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Patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) are
challenged with severe side effects, which are propagated by mucosal barrier
disruption, and the related microbial translocation and systemic inflammation.
Glucagon-like peptide-1 (GLP-1), a well-known incretin hormone, possesses anti-
inflammatory properties and promotes regeneration of damaged intestinal epithelium in
animal studies. We hypothesized that the immense inter-individual variation in the degree
of mucosal damage and systemic inflammation, seen after HSCT is influenced by
endogenous GLP-1 and could be related to acute post-transplant complications. In this
prospective study wemeasured serial weekly fasting plasma GLP-1, along with C-reactive
protein (CRP), and citrulline in 82 pediatric patients during allogeneic HSCT together with a
fasting plasma GLP-1 in sex- and age-matched healthy controls. Overall, GLP-1 levels
were increased in the patients during the course of HSCT compared with the controls, but
tended to decrease post-transplant, most pronounced in patients receiving high-intensity
conditioning regimen. The increase in CRP seen in the early post-transplant phase was
significantly lower from day +8 to +13 in patients with GLP-1 above the upper quartile (>10
pmol/L) at day 0 (all P ≤ 0.03). Similar findings were seen for peak CRP levels after
adjusting for type of conditioning (-47.0%; 95% CI, -8.1 – -69.4%, P = 0.02). Citrulline
declined significantly following the transplantation illustrating a decrease in viable
enterocytes, most evident in patients receiving high-intensity conditioning regimen.
GLP-1 levels at day 0 associated with the recovery rate of citrulline from day 0 to +21
(34 percentage points (pp)/GLP-1 doubling; 95% CI, 10 – 58pp; P = 0. 008) and day 0 to
org December 2021 | Volume 12 | Article 7935881
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day +90 (48 pp/GLP-1 doubling; 95% CI, 17 – 79pp; P = 0. 004), also after adjustment for
type of conditioning. This translated into a reduced risk of acute graft-versus-host disease
(aGvHD) in patients with highest day 0 GLP-1 levels (>10 pmol/L) (cause-specific HR: 0.3;
95% CI, 0.2 – 0.9, P = 0.02). In conclusion, this study strongly suggests that GLP-1
influences regeneration of injured epithelial barriers and ameliorates inflammatory
responses in the early post-transplant phase.
Keywords: hematopoietic stem cell transplantation, high-dose chemotherapy, glucagon-like peptide-1, toxicity,
systemic inflammation, pediatrics, growth factors
INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (HSCT) in
children and adolescents is challenged by adverse events, which
to a large extent are related to toxic reactions in the gastrointestinal
tract (1). Oral and gastrointestinal mucositis are reported in up to
90 – 100% of patients during HSCT with myeloablative
conditioning (2–4), and substantial evidence indicates that
intestinal toxicity induces severe systemic inflammation and
translocation of bacterial products, leading to increased risk of
acute graft-versus-host-disease (aGvHD), invasive infections,
multi-organ failure and treatment-related mortality (5–8).

The susceptibility of the patients to develop these
complications is highly variable, which opens a window for
personalized treatment, but further progress is hampered by the
absence of predictive biomarkers. Moreover, there is no effective
treatment preventing severe mucositis and the current treatment is
symptomatic, based on parenteral hydration and nutrition, pain
relief by morphine and use of broad-spectrum antibiotics.

However, sustained proliferation of intestinal epithelium is
known to be elemental in healing of mucositis and maintenance
of the intestinal barrier and involves growth factors produced in
the gut (9, 10). Glucagon-like peptide-1 (GLP-1) is a peptide
hormone secreted from enteroendocrine L-cells following enteral
food intake, and is well-known for being essential in regulating
blood glucose by the stimulation of insulin secretion (11, 12).
Additionally, increased secretion of GLP-1 is seen after
chemotherapy-induced intestinal injury in rodents (13, 14), and
elevated plasma levels are observed in humans after chemotherapy
(15) and during gut ischemia (16). Indeed, GLP-1 has
intestinotrophic effects sustaining the integrity of intestinal
mucosal barrier in animal studies (17, 18). Administration of
GLP-1 analogs can ameliorate chemotherapy-induced intestinal
injury (13), while ablation of L-cells in mice has led to severe
mucositis as well as insufficient intestinal healing after
chemotherapy (14, 19). In addition, GLP-1 acts as a direct anti-
inflammatory mediator locally through GLP-1-receptors
expressed on intestinal intraepithelial lymphocytes (20, 21).

