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Ultra-broadband Tunable 
Resonant Light Trapping in a 
Two-dimensional Randomly 
Microstructured Plasmonic-
photonic Absorber
Zhengqi Liu1,2,*, Long Liu1,3,*, Haiyang Lu1,3, Peng Zhan1,3, Wei Du1,3, Mingjie Wan1,3 & 
Zhenlin Wang1,3

Recently, techniques involving random patterns have made it possible to control the light trapping 
of microstructures over broad spectral and angular ranges, which provides a powerful approach for 
photon management in energy efficiency technologies. Here, we demonstrate a simple method to 
create a wideband near-unity light absorber by introducing a dense and random pattern of metal-
capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due 
to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption 
bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely 
packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super 
absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large 
incident angle range. Without any effort to strictly control the spatial arrangement of the resonant 
elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high 
reproducibility and scalability and represents a viable strategy for efficient energy technologies.

Light-trapping structures hold great promise for a variety of applications, such as photodetectors and photovol-
taic devices1–4. Conventional techniques, such as surface texturing5,6 and interference-based antireflection coating 
(ARC)7,8, could be applied to realize efficient light trapping by inhibiting light from reflecting directly back into 
the incident space and increasing the optical path length in the photoactive materials. To address the two most 
important aspects of light trapping, which are the in-coupling of light and the density of optical states in the pho-
toactive materials, properly designed nanophotonic light-trapping microstructures have recently been proposed 
to allow for more energy to be coupled into the active media of a photoelectric converter and to increase the 
light-matter interaction. High-index nanoscale wires9, particles10,11, and shells12 could support strong optical res-
onances owing to the excitations of optical modes such as Mie modes, whispering gallery modes and guided-like 
modes, which have provided ideal building blocks for versatile light-trapping layers or super-absorbing films4.

On the other hand, based on their strong light concentration and scattering properties, light-trapping layers 
employing metallic plasmonic microstructures have gained significant attention recently1,2,13,14. Efficient resonant 
light absorption by various plasmonic nanostructures, including microcavities15, gratings16, and gap-plasmon 
resonators17,18, has been widely studied. Since the first demonstration by Landy et al.19, metamaterial absorb-
ers, typically composed of a dielectric thin film sandwiched between an opaque conducting back plate and a 
lithographically patterned metallic microstructure, are recognized as promising candidates to realize near-unity 
electromagnetic wave absorption at microwave20, terahertz21 and infrared-visible frequencies22–24, and extensive 
follow-up work has been carried out to make the absorbers wide-angle incidence compatible. However, because 
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the electric and magnetic resonance frequencies of metamaterials are determined by their specific geometries, 
the absorbers based on them generally exhibit narrow absorption bandwidths, which severely limits their appli-
cations in light energy harvesting and photoelectric conversion. One of the most popular and effective ways to 
extend the working bandwidths of the absorbers is by blending dimensionally dispersed metallic resonators and 
integrating the corresponding resonances into a broad unity absorption band25,26. To realize a relatively broad and 
spectrally flat high absorption band, gradually varied metallic resonators with almost continuously changing in 
dimension like a trapezoidal27 or saw-tooth28–30 geometry have been proposed and demonstrated. Nevertheless, 
their complex and elaborate nanofabrication requirements make them inherently difficult to produce over large 
areas and hence limit their applications.

In addition to using deterministic nanophotonic architectures, structural disorder can offer an alternative 
strategy to improve light-trapping efficiency over a broad spectral range by light diffusion, multiple-scattering, 
and light coupling among the neighboring scatterers31. The introduction of structural randomness, including 
random spatial positions32 and sizes33,34 of the scatterers, has been studied to realize optical management with 
broad spectral and angular responses. For instance, a thin photoactive film drilled with a random pattern of holes 
demonstrates greater wideband light-trapping than one without holes and particularly greater light-trapping 
than a periodic holes array; this might provide a powerful approach for photon management in energy efficiency 
technology, which could benefit from a lower amount of materials used and the possibility of better photoelectron 
conversion35. Regarding metal-based absorbers, broadband absorption enhancement led by randomly patterned 
or stacked plasmonic resonators has also been presented36,37. More importantly, compared to elaborate periodic 
microstructures, random microstructures usually require relatively simple and low-cost fabrication methodolo-
gies, and their optical properties are expected to be less susceptible to imperfections.

