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Abstract

Background: All biological processes are inherently dynamic. Biological systems evolve transiently or sustainably
according to sequential time points after perturbation by environment insults, drugs and chemicals. Investigating
the temporal behavior of molecular events has been an important subject to understand the underlying mechanisms
governing the biological system in response to, such as, drug treatment. The intrinsic complexity of time series data
requires appropriate computational algorithms for data interpretation. In this study, we propose, for the first time, the
application of dynamic topic models (DTM) for analyzing time-series gene expression data.

Results: A large time-series toxicogenomics dataset was studied. It contains over 3144 microarrays of gene expression
data corresponding to rat livers treated with 131 compounds (most are drugs) at two doses (control and high dose) in
a repeated schedule containing four separate time points (4-, 8-, 15- and 29-day). We analyzed, with DTM, the topics
(consisting of a set of genes) and their biological interpretations over these four time points. We identified hidden
patterns embedded in this time-series gene expression profiles. From the topic distribution for compound-time
condition, a number of drugs were successfully clustered by their shared mode-of-action such as PPARa agonists and
COX inhibitors. The biological meaning underlying each topic was interpreted using diverse sources of information
such as functional analysis of the pathways and therapeutic uses of the drugs. Additionally, we found that sample
clusters produced by DTM are much more coherent in terms of functional categories when compared to traditional
clustering algorithms.

Conclusions: We demonstrated that DTM, a text mining technique, can be a powerful computational approach
for clustering time-series gene expression profiles with the probabilistic representation of their dynamic features
along sequential time frames. The method offers an alternative way for uncovering hidden patterns embedded in
time series gene expression profiles to gain enhanced understanding of dynamic behavior of gene regulation in
the biological system.
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Introduction

All biological processes including perturbation-responses
are inherently dynamic. Investigating the temporal behav-
ior of these dynamic processes is an important part of bio-
logical research. With the advancement of technology and
reduction in cost, study of time-series gene expression has
become routine [1]. The objectives of these types of
research cannot be achieved without appropriate com-
putational algorithms and methods. For example, a
targeted perturbation like drug treatment activates or
inhibits certain molecules in the cellular system in a
transient or sustained manner; however, if we ignore
these intrinsic dynamics of molecular changes due to
lack of analysis techniques, we may miss out critical
biological findings.

To analyze time-series gene expression profiles, several
approaches have been used which can be divided into
two classes. One of the classes is conventional clustering
algorithms such as hierarchical, k-means clustering and
self-organizing maps, which do not consider any de-
pendencies between temporally successive profiles. In
other words, even if we permute the order of time
points, the results of these algorithms would not change.
Additionally, another drawback of these approaches is
the mutual exclusiveness of genes with respect to their
involvement in biological processes responding to ex-
posure. The second class of approaches is the clustering
algorithms primarily designed to analyze time-series
expression. For example, Aach and Church introduced
dynamic time warping algorithm for the alignment of
expression profiles in different time series [2]. Schliep
introduced Hidden Markov Model widely used in
speech recognition to consider time dependencies along
sequential timeline of time series gene expression data
[3]. These algorithms have been constantly under im-
provement [4—6]. Ramoni modeled the dynamics of
genes by autoregressive equation and genes with the
highest posterior probability from the same autoregres-
sive equation were clustered together [7]. Additionally,
there are software packages to analyze time-series gene
expression data such as CAGED [7], STEM [8] and so
on. CAGED applies regression analysis to cluster genes
on the basis of their trajectories over multiple time
points, while STEM first defines a set of representative
temporal profiles, then assigns genes to one of several
predefined temporal trajectories. These methodologies
are more focused on clustering of genes showing simi-
lar expression patterns over time without an explicit
consideration of sample-gene-time relationship.