In the present study, we measured fasting GLP-1 plasma
levels in pediatric patients undergoing HSCT from before the
start of conditioning and during the early post-transplant period
to determine possible associations between GLP-1 and intestinal
damage, measured by citrulline levels, systemic inflammation
and post-HSCT complications.
org 2
MATERIALS AND METHODS

Study Population
In this prospective population-based study, 82 children and
adolescents (1–18 years of age) undergoing their first
allogeneic HSCT were consecutively recruited at University
Hospital Rigshospitalet, Copenhagen, Denmark, from March
2015 to November 2019. This patient cohort has previously
been described in a different context (22).

Conditioning groups were defined as 1) high-intensity
myeloablative conditioning (total body irradiation (TBI) 12Gy +
etoposide, busulfan + cyclophosphamide, or busulfan + thiotepa +
fludarabine) and 2) low-intensity myeloablative conditioning
(other fludarabine-based regimens or cyclophosphamide + TBI
2Gy) (23) (Table 1).

Control Cohort
A control cohort matched by sex and nearest age option with a
patient/control frequency ratio of 1:5 (N = 410 controls, Table 2)
was included from a population-based cohort of Danish/North-
European children and adolescents without obesity and diabetes,
6-18 years of age (N = 2,266), enrolled in The Danish Childhood
Obesity Data- and Biobank from 2009 - 2019 and previously
described (24, 25).

Blood Samples for Laboratory Analyses
Blood samples were collected at 6 AM at the following time
points: before start of the conditioning regimen, at the day of
transplantation (day 0), and at days +7, +14 and +21 post-
transplantation. The control cohort had a single venous blood
sample collected between 7 and 9 AM, following an overnight
fast (26). EDTA anticoagulated blood was centrifuged up to two
hours after collection and plasma was isolated and stored
at -80°C.

Quantification of GLP-1
The plasma concentration of total GLP-1 in both patients and
controls was measured in duplicates using a GLP-1 ELISA kit
(Mercodia, Uppsala, Sweden) according to the manufacturer’s
instructions (27). Both active GLP-1 (7-36) amide and the
degraded isoform GLP-1 (9-36) amide were measured and
reflects the secretion of GLP-1 because amidated isoforms of
GLP-1 are highly predominant in humans (28). Measurement
range was 0.9 to 940 pmol/L.
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Citrulline
As a marker of enterocyte damage, plasma citrulline was measured
at the same time points as GLP-1 and at follow-up day +90 post-
HSCT. A Waters Acquity™ Ultra-Performance Liquid
Chromatography system with a Tandem Quadrupole detector
was used for the analysis (29).

CRP
All patients had CRP monitored daily during the first three
weeks after transplantation. When more than one measurement
per day was available, the mean was calculated to represent the
CRP level of that day. CRPmax was defined as maximum CRP
value from day +1 to day +21. CRP was analyzed using Modular
P Module (Roche, Basel, Switzerland) (upper normal limit, 10
mg/L) at the Department of Clinical Biochemistry, University
Hospital Rigshospitalet. Blood cultures were routinely collected
on all patients with fever and results were registered from day -14
to day +30.
Frontiers in Immunology | www.frontiersin.org 3
Statistical Analyses
A mixed model with a compound symmetry covariance matrix
was used to investigate associations of GLP-1 and citrulline over
time with patient-specific characteristics and the association
between CRP over time and dichotomized GLP-1 level at day 0.
GLP-1 and CRPmax were log-transformed due to their skewness.

Correlation analyses were performed using Spearman’s rank
order correlation analysis. The Mann-Whitney U-test or the
Kruskal–Wallis univariate test were used for comparisons between
groups. Simple and multiple linear regression models were used to
determine the association between GLP-1 and CRPmax. All potential
risk factors listed in Tables 1, 2 were tested in univariate analyses
and included in the multivariate model if they showed statistically
significant associations with outcome variables and/or GLP-1 as
indicated under results. Interaction between GLP-1 and
conditioning group stratification on CRPmax was included as a
covariate in the initial multivariate model and tested with ANOVA.
Logistic simple and multiple regressions were used to determine
variables associated with occurrence of aGvHD and sinusoidal
obstruction syndrome (SOS). Cumulative incidences, cause-
specific Cox regression models and Gray’s test (30) were used to
estimate the risk of aGvHD.