Colloidal microspheres and their corresponding arrays are effective platforms to realize light-trapping by 
excitations of the localized resonances and coupled guided modes38–40. Prepared through two-dimensional (2D) 
colloidal crystal templating, spherical micro-void arrays buried in metal show omnidirectional high absorp-
tion that relies on the excitation of localized surface plasmon resonances41,42. Furthermore, taking advan-
tage of low quality whispering gallery modes supported by size-dispersed colloidal nanoshells, broadband 
absorption enhancement could be achieved12. In this letter, we propose and demonstrate a novel 2D hybrid 
plasmonic-photonic absorber by randomly patterning a monolayer of monodispersed gold-capped polystyrene 
(PS) microspheres on a flat, optically opaque gold film. Compared to its periodic counterpart, our proposed 
absorber displays a broad near-unity absorption band due to the excitation of multiple hybrid plasmonic-photonic 
modes43–47 and is scalable by tuning the size of the PS microspheres. In order to expand the absorption band-
width, two different-sized gold-capped PS microspheres are mixed into a densely packed monolayer on a gold 
back-reflector. As a proof-of-concept investigation, two types of PS microspheres with diameters of 1.019 μ m 
and 1.587 μ m are selected to fabricate the absorber in the near-infrared regime through a simple self-assembly 
approach. By optimizing the structural parameters of the absorber, such as the mixture ratio of these two 
different-sized microspheres and the thickness of the metallic cap over the PS beads, an ultra-broadband infrared 
absorption arising from effective modes blending and coupling effects is identified that shows desirable optical 
trapping in dielectric region and slight dispersion over a wide incident angle range while maintaining an average 
absorption greater than 90%. In principle, this absorption band can be easily scaled over a wide frequency range 
by tuning the PS colloids sizes. This work offers a facile and cost-effective strategy to fabricate an ultra-broadband 
perfect absorber with a very large area, and it demonstrates great potential for applications in optoelectronic 
devices based on high-efficiency light-harvesting.

Results
A randomly microstructured plasmonic-photonic absorber. The plasmonic-photonic micro-
structures were prepared by self-assembling a densely packed monolayer of monodispersed PS microspheres 
onto a quartz substrate pre-coated with an optically opaque, 150 nm-thick gold film, followed by the dep-
osition of a 20 nm-thick (t) semi-shell on top of each colloid (details shown in the Experimental section and 
Supplementary Fig. S1). In order to obtain disordered microstructures with a large area (over 1 ×  1 cm), a well-de-
veloped self-assembly method48, which controlled the evaporation rate of the suspension (comparatively rapid 
evaporation rate) under ultrasonic disturbance, was utilized. Figure 1(a) shows a top-view scanning electron 
microscope (SEM) image of the resultant monolayer, which is randomly patterned by gold-capped PS colloids 
with a diameter (d) of 1.019 ±  0.02 μ m. The monolayer apparently possesses a weak statistical short-range corre-
lation in the position of colloids but lacks any long-range order, and the inset shows a magnified cross-sectional 
SEM image of an individual gold-capped PS microsphere on a gold back-reflector.

Reflection (R) and transmission (T) spectra were measured using a commercial Fourier transform infrared 
(FTIR) spectrometer (Nicolet-5700). Due to the presence of an optically opaque gold back-reflector, the trans-
mission of the sample vanishes, and thus only reflection measurements are required to deduce the light spectral 
absorption, (A), by A(λ) =  1 − T(λ) − R(λ) =  1 − R(λ). Due to the restriction of a customized experimental setup, 
reflectance measurements were performed at a small incident angle (~8°) and were considered to be a good 
approximation of light reflectance under normal incidences of light. Figure 1(d) demonstrates the measured 
absorption spectrum of the as-prepared microstructure with the randomly patterned monolayer of 1.019 μ m 
gold-capped PS colloids (red curve) and indicates an excellent absorption performance covering a broad spectral 
range from ~0.9 μ m to ~1.3 μ m, with average absorptivity higher than 90%. To illustrate the possibility that the 
introduction of a random colloid pattern offers broadband photon management, the absorption measurement for 
a gold-capped PS colloid monolayer of a perfectly hexagonally close-packed (HCP) array on gold film was also 
performed and is shown as the green line in Fig. 1(d) (SEM image of the sample shown in Supplementary Fig. S1), 
and it is clear that the integrated absorption exhibits several sharp absorption peaks, which is quite different from 
that of the random structure.
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To compare the absorption performance of the random microstructure with its periodic counterpart, 
three-dimensional full-field electromagnetic simulations under normal incidence were conducted using a com-
mercial finite-element-method-based software package (COMSOL Multiphysics), and the corresponding calcu-
lated absorption spectra normalized to the intensity of the incident light are plotted in Fig. 1(e) for the random 
(red curve) and ordered (green curve) gold-capped PS colloidal monolayers. In the simulations, the modeling 
geometry parameters are the same as those of the experiments, and to mimic the infinitely large area of the 
sample, periodic boundary conditions were used (see Method section). In particular, Fig. 1(b) depicts the sche-
matic representation of a unit super-cell consisting of more than twenty randomly organized gold-capped PS 
microspheres for numerical simulation, which was obtained from the digitized SEM image outlined by the white 
box in Fig. 1(a). And the spectral absorption for this unit cell is shown as blue curve in Fig. 1(e) by utilizing the 
scattering boundary conditions. Overall, the comparative results show good agreement between the simulated 
and the measured absorption spectra.

