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Spinal cord injury (SCI) can result in sensorimotor impairments or disability. Studies of
the cellular response to SCI have increased our understanding of nerve regenerative
failure following spinal cord trauma. Biological, engineering and rehabilitation strategies
for repairing the injured spinal cord have shown impressive results in SCI models of
both rodents and non-human primates. Cell transplantation, in particular, is becoming a
highly promising approach due to the cells’ capacity to provide multiple benefits at the
molecular, cellular, and circuit levels. While various cell types have been investigated,
we focus on the use of Schwann cells (SCs) to promote SCI repair in this review.
Transplantation of SCs promotes functional recovery in animal models and is safe for
use in humans with subacute SCI. The rationales for the therapeutic use of SCs for SCI
include enhancement of axon regeneration, remyelination of newborn or sparing axons,
regulation of the inflammatory response, and maintenance of the survival of damaged
tissue. However, little is known about the molecular mechanisms by which transplanted
SCs exert a reparative effect on SCI. Moreover, SC-based therapeutic strategies face
considerable challenges in preclinical studies. These issues must be clarified to make
SC transplantation a feasible clinical option. In this review, we summarize the recent
advances in SC transplantation for SCI, and highlight proposed mechanisms and
challenges of SC-mediated therapy. The sparse information available on SC clinical
application in patients with SCI is also discussed.

Keywords: spinal cord injury, Schwann cells, neurological disorders, remyelination, nerve regeneration

INTRODUCTION

Spinal cord injury (SCI) is an neurological condition that results in a range of functional
impairments including severe motor, sensory, and autonomic dysfunction. Functional recovery
after SCI is generally limited. Preclinical research continues to improve our understanding of
mechanisms that underlie the pathophysiology of SCI. Currently, various cellular, molecular, and
bioengineering strategies have been investigated with the goal of promoting repair and recovery
from injury. Cell transplantation offers more advantages than drugs, nerve growth stimulatory
factors, or biomaterials for repairing the spinal cord. Cell grafts can provide trophic support,
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neuroprotection, remyelination, and anti-inflammatory effects,
as well as forming permissive tissue bridges for axon regeneration
across injured sites, including neural stem cells (NSCs), neural
progenitor cells (NPCs), olfactory ensheathing cells (OECs),
Schwann cells (SCs), oligodendrocyte progenitor cells (OPCs),
mesenchymal stem cells (MSCs), activated macrophages, and
induced pluripotent stem cells (iPSCs) (Silva et al., 2014; Assinck
et al., 2017a). Compared to other cells used in SCI repair, SCs can
be highly purified, and well characterized and are relatively easy
to isolate and expand from autologous nerves, which makes them
an outstanding cell type for SCI repair (Monje et al., 2021).

SC transplantation for SCI repair has a long history. In the
early 1980s, two landmark papers were sequentially published
showing that axons from central nervous system (CNS) neurons
can grow into peripheral nerve grafts (Richardson et al., 1980;
David and Aguayo, 1981), which challenged the traditional
concept that neurons in the CNS were incapable of regeneration
after injury. In Berry et al. (1988) demonstrated that SCs play
a primary role in the regeneration of axons into peripheral
nerve grafts when normal or acellular peripheral nerve grafts are
transplanted into the CNS. Numerous axons penetrated deeply
into the cellular grafts but not the acellular peripheral nerve
grafts. Since SCs were known to be pivotal in the regeneration
of axons into peripheral nerve grafts, this raised the question
of why not transplant purified SCs into the CNS to promote
CNS nerve regeneration following injury? In 1981, the first study
involving the transplantation of purified SCs into the spinal
cord was performed. The study, which was conducted in a focal
demyelination mouse model, revealed that SCs could myelinate
spinal cord axons (Duncan et al., 1981). More SC-myelinated
axons regrew into the cell bridge in a complete transection (Xu
et al., 1997) or contusion (Takami et al., 2002) model when
SCs were introduced into the injured spinal cord. Recently,
substantial progress has been made in the use of SCs for spinal
cord repair and improving functional recovery in animal models
of SCI (Takami et al., 2002; Pearse et al., 2004b; Biernaskie
et al., 2007; Tetzlaff et al., 2011; Deng et al., 2015, 2021; Sparling
et al., 2015; Bastidas et al., 2017). However, little is known
about the mechanisms by which transplanted SCs promote
repair and mediate functional improvements. An understanding
of these mechanisms would facilitate development of novel
effective interventions to improve functional outcomes after SCI.
Therefore, this review focuses on proposed mechanisms of SC
transplantation for SCI. In addition, challenges of SC-based
therapeutic are also discussed.