Statistical significance was defined as a two-sided P < 0.05. All
statistical analyses were performed using R statistical software
version 3.6.1 [R Foundation for Statistical Computing, Vienna,
Austria (31)] and RStudio version 1.2.1335 (RStudio, Boston, MA).

Ethics Statement
The study was approved by Capital Region of Denmark’s Ethical
Committee (H-7-2014-016) and conducted in accordance with
the Declaration of Helsinki. Written informed consent was
obtained from all included patients and/or their legal guardians.
RESULTS

Clinical characteristics of patients and controls are presented in
Tables 1, 2. Before start of conditioning, 44 out of the 82
included patients had a fasting sample available for GLP-1
measurement. These patients did not differ from the rest of the
cohort regarding sex, age, or diagnosis. At the remaining time
points all patients had fasting GLP-1 measurements available.

GLP-1 in Patients and Healthy Controls
Median fasting GLP-1 levels in the patients were higher than in
the controls at all time points but decreased during the first
weeks of the transplantation, most pronounced in patients
receiving high-intensity myeloablative conditioning (Figure 1).
TABLE 2 | Age and sex in the HSCT-patients and the sex- and age-matched control group, frequency ratio 1:5.

HSCT-patients Control cohort P-value

No. of individuals 82 410
Age (median [IQR]) 8.84 [5.67, 13.28] 8.82 [6.98, 13.06] 0.2
Sex, M (%) 43 (52.4) 236 (57.6) 0.5
December 2021 | Volume 12 | Article
TABLE 1 | Diagnoses and transplantation modalities, n = 82.

Pre-transplant diagnoses

Disease at transplantation, no. of patients (%)
Acute myeoloid leukemia 13 (16)
Acute lymphoblastic leukemia 21 (26)
Juvenile myelo-monocytic chronic leukemia 2 (2)
Myelodysplastic syndrome 10 (12)
Other malignancies 2 (2)
Severe aplastic anemia 6 (7)
Immunodeficiency 13 (16)
Other non-malignant diseases 15 (18)

Transplantation data
Donor type, no. of patients (%)
HLA-identical siblings 27 (33)
HLA-matched unrelated donors (10/10 match) 44 (54)
HLA-mismatched unrelated donors (9/10 or 8/10 match) 11 (13)

Stem cell source, no. of patients (%)
Bone marrow stem cells 73 (89)
Peripheral blood stem cells, G-CSF mobilized 4 (5)
Umbilical cord blood 5 (6)

Conditioning regimen, no. of patients (%)
(1)High-intensity myeloablative conditioning:
TBI 12 Gy + etoposide 14 (17)
BU + CY 21 (26)
BU + thiotepa + FLU 7 (9)
(2)Low-intensity myeloablative conditioning:
FLU + treosulfan +/- thiotepa 23 (28)
FLU + CY 6 (7)
FLU + BU 8 (10)
TBI 2 Gy + CY 3 (4)

Sex mismatch (female donor to male recipient), no. (%) 17 (21)
BU, busulfan; CY, cyclophosphamide; FLU, fludarabine; G-CSF, granulocyte colony-
stimulating factor; HLA, human leucocyte antigen; TBI, total body irradiation.
793588
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Inflammation and GLP-1
To explore potential anti-inflammatory protective effects of GLP-
1, we investigated associations between GLP-1 and CRP. CRP
increased significantly during the course of transplantation
reaching a maximum at day +9. Peak CRP levels were
significantly higher in patients receiving high-intensity vs low-
intensity conditioning (median CRPmax 35 vs. 89 mg/L (P < 0.001)
but were not associated with other patient- and transplant-related
characteristics. Stratifying patients in two groups according to
GLP-1 levels at day 0, patients with GLP-1 levels in the upper
quartile (>10 pmol/L) had significantly lower CRPmax levels (-56%;
95% CI, -20– -76%, P = 0.007). This association remained
significant after adjusting for type of conditioning (-47.0%; 95%
CI, -8.1 – -69.4%, P = 0.02). There was no interaction between
GLP-1 levels and conditioning group on CRPmax. Likewise, when
looking at daily CRP measurements post-HSCT, GLP-1 levels
above the upper quartile at day 0 were associated with lower levels
of CRP from day +8 to day +13 (all P ≤ 0.03) (Figure 2).