In this study, we propose dynamic topic model (DTM)
as a novel approach to cluster time-series gene expres-
sion profiles. DTM was originally developed by Blei to
analyze the time evolution of topics in large document
collections in the field of text mining [9]. DTM is an
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extension of Latent Dirichlet Allocation (LDA). LDA
and other similar text mining methodologies haven been
successfully applied to gene expression data analysis,
some from our group [10-12], based on the similarity in
data structure between text and gene expression. For
example, Manuele et al. applied two different topic mod-
eling approaches, PLSA (Probabilistic Latent Semantic
Analysis) and LDA, to cancer classification using gene
expression profiles [13]. Patrick et al. used a modified
topic modeling technique to cluster drugs and genes
[14]. Bing et al. applied a correspondence LDA model to
discover microRNA regulated modules by identifying the
microRNA and mRNA co-occurring frequently within
the same latent variable [15]. Yu et al. applied topic
modeling to discover functional modules with a bio-
logically meaningful interpretation in RNA-Seq toxico-
genomics data [16].

However, to the best of our knowledge, DTM has not
been explored as an applicable method for the analysis
of time-series gene expression profiles. It extended the
static LDA to take into consideration time evolution that
existed in a real document collection. Static LDA as-
sumes that documents from the same set of topics are
exchangeable, the probability of which is invariant to
permutation. However, that assumption completely
ignores one significant variable, i.e., time, that is present
in documents organized according to sequential time
where the topics evolve over time. DTM assumes that
the topics associated with time, ¢, evolve from the topics
associated with the previous time, ¢-1. It treats docu-
ments as mixtures of topics in which words are repre-
sented by the probability distribution across all time
points. This representation can be analogously applied
to biological systems since a biological component
(topic) is different between the initial unstable stage,
which is shortly after drug treatment, and the steady
stage into which cellular system enters after a certain
time period. In other words, the acting genes tend to
evolve over time, consistent with the dynamic behavior
of cellular and molecular effects after drug exposure
changes over time. The advantage of using DTM is that
it is a soft clustering technique which does not assume
mutual exclusivity and permits multiple topic assign-
ment with a probabilistic way to the same sample and
gene, reflecting true biological complexity.

Here, we applied DTM to a set of time-series gene
expression profiles generated by the Japanese Toxicoge-
nomics Project [17] to investigate the dynamic feature
of gene expression following drug treatment. Our study
was built on the assumption that gene expression pro-
files resemble a set of documents, where each gene ex-
pression profile (a document) consists of mixtures of
biological processes (that can be thought of as topics),
and each biological process in turn consists of a set of
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genes (that can be thought of as the words used to
present a topic). Based on the estimated latent topics,
we clustered samples based on topic distributions
followed by clustering of genes according to their con-
tributions to each topic. Finally, the results provided us
with a wide range of biological insights into how the
genes’ activities are changed over time upon drug-
perturbation.

Materials and methods

Dataset

The Japanese Toxicogenomics Project generated large-
scale gene expression profiles for the same compounds
tested in rat livers and kidneys as well as using both rat
and human primary hepatocytes [17]. The datasets are
organized in TG-GATEs. In its first phase, 131 com-
pounds were profiled, most of which are drugs. Each
compound was tested on three different assay platforms
(i.e., in vitro assay, in vivo repeated dose study and in
vivo single dose experiment) with a design including
multiple doses and time points. In this study, we only
utilized in vivo repeated dose experiments in which
three doses (low, medium and high) and four time
points (4, 8, 15, 29 days) were tested for 131 compounds.
Among all dose levels, we selected high-dose repeated
treatment under all-time points from rat livers, which
consists of 3144 arrays (=131 compounds x 3 replicates x
4 timepoints x 2 doses). Further information about
TG-GATEs can be found in Uehara et al. [17]. The
TG-GATEs dataset used in this study was downloaded
from CAMDA 2013 (http://dokuwiki.bioinf,jku.at/doku.
php/start).

Gene expression data processing

The probe-level microarray data were quantile normal-
ized followed with mapping of a probe set into its cor-
responding genes [18], then multiple probes were
summarized into one corresponding gene’s intensity ra-
tio using FARMS [19]. Next, we generated a “document”
for each drug-time condition; it contained “words”, each
represented genes differentially expressed by comparing
the treated against the matched control. Thus, each
document was then represented by its differentially
expressed genes (DEGs) (words). A total of 514 docu-
ments (131 compounds x 4 time points) were generated;
each document was tagged with each time point, such as
4, 8, 15 and 29 days. A total of 12,088 genes were
present in this experiment. We considered the same
gene with different transcriptional directions (i.e., up
and down) as two different words, leading to a corpus of
24,176 words. The frequency of a word appearing in
each document was determined by multiplying 100 to
the fold change of DEGs.
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Model representation