GENERATION AND CHARACTERISTICS
OF SCHWANN CELLS

SCs, including myelinating and non-myelinating SCs in nerve
trunks and in nerves generally, are generated from the
neural crest, or from crest-like cells (Woodhoo and Sommer,
2008). During early developmental stages, neural crest cells
are migratory, proliferative, and multipotent. They generate
Schwann cell precursors (S) and many other cell types, including
neural and non-neural cells. The appearance of SCPs represents

the first step in the generation of SCs from neural crest cells.
Similar to neural crest cells, SCPs are also migratory and
proliferative and give rise to immature SCs. This represents the
second step in the generation of SCs (Woodhoo and Sommer,
2008; Woodhoo et al., 2009; Monk et al., 2015). Distinguished
from SCPs, immature SCs cease migrating, remain proliferative,
and form an immature basal lamina (Jessen and Mirsky, 2005). At
birth, the immature SCs differentiate into either myelinating or
non-myelinating SCs through radial sorting, a process by which
these immature cells sort individual axons depending on the type
of axon they engage with. Myelinating SCs ensheath one axon
segment and subsequently spiral their membrane many times
to form a compact myelin sheath. By contrast, non-myelining
SCs, also referred to as Remak SCs, ensheath multiple small
caliber axons without making myelin (Figure 1A). A detailed
description of SC development and the molecular mechanisms
regulating SC generation and myelination in the peripheral
nervous system (PNS) has been provided elsewhere (Woodhoo
and Sommer, 2008; Pereira et al., 2012; Monk et al., 2015;
Muppirala et al., 2020).

One key characteristic of the biology of SCs is their remarkable
plasticity, which confers a high regenerative capacity for the PNS.
Following PNS injury, progressive breakdown and clearance of
distal axons termed Wallerian degeneration occurs to create a
permissive environment for regeneration. During the process,
mature SCs can dedifferentiate to a phenotype related to that of
the immature SCs, which promotes axonal regeneration (Jessen
and Mirsky, 2008). This phenotypic conversion is associated
with the downregulation of several promyelinating genes and
the upregulation of growth-promoting genes (Chen et al., 2007;
Balakrishnan et al., 2016). In injured adult nerves, repair-
promoting SCs and invading macrophages degrade and remove
damaged axons and myelin debris (Gomez-Sanchez et al., 2015).
Then, SCs extend long parallel processes and align in tracts called
Bungner band to guide axon regrowth (Arthur-Farraj et al., 2012;
Jessen and Arthur-Farraj, 2019; Nocera and Jacob, 2020). Finally,
repair SCs redifferentiate into myelinating SCs to remyelinate the
regenerated axon (Figure 1B). Another key characteristic of SCs
is their ability to produce extracellular matrix (ECM) components
and a variety of neurotrophins that can support survival of
damaged neurons and promote axon regeneration, including
nerve growth factor (NGF), brain-derived neurotrophic factor
(BDNF), ciliary neurotrophic factor (CNTF), and neurotrophin-
3 (NT-3), as well as the expression on their surfaces of various cell
adhesion molecules (Bunge, 1994; Wilson et al., 2020). All these
characteristics allow SCs to promote repair in PNS or CNS injury.

FUNCTION AND MECHANISM OF
SCHWANN CELLS IN SPINAL CORD
INJURY REPAIR

Axon Regeneration
A key pathological event of SCI is axonal severance induced
by the initial trauma (Blesch and Tuszynski, 2009; Lu et al.,
2014). Even though spontaneous relay circuit formation takes
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FIGURE 1 | (A) Development of the SC lineage: from neural crest cells to myelinating and non-myelinating SCs. (B) Schematic of the repair program orchestrated by
SCs following peripheral nerve injury.

place in spared neural tissue for anatomically incomplete SCI
(Bareyre et al., 2004; Blesch and Tuszynski, 2009; Rosenzweig
et al., 2010; Takeoka et al., 2014; O’Shea et al., 2017; Hutson
and Di Giovanni, 2019; Figure 2), the degree of functional
recovery induced by this spontaneous process is limited. Thus,
a logical repair strategy would be to first promote regeneration
of severed axons across large non-neural lesion cores to restore
neural connectivity.

Trophic Factors
Injured axons fail to regrow through the non-neural lesion core
where pericytes and fibroblast lineage cells produce various axon-
inhibitory molecules. However, it seems unreasonable to attribute
the failure of axon regeneration solely to the presence of these
inhibitors. Transplanted fibroblasts promote substantive axon
regeneration into lesion sites only when they are genetically
modified to produce axon-stimulatory growth factors (Blesch
and Tuszynski, 2007). Delivery of growth factors required for
sensory axon growth during development supports regrowth of
sensory axon into lesion cores (Anderson et al., 2016). Therefore,
continued delivery of growth factors would be a promising
strategy for sustaining axon regrowth following SCI.

The transplanted SCs within a lesion core secrete a variety
of axonal growth-promoting factors (Figure 3), including NGF,
BDNF, CNTF, and NT-3 (Bunge, 1994; Alsmadi et al., 2018).
By binding to specific receptors, these factors activate the
downstream signaling cascades involved in the axonal outgrowth

of both sensory and motor fibers in the CNS (Keefe et al., 2017).
Different populations of neural axons have different sensitivities
to different neurotrophins. NGF mainly stimulates regeneration
of sensory axons, whereas BDNF primarily promotes the
sprouting and regeneration of motor axons. NT-3 has a positive
effect on both sensory and motor axonal growth after SCI (Keefe
et al., 2017). Compared with normal SCs, more axons were
observed across the transected spinal cords of adult rats that
received SCs genetically modified to secrete increased amounts
of BDNF (Menei et al., 1998) or GDNF (Deng et al., 2013).
Although functional outcomes were not assessed, a combination
of BDNF and NT-3 exerted synergistic effects, and significantly
more myelinated fibers regenerated into SC grafts in a rat model
of acute transection (Xu et al., 1995).