Citrulline and GLP-1
The systemic inflammatory response during the aplastic phase of
HSCT has to a large extent been related to disintegration of the
intestinal mucosal barrier, which can be effectively monitored by
plasma citrulline, being a marker of the total population of viable
enterocytes (32). Citrulline levels decreased significantly after
conditioning therapy reaching nadir at day +7, coinciding with
the timepoint of maximum CRP levels. At day +90, citrulline had
again risen close to pre-HSCT levels [median (IQR): 19.0 (16.0 -
22.0) vs 20.7 (16.5 - 27.2) mmol/L] (Figure 3A). The citrulline
decrease was most pronounced in patients receiving high-
intensity myeloablative conditioning and with a delayed
recovery compared with those undergoing low-intensity
Frontiers in Immunology | www.frontiersin.org 4
conditioning (significantly lower levels at day +14 and +21, but
comparable levels at day +90).

To further investigate an effect of GLP-1 on epithelial repair,
associations between GLP-1 levels and the rate of citrulline
recovery were explored. GLP-1 levels at day 0 were significantly
associated with the relative increase in citrulline levels from day 0
to +21 (42 percentage point (pp)/GLP-1 doubling; 95% CI, 18 –
66pp; P = 0. 001) and from day 0 to +90 (48 pp/GLP-1 doubling;
95% CI, 17 – 77pp, P = 0. 003) (Figure 3B). This remained
significant in multivariate analyses adjusting for conditioning
regimen (34; 95% CI, 10 – 58; P = 0. 008, and 48 pp/GLP-1
doubling; 95% CI, 17 – 79pp; P = 0. 004, respectively).

Clinical Outcomes
A total of 35 patients (43%) developed acute graft-versus-host
disease (aGvHD) with onset at median day +14 (range: +5 to +34);
grades III–IV aGvHD were seen in nine patients (11%). Patients
with day 0 GLP-1 levels above the upper quartile showed a reduced
risk of developing aGvHD (cause-specific HR: 0.3; 95% CI, 0.2-0.9,
P = 0.02) (Figure 4A). In a multivariate analysis adjusting for the
conditioning regimen this remained significant (HR: 0.4; 95% CI,
0.2 – 1.0, P = 0.04). Three and two patients developed steroid-
dependent and steroid-refractory aGvHD, respectively. Although
this limited number did not allow for conclusions regarding
association with GLP-1 levels we noticed that none of these five
patients had GLP-1 levels in the upper quartile (Figure 4B).

SOS was diagnosed in 17 (21%) of the patients according to the
modified Seattle criteria (33) and in 41 (50%) according to the
pediatric EBMT criteria (34), with severity grades III–IV in 32
(39%) of the patients. The frequency of SOS was not related to pre-
transplant diagnosis. CRPmax was significantly associated with risk
of SOS, also in multivariate analyses, both according to the
BA

FIGURE 1 | GLP-1 fasting plasma levels during pediatric HSCT from before conditioning until day +21 post-HSCT. Horizontal short lines: Median GLP-1. (A) All
included patients. Consistent lines: Median (black), lower and upper quartile (grey) for fasting GLP-1 for healthy control cohort. Statistical evaluation indicates
increased GLP-1 levels of HSCT pediatric patients compared with the control cohort at all time points (P < 0.001). A mixed model analysis showed GLP-1 levels at
day +14 and day +21 to be lower than day 0 GLP-1 levels (*P < 0.05; **P < 0.005). (B) Patients stratified by conditioning group. Patients treated with high-intensity
conditioning regimens had generally lower post-HSCT GLP-1 levels than patients treated with low-intensity conditioning evaluated with a mixed model analysis
(*P < 0.05; **P < 0.005; ***P < 0.001).
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modified Seattle criteria (OR = 2.1 per CRPmax doubling; 95% CI,
1.3 – 3.9; P = 0. 009) and to the pediatric EBMT grade III-IV (OR =
1.7 per CRPmax doubling; 95% CI, 1.1 – 2.7; P = 0.02). Cumulative
incidence plots showed a tendency to lower incidences of SOS over
time in patients with GLP-1 levels above the upper quartile
(Figures 4C, D), even though not reaching statistical significance.

Ten patients (12%) developed bacteremia at median day +22 (0
to +84) post-HSCT. We were not able to make any conclusions
regarding associations between bacteremia and GLP-1 or citrulline
levels, most likely due to the limited incidence.