All variants of LDA are probabilistic, which usually in-
volves a series of processes to determine the optimal pa-
rameters to maximize the posterior probability of the
observed data. In static LDA, a and Py are the Dirichlet
prior parameters on the topic distributions over docu-
ment and the word distribution over topic k, respect-
ively. Different from a static LDA, DTM adopts logistic
normal distribution for two prior distributions (topic per
document and word per topic) and hence is more com-
plex compared to static LDA, which assures conjugacy
between prior and posterior distributions. Specifically,
static LDA assumes that the words of each document
are independently drawn from a mixture of multinomial.
However, this implicit assumption of independency is
not appropriate, because the topic (a set of words) in a
document collection evolves over time. Our goal is to
explicitly address the dynamics of the underlying topics
as a function of sequential time. DTM provides a solu-
tion to this problem by assuming that topics at time i
evolved from the topics at time i-1 with the reflection of
real organization of document collections. DTM as-
sumes that the data is divided by time slice, modeling
the documents of each slice with a static topic model,
where the topics associated with slice ¢ evolve from the
topics associated with slice £ — 1. In a static LDA model,
it assumes that the topic-specific word distributions are
drawn from a Dirichlet distribution. However, DTM
does not assume Dirichlet distribution to approximate
posterior inference, the word distributions over multiple
time points are chained by Gaussian distribution. Due to
the nonconjugacy of the Gaussian and multinomial
models, Blei applies variation approximations such as
Kalman filters and nonparametric wavelet regression to
approximate posterior inference.

In this study, the open-source DTM C** package was
applied from the author’s website (https://www.cs.prin
ceton.edu/~blei/topicmodeling. html). The modeling re-
sults include two different distributions: multinomial
distribution over topics for each document and multi-
nomial distributions over words for each time point as-
sociated with each topic. In our analysis, the number of
topics was heuristically determined by closely examining
two hyperparameters, alpha and top_chain_var which
defines the number of topics. Specifically, alpha controls
the shape of the topic distribution of a sample. A smaller
alpha results in each document to be more probabilistic-
ally associated with fewer topics. The top_chain_var de-
termines how similar topics would be over multiple time
points. A smaller top_chain_var leads to similar word
distributions over multiple time points. In our study, we
have tested several parameter settings for alpha and
top_chain_var and found that the varied values do not
have a significant effect on our interpretation of the
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sample clustering results and topic distribution over time
points. Thus, choose the default value of (alpha=0.01,
top_chain_var = 0.005) and, at this condition, we feel that
the choice of 20 topics is sufficient to balance between
extreme generalization of the model and maximizing
the chance of an informative discovery.

Clustering samples and genes

After building a probabilistic model for our observed
temporal DEGs using DTM, two distributions (matrix)
were generated: topic distribution over document and a
series of word distributions over multiple time points for
each topic. The former includes the conditional prob-
ability of each topic given a sample, P(T|D). This prob-
ability is a signature of the sample, which can be used
to assess sample similarities. The latter represents the
conditional probability of each gene given a topic at a
particular time point, P(W|T);,,. indicating which
genes are important to a given topic in a particular time
point. As we have four time points (4, 8, 15 and
29 days), four different P(W|T) were obtained, i.e.,
P(VVI T)4day51 P(M T)8days: P(VVI T)lSdays: and P(VVI T)29days'
First, to group documents, each document was assigned
to the topic with the largest conditional probability value
of P(T|D). The other distribution, P(W|T);,,. was used for
clustering genes. Since DTM is designed to cluster words
co-occurring frequently across whole documents, the
genes with a high rank in the same topic are likely in-
volved in the same biological process. To take advantage
of this information, functional pathway analysis was
performed for each topic using the Fisher’s exact test
with data from Kyoto Encyclopedia of Genes and
Genomes (KEGG) (http://www.genome.jp/kegg/), and
Gene Ontology (GO) (http://geneontology.org/). Above
all, the strongest benefit of DTM is its ability to moni-
tor the behavior of the genes at the given time points
and thus aid in investigating the significantly active
genes at each time point. Each gene was ranked for
each time point, and functional analysis was conducted
for the top 300 genes according to their rank.

