectra due to probe position, as well as spectral changes due to thickness effects. When the frame 
rate was reduced to 200, 100, and 25 frames per second, the classification accuracy increased to 88.5 percent, 
92.3 percent, and 93.0 percent respectively. Corresponding accuracy values for all SI are shown in Table 3 of the 
Supplemental Information.

Previous work by Chatzidakis and Botton31 explored convolutional and dense classifying models to overcome 
translational shifts due to calibration differences between machines of EELS spectra for three different electron 
states of manganese. While we did not achieve the same 100 percent classification accuracy for our perovskite 
samples, classification accuracy was a secondary goal used to explore the latent representation of the data. Nev-
ertheless, we achieved a classification accuracy of 93.0 percent and 85.8 percent on high SNR (20fps) and very 
low signal to noise ratio (400FPS) data, respectively. An algorithm trained with the explicit goal of classifying 
the denoised spectra directly would likely achieve even high classification accuracy. Peak statistic comparisons 
between the ground truth spectra and denoised spectra prove that fine-detail structure is maintained in the 
denoised spectra. Notably, at lower frame rates, the classification algorithm begins to have difficulties with the 
thick annealed spectra and mis-classifies as initial state. However, at low frame rates, it would likely not be neces-
sary to use a deep learning framework for classification.

Figure 6.   Visual comparison of the four test datasets, at varying oxidation state and sample thickness. Solid 
lines are the average of the SI and corresponding shaded region is the standard deviation. (A) Average of 
AEC denoised 400FPS spectra (blue, green, orange, red solid lines) in a 40 by 10 pixel section. Corresponding 
Ground Truth spectra are superimposed with a gray dashed line. (B) Average 3 component PCA reconstruction 
of 400FPS spectra (blue, green, orange, red solid lines) in a 40 by 10 pixel section. Correspond Ground Truth 
spectra are superimposed with a gray dashed line.
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Figure 8 shows 2-D t-SNE plots for the raw spectra data at five different frame rates, plus AEC denoise spectra 
at 400 FPS. Below 100 FPS, it would be possible to use clustering algorithms instead of a deep learning approach 
to classify oxidation state and sample thickness, because distinct clusters are formed. At 100FPS and above, the 
2-component t-SNE representation of annealed and initial state input spectra become increasingly intermixed. 
At 400FPS, the clusters are completely entangled, yet the classification algorithm is still able to achieve 85.8 per-
cent binary classification accuracy, proving that the AEC is able to learn relevant, unique information from even 
the low SNR data. The denoised 400 FPS spectra t-SNE representation begins to form distinct clusters, similar 
to raw data at low frame rates. This is important for unsupervised and semi-supervised learning applications, 
as it may be possible to employ clustering algorithms to classify non-labeled data if categorical clusters can be 
dis-entangled. Additionally, an abundance of recent work has focused on spatial components for linear unmix-
ing, denoising and classification of hyperspectral data, such as Bayesian mode based on Markov random fields 
v , image in-painting by beta-process factor analysis33, and Gaussian processes methods53. Future work aims to 
incorporate similar spatial components and relationships for in-situ annealed samples.

Figure 7.   Spatial effects and fine details variation of predictions on the thin, initial state SI at 400FPS. (A) 
Comparison of the EELS data from an individual pixel (B) Corresponding Ground Truths for the different SI at 
pixel (4319)  (C)  Autoencoder denoised results on different 400FPS pixels (D) Comparison of reproduction of 
STEM probe position in the denoised results, across the 600nm SI box, for the 0.7MFP annealed sample.

Figure 8.   Two dimensional t-SNE plots of test spectra (raw data) at varied frame rates, including denoised 
400 FPS spectra. Blue and orange markers represent the initial and annealed states, respectively. An ’X’ marker 
represents a thin sample and ’o’ marker represents a thick sample.
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Conclusions
Our ML approach successfully classified spectra from different thickness for samples with 85.8 percent accuracy 
and reduced noise enough to visually compare to reference spectra. Trends in thickness-dependent details were 
preserved in the auto-encoder denoised spectra for the initial state SIs. Denoised annealed spectra produced 
peaks that were 0.3–0.4 eV In all benchmarks, the auto-encoder denoised spectra had similar performance to 
the PCA reconstructions, with respect to MSE.

This paves the way for more regular use of ML codes in spectra acquisition to assist experiments in situ, and 
application of more complex ML, e.g., unsupervised learning, to take advantage of high frame rates and study 
non-equilibrium phenomena. The high classification accuracy on 400FPS latent space representations indicates 
the autoencoder is ‘learning’ relevant and unique low-dimensional features representing the SrFeO3 and SrFeO2.5 
oxidation states. Future work will build on the foundation established here to investigate low-dimensional latent 
representations further for potential unsupervised applications without defined, finite classes.
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