Median follow-up time was 2.0 years (1.0 – 4.7) from
transplantation. Three patients died after HSCT, two of these
Frontiers in Immunology | www.frontiersin.org 5
due to treatment-related complications and one patient did not
engraft. Of the 48 patients transplanted for a malignant disease,
two patients relapsed. These limited numbers did not allow
conclusions regarding prediction of survival by GLP-1 levels.
DISCUSSION

In the present study, we investigated fasting levels of GLP-1 during
the course of allogeneic HSCT to achieve new insights into the
potentially protective effects of GLP-1 on treatment-related toxicity.

Although increased before start of conditioning in
comparison with sex- and age-matched healthy children and
adolescents, GLP-1 levels tended to decline during the course of
transplant, most pronounced in patients receiving high-intensity
conditioning therapy. A high GLP-1 level at day 0, the start of
the toxic-aplastic phase, was associated with less systemic
inflammation and with a faster recovery of enterocytes in
terms of citrulline increase, even within the same conditioning
group, indicating a protective and restorative effect of GLP-1.
These findings translated into a reduced risk of aGvHD in
patients with high GLP-1 levels.

Various animal studies have substantiated the intestinotrophic
effects of GLP-1, which have been found comparable in size with
the well-known effects of the closely related and co-secreted GLP-2
(13, 17, 19). Endogenous GLP-1 has been shown to be important
for intestinal mucosal recovery in mice treated with chemotherapy
(13, 14). The underlying mechanism of the intestinotrophic effects
of both GLP-1 and GLP-2 are poorly understood. A signal
interaction where GLP-1 potentiates the trophic effect of GLP-2
has been suggested (35), and co-treatment with the two peptides
showed superior effects in recovery of chemotherapy-induced
mucositis in mice compared with GLP-1 or GLP-2
BA

FIGURE 3 | (A) Citrulline levels during HSCT from before conditioning until 90 days post-HSCT. Horizontal line: median citrulline. ***Citrulline levels significantly lower
than pre-HSCT levels (P < 0.001). (B) Associations between GLP-1 levels at day of transplant (day 0) and relative citrulline increase from day 0 to day +21 (solid line)
and from day 0 to day +90 (dashed line). P-values by simple linear regression models. pp, percentage point increase in citrulline.
FIGURE 2 | Median CRP levels after HSCT in two groups stratified by GLP-1
level at day 0 [≤10 pmol/L (circles) and >10 pmol/L (triangles)]. *CRP levels
significantly differ between the two groups (all P ≤ 0.03).
December 2021 | Volume 12 | Article 793588
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monotherapy (14). Additional protective effects of GLP-1 have
been suggested by studies demonstrating GLP-1-induced secretion
of antimicrobial peptides from Paneth cells (36) and activated
production of the barrier-protective mucus layer by Brunner’s
glands (37). Furthermore, GLP-1 seems capable of directly
modulating local inflammation in the gut by its interaction with
intestinal epithelial lymphocytes leading to reduced pro-
inflammatory cytokine secretion (20). A mucosal restorative
effect of GLP-1 was observed in the present study, as GLP-1
levels at day of HSCT positively associated with post-HSCT
citrulline increase, reflecting accelerated recovery of functioning
enterocytes in patients with higher GLP-1. Together, the
pleiotropic effects of GLP-1 could potentially contribute to the
protection against a harmful systemic inflammatory response
following the toxic impact on the intestinal epithelium and its
down-stream effects in terms of non-infectious organ toxicities.
Our data indicates that the ability to maintain GLP-1 levels after
chemotherapy is important for protecting the gut against the
Frontiers in Immunology | www.frontiersin.org 6
damaging effects of the cytotoxic treatment and the resulting
severe systemic inflammatory response. In other words, we
suggest that GLP-1 may be defined as a factor enhancing “tissue
tolerance”, which has appeared to be critical for disease severity in
general (38). The demonstrated association between GLP-1 levels
and aGvHD, even within the same group of conditioning regimen,
in the present study, lend support to a protective role of GLP-1
against treatment-related complications and in line with our
findings, a recent study by Norona et al. indicated L cells being
a target of aGvHD and showed that lower numbers of L-cells were
associated with increased mortality risk in adult patients with
aGvHD (39). Despite a significant association between peak CRP
levels and SOS, we were unable to demonstrate any significant
association between GLP-1 and SOS, most likely due to lack of
power in combination with the complex mechanisms behind SOS
involving several other predisposing factors.