Elucidation of absorption broadening effect of the disorder microstructure. The metal-capped 
microspheres could support a series of cavity-like resonances, where the electromagnetic field had a nondisper-
sive localization49 within the spatial region between the metallic back plate and the top semi-shells. To estimate 
the efficiency of light trapping, numerical simulations with top-illumination over a single 1.019 μ m PS micro-
sphere capped by a 20 nm-thick gold semi-shell on a gold back-reflector were performed under scattering bound-
ary conditions, as in the schematic in Fig. 2(a). Figure 2(b) illustrates the absorption cross-section (σ) defined 
by the ratio of the absorbed energy to that of the incidence as a function of illumination wavelength, which was 
normalized to the geometrical cross-section (σ0) of the gold-capped PS microsphere. Three resonant absorption 
peaks located at λ1 = 1.365 μ m, λ2 = 1.210 μ m, and λ3 = 0.950 μ m were clearly observed, which demonstrated 
very weak dispersion over the large range of incident angles, as shown in Fig. 2(c). The nature of these three dis-
tinct optical modes could be identified by the electric/magnetic field profiles of a single resonator in Fig. 2(d–g).  
According to the electric field distributions presented in Fig. 2(d and e), the absorption peaks centered at 
λ1 = 1.365 μ m and λ3 = 0.950 μ m could be regarded as plasmonic-coupled Fabry-Perot (FP)-like resonances sup-
ported within the region between the top gold semi-shells and the gold back-reflector with low quality factors50. 
For the absorption peak centered at λ2 = 1.210 μ m, as shown in Fig. 2(f), most of the electrical field was trapped in 
the PS microspheres and the interstice between the PS colloids and the bottom gold plate, which corresponds to 
the excitation of the localized surface plasmons and the (lowest transverse) magnetic plasmon cavity resonances 
identified by the magnetic field distribution shown in Fig. 2(g). Such electric and magnetic field distributions 
imply that the optical field was mostly confined within the region occupied by the lossless dielectric PS colloids, 

Figure 1. A broadband photonic-plasmonic absorber and its optical absorption. (a) SEM image (scale bar: 
2 μ m) of a randomly patterned gold-capped PS microsphere monolayer on a 150 nm-thick gold back-reflector. 
Here, the diameter (d) of the PS microsphere is 1.019 μ m and the nominal thickness (t) of the gold cap is 
20 nm. The inset is a cross-sectional SEM image of an individual element. Schematic of a unit super-cell in the 
randomly organized microstructure (b) from the digitized SEM image framed by the white box in a) and that 
of the periodic gold-capped PS microsphere array (c). Measured (d) and calculated (e) absorption spectra for a 
random plasmonic-photonic absorber (red curve) and for a periodic absorber (green curve). The blue curve in 
(e) is the calculated absorption of the unit super-cell shown in (b) using scattering boundary conditions.
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confirming the strong light confinement capabilities of our proposed microstructure for photon management in 
energy efficiency.