Adhesion Molecules
In addition to secreting neurotrophins, SCs express adhesion
molecules on their surfaces (e.g., L1 and NCAM) and produce
ECM components (e.g., laminin, fibronectin, and collagen)
(Bunge, 1994, 2016; Mirsky et al., 2002; Figure 3). These
unique characteristics of SCs also support axonal regeneration.
Neural cell adhesion molecule (NCAM) and the L1 family of
adhesion molecules have important roles in axonal outgrowth,
myelination, and synapse formation during nervous system
development and regeneration (Maness and Schachner, 2007;
Dityatev et al., 2008; Kataria et al., 2016). Deletion of NCAM in
adult mice reduced axonal regrowth/sprouting at the site of injury

Frontiers in Neuroscience | www.frontiersin.org 3 February 2022 | Volume 16 | Article 800513

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-800513 February 11, 2022 Time: 17:0 # 4

Fu et al. Schwann Cell for SCI

FIGURE 2 | Cell biology and spontaneous recovery after SCI. Mature SCI lesions have three different compartments: (1) a central non-neural lesion core, consisting
of stromal cells, meningeal fibroblasts, and pericytes. (2) a narrow glial scar, consisting of reactive astrocyte and microglia, that intimately surround the lesion core,
and (3) a large surrounding zone of functional neural tissue (O’Shea et al., 2017; Courtine and Sofroniew, 2019). SCI triggers complex pathological events including
considerable loss of axons, neurons, and oligodendrocytes, infiltration of circulating immune cells, release of detrimental molecules by multiple cells, and glial scar
formation. These processes within distinct SCI lesion compartments contribute to functional impairments. Spontaneous recovery can occur due to spontaneous
circuit reorganization, spontaneous regeneration of myelin sheaths (produced by both oligodendrocytes and endogenous SCs) and spinal cord automaticity.
However, spontaneous axonal regeneration is hampered by the increased deposition of CSPGs secreted by activated cells, and increased production of
myelin-associated inhibitory molecules by the gradual degradation of injured oligodendrocyte myelin.

and impaired function recovery after SCI (Saini et al., 2016).
L1 promotes neurite growth by neutralizing inhibitors of axonal
growth in the CNS. Application of small-molecule L1 agonists
stimulated neurite outgrowth and functional recovery in mouse
models of femoral nerve injury or SCI (Kataria et al., 2016).
Enhanced recovery after SCI in the adult rodent nervous system
was also observed following application of soluble cell adhesion
molecule L1-Fc (Roonprapunt et al., 2003) or recombinant L1
Fab fragment directed against L1 (Loers et al., 2014) and L1-
overexpressing SCs or stem cells (Chen et al., 2005; Lavdas et al.,
2010; Cui et al., 2011).

Extracellular Matrix
Nerve regeneration following injury in the PNS is more successful
compared to that in the CNS; this is due, in part, to the
generation of ECM components that provide structural strength
as well as substrates for the adhesion and outgrowth of
regenerating axons. Laminin and fibronectin are upregulated
following peripheral nerve injury (Gardiner, 2011). Therefore,

considerable effort is focused on using ECM proteins to provide
a permissive environment for axonal regeneration following
SCI. King et al. (2010) demonstrated that injectable forms of
fibronectin and/or fibrin supported axonal growth 4 weeks after
injection into an experimental knife-cut cavity in the rat spinal
cord. Takeda et al. (2015) showed that laminin guided axon
growth through scar tissue in a goldfish model of SCI. Laminin
was typically restricted to blood vessels in the spinal cord and
to the endogenous SCs present in the spared rim of the lesion
core after SCI (Assinck et al., 2020). By contrast, laminin was
extensively expressed in the spinal cord of SC-treated animals
(Assinck et al., 2020).

Scar Attenuation
Another proposed mechanism for the enhanced axon growth
following SC transplantation is likely to be modification of glial
scars which is generally thought to be a major block for axonal
regeneration (Figure 3). Skin precursor-derived SCs were shown
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FIGURE 3 | Functions and mechanisms of SCs in SCI repair. The injured spinal cord schematic illustrates potential benefits of SC transplantation, including support
of axon growth, remyelination, glial scar attenuation, and related inflammation attenuation. Neurotrophins secreted by SCs bind to specific receptors on axons,
which promotes axon regrowth. Although astrocytes prevent SC migration, survival and integration into the normal white matter, the interdigitation of SCs with
astrocyte processes has also been observed. The interdigitation of transplanted SC processes with astrocyte processes at the rostral host spinal cord/SC bridge
interface results in entry of regenerated axons to the SC bridge. Transplanted SCs form new myelin sheaths around regenerated or spared demyelinated axons.
Endogenous OPCs in the spinal cord may differentiate into new oligodendrocytes and PNS-like SCs, both of which produce myelin sheaths. Transplanted SCs also
exert neuroprotection by modulating related inflammation.