Results and discussion

This study consists of several steps: (1) generation of
documents of DEG lists for each compound at each time
point; (2) Building a generative probabilistic model using
DTM to maximize the posterior probability of observed
temporal DEGs; (3) Assignment of the topic with largest
conditional probability value to each compound-time
condition; (4) ranking DEGs according to their condi-
tional probability of each topic and assessment of topic
evolution over time (4) topic analysis in the biological
context. From these procedures, we obtained two out-
puts, one of them is P(T|D), the topic distributions for
a given compound-time condition, and the other is
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P(W|T),ine a series of distributions over genes at mul-
tiple time points for each topic.

Study of topics

DTM provides the distribution of topics for a given
compound-time condition, P(T|D). This can be used for
the assessment of the association between a specific con-
dition and a specific topic. We used this statistical prob-
ability to group the conditions by connecting them with
topics. These results are provided in Additional file 1:
Table S1 that includes Mode of Action (MoA) and thera-
peutic category information for the 131 drugs. We found
that drugs with the same MoA category tend to be
highly associated with the same topic. Specifically, all of
the eight drug-time condition associated with topic 5 are
PPAR a agonists (WY-14643 and fenofibrate) at all four
time points, indicating that these drugs have consistent
DEGs (vocabularies) across the whole time points and
that the PPARa agonist action is not time sensitive com-
pared to other compounds. Other than topic 5, topic 1
is also found to be associated with PPARa agonists (clo-
fibrate and gemfibrozil) at all four time points. However,
unlike topic 5, topic 1 also includes several other drugs
that are not PPARa agonists, such as amiodarone, as-
pirin, bendazac, benzbromarone, chloramphenicol and
simvastatin. Benbromarone is not a PPARa agonist; but
it is known to have a high binding affinity for PPARa,
showing potential as a PPARa agonist [20]. It has also
been reported that the adverse effect of amiodarone is
related to expression of PPAR« target genes, implying
the possibility of PPAR« as one of its off-targets [21]. In
addition to these two drugs, the relationship between
PPAR«a and aspirin and simvastatin has also been studied
[22, 23]. Another example is topic 17, which showed high
selectivity, 68 % (21 / 31) for COX inhibitors, including
non-steroidal anti-inflammatory drugs such as ibuprofen,
mefenamic acid, phenylbutazone, sulindac, diclofenac,
naproxen, nimesulide and indomethacin. We also found
that some of the topics are associated with only a single
drug. For instance, all the samples over four time points of
ethambutol, thioacetamide and ethionine were assigned
topic 4, 12 and 15, respectively, showing their distinct
drug effect with less sensitivity to time.

Associating topics with functional pathways

A second product of DTM is the distribution of words
(DEGs) for a particular topic, P(W|T). Especially, in
our analysis, four different P(W|T)saay5s P(W|T)sgays
P(WIT) 54ayss P(W]|T)2944ys were derived. This probability
can be interpreted as the contribution of a gene to a par-
ticular topic at a certain time point. The most associated
10 genes at 4 days for each topic is provided in Table 1
as an example. First, representative genes for each topic
were extracted by selecting genes ranked within 300 at
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Table 1 Each topic is composed a set of genes. Genes are ranked according to the probability of topic-gene matrix. The table shows
the top 10 genes at the time point of 4 days