By patterning these individual gold-capped PS microspheres in a dense ensemble with an HCP lattice on the 
thick gold back-reflector, the topology of this periodic microstructure allows for effective diffractive coupling 
of incident light, routing it into the in-plane propagation modes. It is worthwhile to note that a ~20 nm-thick 
gold semi-shell could lead to an electrically connected corrugated metal film on the surface of the 2D HCP PS 
microsphere array and consequently form a quasi-3D plasmonic-photonic crystal51,52. As such, the domination 
over the features of the sharp absorption peaks, as shown in the green curves in Fig. 1(d and e), was actually the 
consequence of the excitation of coupled Bloch eigenmodes, which are either guided in the 2D PS microspheres 
array slab due to the refractive index contrast or are bound at the interface of the gold semi-shell arrays and the 
gold bottom film as propagating surface plasmons modes49,53,54 (see corresponding electric field distributions in 
Supplementary Fig. S2). When the gold-capped PS microsphere monolayer is randomly distributed over the gold 
reflector, these Bloch eigenmodes are suppressed by the lattice disorders. In this case, for an ensemble of micro-
cavities, resonances of an individual hybrid cavity must be strongly influenced by electromagnetic interactions, 
including near-field coupling of nearly physically touching cavities, due to the nature of the leakage of the cavity 
resonances and far-field interactions mediated by the scattered light field of the individual resonator, which even-
tually leads to a spectral feature with relatively broad bandwidth, shown as the red curves of the measured and 
simulated results in Fig. 1(d and e).

By tuning the structural parameters of our proposed plasmonic-coupled microcavities, the spectral response 
can be calibrated to a desired wavelength band, and the optical absorption efficiency can also be optimized 
accordingly. In Fig. 3(a), the measured absorption spectra are plotted for the random hybrid plasmonic-photonic 
microstructures made up of 1.019 μ m and 1.587 μ m PS microspheres with a 20 nm-thick gold-cap coating. The 
absorption curves are normalized to the diameters of the PS microspheres and indicate that the wavelength of 
the absorption band can be effectively tuned by changing the diameters of the PS microspheres, regardless of the 
materials dispersion of the gold. On the other hand, the varying nominal thickness of the gold on each PS micro-
sphere will also have a pronounced effect on the optical properties (see Supplementary Fig. S3), which might be 
the major cause of the small shift in the normalized absorption spectra of samples with different-sized PS micro-
spheres despite the gold cap being the same thickness (t). In addition, for the random hybrid plasmonic-photonic 
absorber, the numerically estimated energy trapped in PS microspheres (wps) compared with that trapped in 
the whole microstructure (wtotal) as a function of normalized wavelength is shown as a black line in Fig. 3(a). 
Constructing maps of electric field distributions can provide more insight into the nature of the absorption pro-
cesses of this random microstructure. As shown in Fig. 3(b–d), the simulated electric field distributions along the 
grey plane of the schematic super-cell of our absorber (inset in Fig. 3(a)) are plotted for three absorption bands at 
normalized wavelengths (λ/d) of 0.91, 1.08, and 1.34. Clearly, a considerable amount of energy is trapped in the 
lossless dielectric microspheres, especially when these resonant absorption modes are excited.

Ultra-broadband plasmonic-photonic absorber based on the mixture of different-sized 
micro-resonators. So far, we have demonstrated that the random microstructure, which possesses a 
weak spatial correlation of the position of the metal-capped PS microspheres, can result in a broadband opti-
cal response instead of exhibiting sharp spectral features. From the point of sample preparation, however, the 
monodispersed microspheres prefer to self-assemble via an entropy-driven process into an ordered array with 
the HCP lattice. Mixing colloidal suspensions of different-sized PS microspheres is an effective way to introduce 
a certain type of disorder into the self-assembly process. Figure 4(a) demonstrates the SEM image of a resultant 

Figure 2. Calculated absorption properties of a single gold-capped PS microsphere on a metal back-
reflector. (a) Schematic of the calculation model for a single gold-capped PS microsphere on gold back-
reflector with the same geometrical parameters as above. The magnetic field (H) of the incident plane wave is 
perpendicular to the incident plane (yoz), which represents TM incidence. (b) The simulated absorption cross-
section (σ/σ0) as a function of the incidence wavelength under normal incidence, and (c) the incident angle (θ) 
dependence of the absorption cross-section for this single resonator. (d–g) The calculated electric/magnetic 
field distributions for the cross-section of the gold-capped microsphere (along the yoz plane) at wavelengths 
λ1 =  0.950 μ m, λ2 =  1.210 μ m, and λ3 =  1.365 μ m at normal incidence, respectively.
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Figure 3. Scalability of the absorption of the randomly microstructured plasmonic-photonic absorber. 
(a) The measured absorption spectra of a randomly microstructured plasmonic-photonic absorber made of 
1.587 μ m (red curve) or 1.019 μ m (purple curve) diameter PS colloids as a function of normalized wavelength 
(λ/d), and the numerically estimated spectral energy density in the PS microsphere (black curve). (b–d) The 
calculated electric field distributions along the grey plane of the schematic super-cell of the absorber (inset in 
(a)) for three typical absorption modes at normalized wavelengths of 0.91, 1.08, and 1.34, respectively. All the 
color field maps use the same linear scale.