to mitigate glial scar formation, displayed predominant rostro-
caudal orientation, formed cellular conduits to bridge the SCI
lesion, and improved locomotor outcomes (Assinck et al., 2020).
Although the complex roles of the glial scar in CNS axon growth
are unclear, sensory or motor axons must penetrate the caudal
or rostral “wall” of glial scars to access the SC bridges onto
which axons can grow. More recent interventions have therefore
focused on the SC implant/host spinal cord interface with the
goal of fostering axon regeneration across the cysts and scars.
Following SC transplantation, an irregular interface was formed
due to the interdigitation of astrocyte processes with implanted
SC processes, which resulted in more regeneration of axons into
the SC bridges rather than a distinct border (Williams et al.,
2015). Furthermore, the number of axons in cellular bridges
was in direct proportion to the number of astrocyte processes

that extended into the bridges (Williams et al., 2015). Thus,
the morphological change in astrocytes induced by the interplay
between astrocytes and SCs likely responsible for the regrowth of
axons into the lesion.

Myelin Repair
A spared rim of axons remains at the periphery of the spinal
cord lesion in both rodent (Basso et al., 1996) and human
SCI (Kakulas, 2004). The remaining axons lose their myelin
sheaths as a result of oligodendrocyte death induced by secondary
injury. Loss of oligodendrocytes and demyelination is believed
to further impair the conductive capacity and neural functional
recovery after SCI (McDonald and Belegu, 2006). Spontaneous
regeneration of myelin sheaths, termed remyelination, is achieved
by endogenous oligodendrocytes and SCs in animal and human
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SCI (Zawadzka et al., 2010; Plemel et al., 2014; Assinck
et al., 2017b; Figure 2). OPCs migrate to the lesion area
and differentiate into new oligodendrocytes that generate new
myelin sheaths. Interestingly, demyelinated axons can also be
remyelinated by SCs, although the origin of these CNS-resident
SCs is still debated (Blight and Young, 1989; Zawadzka et al.,
2010; Assinck et al., 2017b; Chen et al., 2021). However,
the persistent dysfunctional neural conductivity suggests that
spontaneous remyelination by endogenous oligodendrocytes and
SCs after SCI seems insufficient (Nashmi and Fehlings, 2001).
Therefore, the transplantation of SCs aims to replace lost
oligodendrocytes incurred by SCI, to boost the remyelination
of remaining axons in spared white matter and to promote the
recovery of electrical impulse conduction.

Schwann Cell Remyelination in Central Nervous
System
Transplanted SCs tightly associate with, align along, and
myelinate host axons when introduced into the injured rat spinal
cord (Figure 3). More axons surrounded by typical peripheral
type (SC) myelin were identified in SC-treated animals compared
to medium-injected animals (Takami et al., 2002; Biernaskie et al.,
2007; Sparling et al., 2015; Assinck et al., 2020). Approximately
73% of the transplanted SCs were myelinating in the chronically
injured spinal cord (Assinck et al., 2020). In a contusion SCI
model, robust SC myelination was reported at 12 weeks after
transplantation (Wang and Xu, 2014). Endogenous SCs were also
observed myelinating host axons following SCI (Biernaskie et al.,
2007; Sparling et al., 2015). Myelination by endogenous, centrally
derived SCs can be detected 3 weeks after lesion induction
(Zawadzka et al., 2010). Quantitative analysis of SC-myelinated
axons in both the grafts and spared tissue rim revealed that 53%
of axons were myelinated by endogenous SCs after contusive
thoracic SCI (Biernaskie et al., 2007). Approximately 40% of
SC myelin was generated from endogenous SCs in the partially
injured cervical spinal cords of SC-treated rats, whereas little SC
myelin was observed in a medium-injected group (Sparling et al.,
2015). Therefore, in addition to myelinating axons, transplanted
SCs recruit endogenous SCs to myelinate the demyelinated axons
(Assinck et al., 2020).

Oligodendrocyte Progenitor Cell-to-Schwann Cell
Differentiation
Why are peripheral SCs present in the CNS? Researchers once
thought that SCs entered the CNS from PNS sources, but this
paradigm has been challenged by several recent studies. Using a
chemically induced demyelinated model, Zawadzka et al. (2010)
showed that OPCs residing in the adult CNS produced most of
the SCs during CNS remyelination. Only a small decline in the
number of SCs was observed in the injured spinal cord after
removal of the bilateral dorsal roots, suggesting that the majority
of SCs are generated from a central source (Bartus et al., 2016).