Topicl Topic2 Topic3 Topic4 Topic5
Acot1_up Len2_up Dhrs7_down Trib3_up Acot1_up
Vnn1_up S100a8_up Akr1b7_up Fgf21_up Fabp3_up
Aig1_up S100a9_up Slc22a8_down Ddit3_up Cptlb_up
Ehhadh_up LOC360228_up Rbp7_up Pycrl_up Hdc_up
Ecil_up Spink3_up Albg_up Nupr1_up Vnnl1_up
Ech1_up RGD1307603_down Car3_down Acot1_up Aigl1_up
Cyp4al_up Lbp_up Ust5r_down Phgdh_up Acot3_up
Acaala_up A2m_up Rdh2_down Gsta5_up Agp7_up
Acot2_up Stac3_down Gsta5_up Asns_up RGD1305928_up
Aldh1al_up Cxcl1_up Cyp3a9_up Akr7a3_up Stac3_down
Topico Topic7 Topic8 Topic9 Topic10
Cyp2c11_down Stac3_down Car3_down Gstm3_up Gsta5_up
Car3_down Aldh1al_up Dhrs7_down Stac3_down Ces2c_up
Cyp2a2_down Ces2c_up Cyp2c11_down Lcn2_up Aldhlal_up
Ust5r_down Gsta5_up Stac3_down Car3_down Aldh1a7_up
Hao2_down Akr7a3_up Ust5r_down Zfp354a_down Akr7a3_up
Cyp3a2_down Scd1_down Kynu_down Sds_down Stac3_down
Cyp2d3_down Mgmt_up Sult1c3_down Lbp_up Dhrs7_down
Slc10a1_down Oat_down Sultlel_down Gpnmb_up Abcc3_up
Sultlel_down Cdknla_up Aldh1a7_up Epcam_up Ugt2b1_up
Lipc_down Cengl_up Slc22a8_down LOC360228_up Cyplal_up
Topicl1 Topic12 Topic13 Topic14 Topic15
Gstp1_up Stac3_down Qat_down Stac3_down RGD1584021_up
Stac3_down Oat_down Gstm3_up Cyplal_up Isg15_up
Akr7a3_up Dhrs7_down Stac3_down Scd1_down Gstm3_up
Oat_down Lcn2_up PIn_up Kif20a_down Fads1_down
Cerndl_up Gstm3_up Aldh1al_up Cecnb1_down Ca2_up
Pycri_up Cypla2_down Rbp7_up Ect2_down Fads2_down
Inmt_down Fam25a_up Ces2c_up Ube2c_down Slc6a13_down
Tmed3_up Sds_down Cengl_up Nusap1_down Rsad2_up
Fkbp11_up Anxa2_up Pbk_up Cdk1_down LOC100361444_up
Cdk1_up Aldhlal_up Inmt_down Prc1_down Ftcd_down
Topic16 Topic17 Topic18 Topic19 Topic20
Car3_down A2m_up Akr1b7_up Scd1_down Pglyrp1_up
Gstm3_up Lcn2_up Isynal_up Zfp354a_up Cypla2_down
Stac3_down Stac3_down Stac3_down Gsta5_up Npy_up
Aldh1al_up Serpina7_up Aldh1al_up Dhrs7_down PIn_up
Trib3_up Cxcll_up Spink3_down Ube2c_down Ces2c_up
Aldh1a7_up Lbp_up Scd1_down RGD1309362_down Rbp7_up
Gsta5_up LOC360228_up A2m_down Aldh1a7_up Len2_up
Cyp4b1_up Dhrs7_down Cypl17al_up Aldhlal_up Tspan8_up
Spink1_down Fgll_up Aldh1a7_up Hamp_up LOC299282_down
Hal_down S100a9_up Cyp2c11_down Gstt3_up S100a10_up
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four time points (Additional file 2: Table S2). One of the
strength of DTM is that it does not assume mutual ex-
clusivity, leading to a systematic interpretation of genes
involved in multiple pathways. Figure la shows the
frequency of each gene across 20 topics for four time
points. Over the whole set of time points, half of the
genes only appear once while the remaining genes are
present in multiple topics. We found that the down
regulation of stac3 was associated with the largest num-
ber (19) of topics across all of the four time points. Stac3
(SH3 And Cysteine-Rich Domain-Containing Protein) is
well known to be highly expressed and control the cell
cycle in skeletal muscle while little is known about its in-
volvement in liver function. To determine which bio-
logical processes were over-represented in a particular
topic, we searched KEGG and GO with the top 300
ranked genes at each time point for each topic and used
the Fisher’s exact test to assess the significance of associ-
ation (Additional file 3: Table S3). As expected, most of
the top biological processes were metabolism of xenobi-
otics by cytochrome P450 which is a major enzyme fam-
ily catalyzing the oxidative biotransformation of most
drugs [24]. Figure 2 shows topic 1 and topic 5’s top path-
ways significance distribution across four time points as
examples. All of the top 300 ranked genes in topic 1 and
5 had PPAR signaling pathway as the top functional cat-
egory except in the 4-day time-point of topic 1. Fatty
acid metabolism was found to be the top ranked category
at 4 days in topic 1. Nevertheless fatty acid metabolism is
also well known to be associated with PPAR signaling
[25]. Additionally, the top biological process of topic 4 is
ribosome, of which members are composed of EBU_R
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at_4day, EBU_Rat_8day, EBU_Rat_15day, EBU_Rat_29day
and MP_Rat_4day. Ethambutol (EBU) is a medication
used to treat tuberculosis, which is known to possibly tar-
get ribosome [26].