Figure 4. Ultra-broadband plasmonic-photonic absorber based on a mixture of gold-capped PS colloids 
with diameters of 1.019 μm and 1.587 μm. (a) Top-view SEM image of a large-area plasmonic-photonic 
absorber. The top panel contains schematic and cross-sectional SEM images of the sample, and the white 
box corresponds to a stochastic region used as a unit super-cell for numerical simulation. (b) Measured light 
absorption spectrum of the absorber under an incident angle of 8° and the simulated absorption spectrum 
under normal incidence. (c) Measured absorption spectra of the hybrid plasmonic-photonic microstructure as 
a function of the polarization angle with 8° incident angle. (d) Incident angle dependence of absorption spectra. 
(e–i) The calculated electric field distributions of five absorption bands centered at the wavelengths marked  
in (b).
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random gold-capped colloid monolayer on a gold back-reflector prepared by mixing equal volumes of aqueous 
suspensions of PS colloids with diameters of 1.019 μ m and 1.587 μ m, which have the same solid concentration of 
1 wt. %. More importantly, broadening of the absorption band is expected because of the blending of the optical 
resonant modes arising from the different-sized micro-resonators. As shown in the red curve in Fig. 4(b), the 
plasmonic-photonic absorber composed of the two sizes of PS microsphere presents a measured ultra-broad 
absorption band from approximately 0.9 μ m to 2.2 μ m with average absorptivity higher than 90%. The numerical 
simulation, shown as the blue curve, was performed using periodic boundary conditions on a relatively large 
complex unit super-cell, which was obtained from a digitized SEM image stochastically framed by the white box 
in Fig. 4(a). Although the measured spectrum looks smoother and with higher absorptivity because the simu-
lation model is somewhat inconsistent with the real random, dense microstructure, the simulated absorption 
spectrum almost faithfully reproduces the main features of the measured spectrum. Analysis of the electric field 
distribution suggests that the ultra-broadband unity absorption of our microstructure originates from blending 
and coupling effects of the resonant modes supported by the neighboring different-sized gold-capped PS micro-
spheres. Along the vertical cross-section marked in the inset of Fig. 4(b), the simulated electric field distributions 
specific to five typical absorption peaks at the wavelengths of (i) 0.94 μ m, (ii) 1.14 μ m, (iii) 1.29 μ m, (iv) 1.47 μ m,  
and (v) 2.04 μ m are summarized in Fig. 4(e–i). Each absorption peak corresponds to the excitation of localized 
optical modes confined by different-sized resonators, such as the plasmonic-coupled FP-like modes and the mag-
netic plasmon cavity modes, as well as the corresponding couplings. Clearly, some absorption peaks (marked as 
(i)-(iii) and (v)) are the contributions of the resonant modes excited coincidently in both different-sized reso-
nators. The others, like absorption peak (iv), are attributed to the optical excitation of only one resonator, while 
the other resonator is off resonance. It follows that the total absorption bandwidth can be effectively widened by 
properly selecting the diameters of the dielectric colloidal microspheres, and in principle, this ultra-broadband 
light trapping could be easily scaled down to the visible regime by utilizing the monolayer of mixed gold-capped 
colloids with combinations of two small, different-sized PS microspheres with suitable particle size ratios and 
optimized nominal gold-cap thickness (see Supplementary Fig. S3). Due to the highly symmetric configuration 
of the microsphere itself41 and the randomness of the structure, the resonant broadband absorption is expected 
to be polarization-independent under near-normal incidence, which is illustrated by the measured absorption 
spectra as a function of both polarization angle and wavelength in Fig. 4(c). We conducted additional studies 
to investigate the incident angle dependence of our proposed ultra-broadband light absorber. The absorption 
spectra with different incident angles (θ, as shown in Fig. 1(c)) have been experimentally studied, as shown in 
Fig. 4(d), and overall, the ultra-broadband absorption with high average absorptivity (above 90%) is maintained 
even at large incident angles of up to 50°. This is also a significant achievement for our random microstructure 
absorber, owing to the nature of the localized resonances and the corresponding coupled modes excited in the 
plasmonic-photonic microstructure39,40.