The molecular mechanism underlying the trans-
differentiation of OPCs into PNS-like SCs following SCI remains
unclear, however, it may involve bone morphogenetic protein
(BMP) (Talbott et al., 2006). In vitro-cultured reactive astrocytes
from the contused spinal cord expressed high levels of BMP,

which inhibited differentiation of OPCs into oligodendrocytes
(Wang et al., 2011b). Consistent with this finding, inhibition of
BMP signaling is sufficient to block OPC-to-SC differentiation
in lesions (Talbott et al., 2006). Another factor proposed to drive
the OPC-to-SC transition may be the growth factor neuregulin-1
(Nrg1) (Bartus et al., 2016, 2019). SCs were absent from the
contused spinal cord in adult mice with conditional ablation
of Nrg1. However, these studies did not directly demonstrate
that Nrg1 drives the OPC-to-SC transition, and only showed
that Nrg1 is necessary for the transition, likely because SCs
require Nrg1 for survival (Dong et al., 1995). The presence of
myelinating SCs in the CNS suggests a reduction in the number
of myelinating oligodendrocytes from OPCs. Whether SC myelin
in the CNS and oligodendrocyte myelin have equally important
functions is not known. Neither a compensatory increase in
oligodendrocyte remyelination nor a better functional recovery
was observed in the context of SC absence (Bartus et al., 2016,
2019). Thus, promoting OPC-to-SC differentiation is likely to be
a promising therapeutic strategy (Duncan et al., 2020).

Motor Exit Point Glia
In addition to oligodendrocytes and SCs in nervous systems,
MEP glia is a recently discovered type of myelinating cells
that myelinate spinal motor root axons (Kucenas et al., 2009;
Smith et al., 2014). MEP glia originate from the CNS, share a
common progenitor with oligodendrocytes, reside outside of the
spinal cord and function in the PNS (Fontenas and Kucenas,
2018). Numerous studies showed that MEP glia could regulate
glial migration across transition zones, establish and maintain
CNS/PNS boundary (Smith et al., 2014; Morris et al., 2017).
Although their identity (a central or a peripheral or a hybrid glial
cell) is not uncovered, they do myelinate axons, which raises a
question that whether these unidentified, centrally derived glial
cells could myelinate the demyelinated axons when transplanted
to spinal cord after SCI. With single-cell RNA sequencing
development, the characteristics of this unique glial population
will be elucidated, and may be relevant also in spinal regeneration
like SCs.

Neuroprotection
Neuroprotection is a treatment option for many CNS disorders,
including neurodegenerative diseases, stroke, and traumatic
brain/spinal cord injury. In the context of SCI, neuroprotection is
believed to be one of the mechanisms by which transplanted SCs
exert a beneficial effect on the injured cord, because transplanted
SCs reduced cavitation and increased sparing around the lesion
compared with controls (Takami et al., 2002; Pearse et al., 2004a;
Biernaskie et al., 2007; Schaal et al., 2007; Assinck et al., 2017a,
2020; Bastidas et al., 2017). However, attributing the reduction
of cavitation or increase of sparing tissue to neuroprotection is
not plausible, given that the axon regeneration and myelination
by transplanted SCs might increase the amount of spared tissue
around the injury site (Assinck et al., 2017a).

Neuroprotection is defined as the relative preservation of
neuronal structure and/or function (Casson et al., 2012). The
bona fide neuroprotective effect of SCs is most likely a result of
their secretion of growth factors, which support the survival of
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injured host cells. A twofold increase in the numbers of preserved
NeuN + neurons around the lesion was observed in an SC-
transplanted group (Schaal et al., 2007). In addition, transplanted
SCs have been shown to exert neuroprotection by modulating
inflammation (Pearse et al., 2018; Mousavi et al., 2019). Similar
to immunomodulatory drugs that selectively inhibit or enhance
components of the innate immune response (Schaal et al., 2012;
Kobayashi et al., 2013; Fehlings et al., 2017; Gensel et al., 2017)
and other exogenous cells that alter the polarization or activity
of immune cells (Mosher et al., 2012; Zanier et al., 2014; DePaul
et al., 2015), SC delivery also provides immunomodulatory effects
to indirectly improve neuron survival after SCI. In a rat model
of thoracic contusive SCI, SCs were introduced into the injured
spinal cord at 1 week following injury. The introduction of
SCs significantly reduced the numbers of CD11b+, CD68+,
and Iba1 + cells and enhanced the transition of immune
cells from a pro-inflammatory to anti-inflammatory phenotype
(Pearse et al., 2018; Figure 3). An important component of the
innate immune system is the inflammasome, which is known
to be involved in the pathogenesis of several CNS diseases
(Tschopp and Schroder, 2010). Activation of the inflammasome
in CNS injury is responsible for inflammation propagation and
neuronal cell death. Administration of SCs attenuated the activity
of inflammasome complexes and related inflammatory circuits
while improving motor function (Mousavi et al., 2019).

SCHWANN CELL TRANSPLANTATION
FOR CLINICAL APPLICATION

Extensive preclinical data indicate the efficacy of SC
transplantation for rodent SCI repair. However, any decision on
the clinical application of SCs must be made with caution
and prudence. Safety is the first consideration for the
clinical use of SCs.