Assessment of word evolution over time

In static topic modeling, we only derive a single P(W|T)
regardless of time; however, DTM yields multiple condi-
tional distributions, P(W|T)44ayss P(W|T)saayss POWT) 15days
P(W1T)2944ys for each time point that can offer more in-
formation for biological interpretation. From these prob-
abilities, the dynamic nature of genes was investigated.
The results from DTM and the original fold changes are
compared in Fig. 3, where the left panel plots the rank of
original absolute fold change of the highly ranked genes
in topics 5 and 1 (panels A and B), while the right panel
shows the rank of P(W|T) estimated from the DTM
across four time points. As expected, in Topic 5, Acotl
is most highly up-regulated over the whole set of time
points followed by Fabp3. Acotl (Acyl-CoA thioesterase I)
is an enzyme that hydrolyzes long-chain acyl-CoAs to
the free fatty acid and coenzyme A and is widely known
to be the target of PPAR« agonists [27]. Fabp3 is a well-
known biomarker for skeletal muscle toxicity while little
is known about its function in liver [28]. Even though
four PPAR« agonists were associated with topic 5, only
two of them (WY-14643 and fenofibrate) triggered enor-
mous mRNA increase in Fabp3. Also, Fabp3 has been
reported to cause drug induced liver injury. The drastic
change of Apoa4 was observed from 8-day rather than
the initial stage right after drug treatment, which was
reflected by P(W|T). Apoa4 is known to be one of the
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apolipoproteins that bind lipids to form lipoproteins and
transport the lipids out of the liver.

Comparison with other bi-clustering methods

To demonstrate the advantage of DTM, we tested con-
ventional bi-clustering algorithms with the same data
matrix used for DTM. The iterative signature algorithm
(ISA) is one of the most widely used bi-clustering algo-
rithms [29]. We utilized the R package named eisa to
generate co-expression modules. The thresholds of
standard deviations from the mean gene expression were
varied from 2.5 to 5 by 0.1 along both rows and
columns, keeping only genes and samples that showed
expressions levels that exceeded the given threshold.
Among them, totals of 25, 7, 8, 3, 3 and 2 modules were
identified at the thresholds of 2.5, 3, 3.5, 4, 4.5 and 5, re-
spectively. At all thresholds, clusters of PPARa agonists
were identified. When a threshold of 2.5 was applied,

the ISA yielded one co-expression module representing
PPARa agonists, which included 528 genes and 26 drug-
time conditions including seven different drugs namely
WY-14643, benzbromarone, benziodarone, clofibrate,
fenofibrate, gemfibrozil and simvastatin. Even though
four drugs among seven (WY-14643, clofibrate, fenofi-
brate and gemfibrozil) were PPARa agonists, they
showed discernible enriched GO patterns as illustrated
in Fig. 4. To be more specific, we analyzed the DEGs of
the 26 drug-time conditions for enrichment in GO pro-
cesses, and clustered them based on the similarity in
their activity patterns in terms of their enriched GO pro-
cesses (Fig. 4). We found that these conditions formed
two distinct groups. One of the groups was found to be
composed of WY-14643 and fenofibrate with the rest of
the drugs separated from them. This difference was
found in our DTM results where these conditions were
assigned to two topics, topic 1 and 5. In contrast, these
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Fig. 3 Comparison between the ranks from DTM and the original gene expression fold changes. Left panel plots the rank of original absolute fold
change of the top 10 ranked genes while right panel plots the rank of P(W|T) estimated from DTM. a and b show topic 5 and topic 1, respectively