The factors that determine the rate of GLP-1 secretion and the
resulting circulating GLP-1 levels during intestinal traumas are
BA

DC

FIGURE 4 | Cumulative incidence plots for acute treatment-related complications stratified by GLP-1 level at day 0 (≤10 pmol/L). (A) Acute GvHD, (B) Steroid-
dependent or steroid-refractory acute GvHD, (C) Sinusoidal obstruction syndrome (SOS) diagnosed according to the modified Seattle criteria. (D) SOS diagnosed
according to the pediatric EBMT criteria, severity grade III-IV. P-values by Gray’s test.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ebbesen et al. GLP-1 in Pediatric HSCT
not fully understood. Indeed, a number of studies including both
animal and clinical studies have suggested that the gut may
respond to cytotoxic treatment by increasing GLP-1 secretion
(13–16), thereby potentially counterbalancing the effects of
chemotherapy-induced loss of epithelial cells, possibly
including the GLP-1 secreting L-cells (39). The data of the
present study, however, does not indicate that such putative
mechanism could be adequately effective to maintain sufficient
plasma GLP-1 levels in the subgroup undergoing the most
intensive myeloablative conditioning therapy, as GLP-1 levels
tended to decline after the transplant along with a more
pronounced loss of enterocyte mass (shown as more
pronounced citrulline decline) and increased inflammation.

Previous studies have suggested the use of GLP-1 as a possible
treatment of chemotherapy-induced mucositis (13, 18).
Administration of GLP-1 analogs in mice treated with
chemotherapy ameliorated mucositis and accelerated healing of
the intestinal injury (13, 14). In patients with diabetes, obesity
and psoriasis, treatment with GLP-1 analogs has been found to
cause reduction in chronic low-grade inflammation (40–43).
Although the mechanism is debated and probably confounded
by the metabolic-improving effects of GLP-1 treatment (43),
amelioration of the putative dysfunctional intestinal barrier
might play a role in these conditions (44).

Although the results of the present study point to the relevance
of further exploring the clinical potential of GLP-1 to ameliorate
side effects of cytotoxic treatment and transplantation, it should be
emphasized that GLP-1 treatment is known to cause anorexia and
nausea (45), which are already unwanted side-effects for patients
receiving chemotherapy. Further investigations including oral
glucose tolerance test and clinical trials are needed to evaluate
the tolerance of GLP-1 analogs in HSCT patients. Additionally,
supplementary data on mucositis scoring and nutritional intake
were not available in the present study but would be of interest in
future studies.

Previous studies in animals and humans have indicated that
GLP-1 is secreted in response to intestinal injury (13, 14, 16). An
enhanced GLP-1-secretion may, according to both in vitro and
rodent studies, be mediated by toll-like receptors at the basolateral
sides of the L-cells, which become exposed to endotoxins due to
mucosal barrier disruption (16, 46, 47). Such mechanisms might
be active in critically ill patients where fasting GLP-1 levels have
been found elevated (25, 47). In this study, GLP-1 levels in the
patients, including pre-transplant levels, were generally higher
than in healthy controls, suggesting that similar mechanisms
may, to some extent, be activated already at the timepoint of
referral in these often severely affected patients. Our findings,
however, appear to be in contrast to a study by Skoczén et al.,
reporting decreased GLP-1 levels before conditioning in pediatric
HSCT patients (48). The reason for this discrepancy is unclear and
difficult to judge based on the limited number of participants in
their study (27 patients; of those nine had a non-malignant
diagnosis) and with an absence of observations in the early post-
transplant period.

A strength of the present study is the meticulous design with
numerous, consecutive and precise time points for GLP-1
Frontiers in Immunology | www.frontiersin.org 7
measurements, both pre- and post-HSCT, as well as the
inclusion of a large control cohort. Yet, this study is limited by
its lack of data on mucositis scoring and nutritional intake, which
potentially could have strengthened our conclusions. Moreover,
a larger cohort is needed to obtain statistical power to detect
possible associations between GLP-1 and risk of inflammatory
treatment-related complications, including SOS and aGvHD.

In conclusion, we have presented evidence of an association
between endogenous GLP-1 and enterocyte recovery rate and the
degree of systemic inflammation in pediatric patients undergoing
HSCT. These findings lend support to the notion that GLP-1
may contribute to the well-known large inter-individual
variability in the tolerance to chemotherapy and irradiation
and suggest new potential therapeutic strategies to prevent
toxicities related to chemotherapy in HSCT.
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