The establishment of techniques for human SC isolation and
purification has enabled the generation of large numbers of SCs
from patients’ sural nerves within a limited therapeutic time
window (Casella et al., 1996). Use of human autologous SCs from
the adult peripheral nerves circumvents the immune response
and ethical problems and minimizes the risk of disease transfer.
More importantly, human SCs have been shown to be safe and
do not induce glioma formation when transplanted into the
injured spinal cord of adult rodents (Guest et al., 2013; Bastidas
et al., 2017; Monje et al., 2021). Although tumor formation by
transplanted rodent SCs has been reported for adult skin-derived
and postnatal nerve derived SCs (Langford et al., 1988; May
et al., 2018), no evidence of tumor formation of the human
SC transplants in spinal cord lesions was found in preclinical
investigations of donor nerve-derived human SCs (Bastidas et al.,
2017). Several clinical trials (Table 1) have also confirmed their
safety and feasibility for the treatment of SCI, although little
functional improvement was observed (Saberi et al., 2008, 2011;
Zhou et al., 2012; Anderson et al., 2017; Gant et al., 2021). Saberi
et al. (2011) administered SCs into 33 patients with chronic
SCI (24 with thoracic injuries and 9 with cervical injuries).
Autologous SCs purified from the sural nerves were injected into
the cavity, and the patients were followed up for 2 years. Some

patients showed improvements in motor, sensory, and sphincter
functions. No adverse effects were observed 2 years after SC
treatment. Zhou et al. (2012) also reported that autologous
SC transplantation for the treatment of SCI resulted in signs
of improvement in autonomic and sensorimotor function. In
addition to SC transplantation alone, a combination of SCs with
other cell types also indicated no undesirable effects in human
participants (Chen et al., 2014; Oraee-Yazdani et al., 2016).

A phase I clinical trial approved by the Food and Drug
Administration (FDA) (NCT01739023) evaluated the safety of
human autologous SC transplantation in six adult participants
with subacute thoracic SCI. Autologous SCs were harvested
from a sural nerve of each patient within 30 days after SCI,
cultured in vitro, and then introduced into the lesion epicenter
within 72 days after SCI. Safety was assessed at 12 months
post-transplantation. No surgical, medical, or neurological
complications and no additional spinal cord damage, mass lesion,
or syrinx formation were observed (Anderson et al., 2017).
Another phase I clinical trial (NCT02354625) with the goal of
evaluating the safety of human autologous SC transplantation
in chronic SCI (4 thoracic and 6 cervical SCIs) conducted by
the same team at the Miami Project to Cure Paralysis were
also completed. No serious adverse events related to sural
nerve harvest or SC transplantation were reported and magnetic
resonance imaging (MRI) revealed a reduction in cyst volume
(Gant et al., 2021). Importantly, one patient experienced a 4-
point improvement in motor function, a 6-point improvement in
sensory function and a 1-level improvement in neurological level
of injury (Gant et al., 2021). Relatively few patients were enrolled
in these clinical trials (a total of 57 patients), although all reported
no adverse events related to SC-therapy. More clinical trials are
needed to confirm the safety and efficacy of human autologous
SC transplantation for SCI.

The source of therapeutic human SCs is another consideration
for the clinical use. In addition to autologous human peripheral
nerve, stem cell is another potential source of human SCs,
especially induced pluripotent stem cells (iPSCs). Many
limitations that surround the use of embryonic stem cells
or other stem cells are overcome by iPSCs. Several studies
demonstrated that iPSCs could differentiate into SCs via an
intermediate neural crest stem cell stage (Wang et al., 2011a;
Okawa et al., 2013). However, no SCI clinical trials have started
using iPSC-derived SCs, largely because of potential safety
concerns, the risks of tumor formation or infected (Huang et al.,
2020). To mitigate the complications, iPSC-derived SCs must be
extensively genetically screened and any undifferentiated cells
need to be detected by robust methods to improve purity of SCs
in the final cell population for clinical cell therapy.

CHALLENGES

Low Survival Rate
SC transplantation without additional interventions has a limited
therapeutic effect on SCI. Transplanting SCs alone does not
improve the Basso, Beattie, and Bresnahan (BBB) scores in rats,
presumably because of the low survival rate post-implantation as
well as the limited ability of the cells to migrate into host tissue.
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TABLE 1 | Clinical trials of Schwann cell transplantation (alone or together with other cell types) for spinal cord injury.