26 conditions formed a single group when using ISA
with 2.5 as the threshold. When we select a higher
threshold, specifically, at the threshold of 3.7, there were
two PPARa agonists. One of them is composed of
BBr_Rat_4day, BBr_Rat_4day, BBr_Rat_4day, BBr_Rat_4
day, CFB_Rat_8day and FFB_Rat_8day while the other is
consisting of all samples of WY-14643 and fenofibrate. At
any threshold, we could not find bi-clusters to separate
them into two groups in an accurate manner as illustrated
in Fig. 4. At the threshold of 3.8, a module containing two
drugs (WY-14643 and fenofibrate) was identified while the
rest of the PPAR« agonists were not detected. This implies

that DTM can assess the qualitative change without the
over-representation of quantitative change to encompass
even the modest change in the data through model based
approach. The other clustering algorithm we tested is a
dynamic tree cut, which uses a dendrogram to identify
clusters and does not need cluster size defined in advance
[30]. We adjusted the parameter maxCoreScatter for it to
return a cluster size similar to our DTM result. We set the
method and deepsplit as hybrid and 4, respectively. When
we set the maxCoreScatter as 0.615, the cluster size was
21, which is comparable to our DTM result. Like the ISA
algorithm, only one composite group was identified,
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Fig. 4 Clustering of drug-time condition by GO categories. A total of 338 distinct GO categories are enriched for 26 drug-time conditions which
are identified from ISA. If a condition is enriched with a certain GO category is colored with red, otherwise it is colored with ivory
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instead of two distinct groups of PPARa agonists being
identified separately. Even when we increased the cluster
size up to 38 by adjusting the maxCoreScatter, the two
different groups were not accurately identified. These
results are presented in Additional file 4: Table S4. In
addition to its strength in sample clustering, DTM not
only showed good performance in clustering genes but
also provided valuable information on their dynamics.
For example, Fabp3 is highly expressed upon exposure
to WY-14643 and fenofibrate, which is identified in topic
5 (Fig. 3a) but not as significantly expressed in the pres-
ence of other PPARa agonists. When ISA is applied,
Fabp3 is included in every PPAR« agonist relevant clus-
ter. More importantly, while the general bi-clustering
algorithm does not consider the time sequence, DTM
models the activity changes of genes according to time
relapse as presented in Fig. 3.

Conclusions

To supplement the drawbacks of traditional clustering
algorithms, DTM was explored as one of the model
based algorithms for the analysis of time-series gene ex-
pression data, which has not been applied previously to
our best knowledge. Therefore, our study is significant
as a pilot study that explores the feasibility of applying a
text mining approach to time-series biological datasets.
As a result of our investigation, we identified hidden pat-
terns embedded in time series toxicogenomics. From the
topic distribution for each document, a number of drugs
were successfully clustered by their shared MoA, for

example, PPARa agonists and COX inhibitors. The bio-
logical meaning underlying each topic was interpreted
using diverse sources of information such as functional
analysis of the pathways and therapeutic uses of the
drugs, which could provide a better understanding of
drug perturbation mechanisms. Additionally, we found
that sample clusters produced by DTM are much more
coherent in terms of functional categories than the ones
from traditional clustering algorithms. Above all, time
specific activity distribution according to each sequen-
tial time provided tremendous opportunity to uncover
the underlying toxicological dynamic changes. In sum-
mary, our study found that DTM has several distinct
advantages. Firstly, it can reduce data dimension very
effectively in terms of the latent variable (i.e., topic),
with the assumption of time-dependency present in
toxicogenomics. Secondly, it also allows samples and
genes to be associated with multiple topics in an intui-
tive probabilistic manner without the mutual exclusivity
assumption, reflecting the complexity of real biological
system. Most importantly, topic dynamics over time
relapse could provide new biological insights into the
evolution of gene regulation.

Additional files

Additional file 1: Table S1. Information for each topic, including Mode
of Action (MoA), therapeutic category, and DILI annotation. (XLSX 29 kb)

Additional file 2: Table S2. Top 300 genes that represent each topic at
4 time points. (XLSX 166 kb)
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Additional file 4: Table S4. Sample clustering results using dynamic
tree cut. (XLSX 42 kb)
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