Study Country Age, number
of patients

Injured level
and severity

Transplanting
time after
injury

Cell dose Cell delivery Follow-up
period

Outcomes

Saberi et al. (2008) Iran 22–43, 4 T6-T9 ASIS A
or C

28–80 months 3–4.5 × 106

cells in 300 µl
5–6 locations
on each side
rostral or
caudal to the
lesion

1 year No adverse effects, no improvement of
sensorimotor, sphincter and sexual
function

Saberi et al. (2011) Iran 23–50, 33 Thoracic or
cervical ASIA A
or B

Mean 4.1 years 3 × 106 cells in
300 µl

3 different
locations within
cavity

2 years No neurological worsening, no increase
in syrinx size, no tumor formation,
significant improvement of light touch
sensory, improvement of sphincter
abilities in some patients, no significant
increase in FIM and FAM scores

Zhou et al. (2012) China 7–44, 6 C5-T12 ASIA
A-C

1 week
to20 months

4–6 × 106 cells
in 200 µl

6–7 locations
on each side of
spinal cord

5–8 years Increase in ASIA and FIM scores,
improvement of automatic function,
increase in latency period and wave
amplitude of SSEPs and MEPs

Chen et al.
(2014)

Alone China 22, 1 C4-C6, ASIA A 7 years 106 cells in 50
µl

In the dorsal
midline of the
spinal cord,
above and
below the
lesion

6 months Functional neurological improvements,
improvements on the
electrophysiological test

With OECs 39, 1 C5-C7 ASIA A 5 years 5 × 105 SCs
and
5 × 105OECs
in 50 µl

Oraee-
Yazdani
et al. (2016)

With BMSCs Iran 22–45, 6 C7-T11 ASIA A 28–62 months 106 SCs and
106 BMSCs in
2 ml

Though
cerebral spinal
fluid

30.6 ± 4.7
months

No neoplastic tissue overgrowth,
Increase in ASIA scores and indexes of
UDS in one patient, No motor score
improvement

Anderson et al. (2017) United States 24–41, 6 T1-T6 ASIA A 4–7 weeks 5 × 106 cells in
50 µl or
10 × 106 cells
in 100 µl or
15 × 106 cells
in 150 µl

Into injury
epicenter

1 year No surgical, medical, or neurological
complications, no adverse events, no
additional tissue damage, mass lesion,
or syrinx formation, no clear efficacy on
functional recovery

Gant et al. (2021) United States 18–65, 8 C5,C6,T2,T10,
T11 ASIA A-C

1–15 years 5 × 106 cells in
500 µl or until
cavity was filled
with cell
suspension

Into cystic
cavity

2 years No serious adverse events related to
sural nerve harvest or SC
transplantation; reduction in cyst
volume; improvement in motor and
sensory function; improvement in
neurological level of injury

ASIA, American Spinal Injury Association; FIM, Functional Independence Measure; FAM, Functional Assessment Measure; SSEPs, somatosensory evoked potentials; MEPs, motor evoked potentials; OECs, olfactory
ensheathing cells; BMSCs, bone marrow mesenchymal stem cell; DUS, urodynamic study.
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Over 80% of transplanted SCs disappeared within the first week
after transplantation as a result of hypoxia, inflammation, and the
immune response within the injury site (Hill et al., 2007; Pearse
et al., 2007). In addition, cell membrane damage during injection,
cell leakage out of the lesion, and lack of ECM within the lesion
also contribute to significant transplanted cell loss and death (Hill
et al., 2007; Amer et al., 2017). Less than 5% of injected SCs
survive 1 month after transplantation (Marquardt et al., 2020),
which may result in limited functional outcomes. Unfortunately,
human SCs have a more poor survival rate in contusion injuries
with a low proliferation rate when compared to rodent SCs
(Bastidas et al., 2017). Many methods are employed to improve
the long-term survival of transplanted SCs within the injured
spinal cord (Guo et al., 2007; Moradi et al., 2012; Enomoto
et al., 2013); however, their effects are unsatisfactory. Therefore,
a primary goal is to promote the survival of transplanted SCs
in the injured spinal cord to maximize their SCI-repair efficacy.
Small molecule compounds are screened to enhance SC survival
through reducing oxidative stress, including 17β-estradiol and
calpain inhibitor MDL28170 (Hill et al., 2010; Siriphorn et al.,
2010). Activating adaptive transcriptional pathways by retroviral
expression of hypoxia inducible factor 1 alpha (HIF-1α) in SCs
increased SC survival by 34.3% (David et al., 2020). Recently,
different biomaterials have also been developed to support
survival of transplanted SCs (Lee et al., 2017; Liu et al., 2017a;
Wu et al., 2018). A designer, injectable hydrogel resulted in
a sevenfold increase in the survival of transplanted SCs with
functional recovery compared to the control group during SCI
treatment (Marquardt et al., 2020). In a rat model of thoracic
contusion, Cerqueira et al. (2018) implanted SCs in acellular
injectable peripheral nerve matrix (iPN) into an SCI lesion. The
iPN matrix supported SC survival and contained twice as many
SC-myelinated axons as Matrigel grafts (Cerqueira et al., 2018).

Poor Migration
The limited effect of SC transplantation alone is due, in part,
to the poor migration of transplanted SCs into host tissue (Hill
et al., 2007; Pearse et al., 2007). The molecular mechanisms
underlying this poor migration of transplanted SCs is not well
understood. Myelin associated glycoprotein (MAG), one of the
axonal growth-inhibiting molecules, was shown to inhibit SC
migration and induce their death via γ-secretase-dependent
cleavage of neurotrophin receptor p75 (Chaudhry et al., 2017).
The poor migration of transplanted SCs into the adult CNS is
believed to lead to the formation of the SC implant/host tissue
interfaces. Although many regenerated descending axons grow
into the SC implants from the rostral interface, very few exit the
caudal interface and subsequently re-enter the distal host spinal
cord. Comparison of the two interfaces showed more chronic
and inhibitory conditions at the caudal interface (Wiliams and
Bunge, 2012). The extremely slow growth rate of regenerated
axons (∼1 mm/day) (Steward et al., 2003) delays their reaching
the caudal interface. During this process, increased host astrocyte
response and CSPG deposition occurs at the caudal interface
(Plant et al., 2001; Lakatos et al., 2003), resulting in generation
of a relatively non-permissive environment compared to that at
the rostral interface. CSPG digestion with chondroitinase ABC

secreted from transduced SCs aided glial integration, enabled
more axons to exit from the SC-astrocyte boundary (Warren
et al., 2020). Many other efforts were made to enhance the
migration of SCs in the astrocytic environment by modifying
the characteristics of SCs by altering microRNA levels, or by
stimulating the production of polysialic acid (PSA) induction.
Overexpression of microRNA-124 in SCs downregulated Krox 20
expression in transplanted cells, inhibited the expression levels
of GFAP and p-STAT3 protein in host astrocytes, and ultimately
promoted integration of SCs with astrocytes (Li et al., 2020).
PSA-modified SCs migrated across the lesion for distances up
to 4.4 mm within adjacent host tissue. This was accompanied
by significant growth of axons caudal to the lesion (Ghosh
et al., 2012). Magnetizing SCs with superparamagnetic iron
oxide nanoparticles under a magnetic field effectively enhanced
migration of SCs into astrocytic regions (Xia et al., 2016). Besides
strategies for improving migratory capacity of SCs, improving the
axonal outgrowth rate to enable axons to quickly cross the caudal
interface and re-enter the distal spinal cord before generation
of non-permissive conditions at the caudal interface may also
promote recovery from SCI.

Limited Regeneration of Corticospinal
Axons
Most studies have reported little corticospinal axon regeneration
into the SC implant (David and Aguayo, 1981; Richardson et al.,
1984; Martin et al., 1996), possibly due to the lower intrinsic
growth capacity of corticospinal neurons (CSNs) (Tuszynski
and Steward, 2012). Promoting robust corticospinal axon
regeneration is essential given the importance of corticospinal
function in humans (Deumens et al., 2005; Lemon, 2008; Wang
et al., 2017). The administration of SC-derived neurotrophins
or other growth factors, such as BDNF, CNTF, and insulin-
like growth factor 1 (IGF1), promotes the growth of axons of
cultured neonatal CSNs rather than mature CSNs in adults, which
suggests that mature CSNs have limited responsiveness to growth
factors compared to immature CSNs (Lu et al., 2001; Ozdinler
and Macklis, 2006; Hollis et al., 2009). Osteopontin (OPN)
sensitizes the response of adult corticospinal neurons to these
growth factors. Combining any of the growth factors with OPN
promotes robust corticospinal axon regeneration (Duan et al.,
2015; Bei et al., 2016; Liu et al., 2017b). Therefore, combinatorial
treatment of SC transplantation and OPN in SCI models
would likely be more effective promoting corticospinal tract -
dependent functional restoration in adults. In addition to OPN,
SC transplantation in combination with other treatments also
improved SC survival and migration within the injured spinal
cord, and increased the axonal growth capacity, which enhanced
axon (including corticospinal axon) regeneration into SC bridges
beyond the caudal interface; this was accompanied by functional
improvement (Pearse et al., 2004b; Fouad et al., 2009; Bunge
and Wood, 2012; Ghosh et al., 2012; Wiliams and Bunge, 2012;
Bunge, 2016). Given the disadvantages of SC transplantation
alone, as well as the multifaceted pathophysiologic changes
of SCI, combinatorial therapeutic strategies for SCI repair
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are necessary. Such multiple-target combinatorial strategies are
showing promise for treatment of SCI (Kanno et al., 2014;
Bunge, 2016).

CONCLUSION

SCs have potential for SCI treatment because of their capacity
to promote axon regrowth and myelination within the injured
spinal cord. Numerous studies on SC therapy for SCI have
reported encouraging results in animal models, and some SC
therapies have been the subjects of phase I clinical trials. However,
none has been approved for clinical use in SCI patients, possibly
due to the complex pathophysiologic mechanisms of SCI and the
marked differences between the animal and human spinal cord.
Substantial questions and challenges remain in the field of spinal
cord regeneration. A better understanding of SCI neuropathology
and reparative mechanisms will promote translation of SC
therapies from basic research to clinical practice. Combination
therapeutic strategies improve the efficacy of SC transplantation
for SCI. In the future, patients with SCI will likely be treated
using combinations of SC transplantation and other repair-
supporting strategies to maximize functional recovery. Moreover,

novel methods of treating SCI are needed to improve the quality
of life of patients. Although achieving complete recovery after
SCI is a challenge, SC therapy shows promise. It is important to
remember that even a small improvement in function may have a
large impact on a patient’s life.
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