In addition, we studied the evolution of the absorption spectrum by changing the mixture ratio (f), which 
was defined as the mixture volume ratio of the 1.019 μ m-diameter PS colloid suspension (Vsmall_PS, 1 wt. %) to the 
1.587 μ m-diameter PS colloid suspension (Vlarge_PS, 1 wt. %). When f was increased from 1/3 to 1/2, 1/1, 2/1 and 
3/1, modification of the absorption spectrum is clear, as shown in Fig. 5. For instance, for the as-prepared sam-
ple with f =  1/3 (or 3/1), the shape of the absorption spectrum is very similar to that of the random single-sized 
absorber made of 1.578 μ m (or 1.019 μ m) PS microspheres only; this is mainly the result of the PS microsphere 
with the dominant quantity in this plasmonic-photonic absorber with two sizes of PS microspheres (as the SEM 
images show in the right column of Fig. 5). A flat and ultra-broad high absorption band could be achieved when 
f was optimized to 1/1. However, taking the cases of f =  1/2 and 2/1 into account, the absorption spectra only 
show minor variations in the spectral line shape in the case of f =  1/1, which implies that the ultra-broadband 
light absorption could be obtained in an appropriate range of fluctuant mixture ratios. This feature indicated an 
excellent fault tolerance for the fabrication of our proposed random plasmonic-photonic microstructure to realize 
an ultra-broadband high optical absorption for practical applications.

Conclusion
In summary, we demonstrated a novel 2D hybrid plasmonic-photonic absorber by randomly patterning a mon-
olayer of single-sized metal-capped dielectric microspheres on a metal film. The experiments and numerical 
simulations show that the random spatial arrangement of the metal-capped microspheres greatly broadened 
the absorption band. The dependence of the resonance on the geometries of the microstructure provides free-
dom in the design of specific wavelengths and improving the absorption efficiency. The wideband near-unity 
absorption mechanism can be inferred by the simulated field distributions, in which it is very clear that a much 
stronger photonic density of states is confined in the lossless dielectric region. To expand the absorption band-
width further, two different-sized metal-capped dielectric microspheres were mixed into a densely packed mon-
olayer on metal film. By properly selecting the sizes of the microspheres and optimizing their mixture ratio, 
an ultra-broadband near-unity absorption for the target wavelength was achieved, owing to the effective mode 
blending and coupling effects. This ultra-broad absorption band demonstrated a perfect desirable optical trapping 
in dielectric region and slight dispersion for incident angles over a wide angular range of 50° while maintaining 
an average measured absorption greater than 90%. This work provides a facile and cost-effective strategy to fab-
ricate an ultra-broadband hybrid plasmonic-photonic perfect absorber composed of a very large area of complex 
non-periodic array of scatterers. Its merits include simple technical requirements, low-cost, large area, high repro-
ducibility, and easy scalability, making the ultra-broadband light absorber demonstrated here an outstanding 
candidate for applications in energy harvesting, biology and optical storage.
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Methods
Fabrication of samples. Fabrication of hybrid plasmonic-photonic microstructures began by evaporating 
a 150 nm gold layer onto a clean quartz substrate. An ion-beam coater (IBC Model 682, Gatan Corp.) was used 
to deposit the gold layer with the desired thickness under a vacuum of 5 ×  10−6 Torr (1 Torr ≈  133 Pa) at a rate 
of 0.66 Ås−1. The obtained quartz glass coated with the gold layer was soaked in a 20 mM 3-mercapto-1-pro-
panesulfonic acid, sodium salt HS-(CH2)3-SO3Na water solution overnight, forming a monolayer of hydrophilic 
molecules on the gold surface46. Aqueous suspensions of the colloid mixtures with different volume ratios were 
then injected into a cell formed by sandwiching a U-shaped enamel-wire spacer (1 mm in diameter) between the 
gold-coated quartz substrate and another clean quartz slide. All the PS colloids used in our experiments were pur-
chased from Duke Corp. After drying in air (controlling the evaporation rate of the suspension under ultrasonic 
disturbance) at room temperature, densely packed colloid monolayers were grown on the metal-coated quartz 
substrate based on to capillary force of the cell48. Finally, thin gold layers were sputtered onto the microsphere 
monolayers. For comparison, we also fabricated the periodic plasmonic-photonic microstructures that were com-
posed of 2D colloidal crystals with a perfect HCP lattice using our well-developed self-assembly method40.

Optical measurements. The reflectivity and transmission were measured using a customized FTIR spec-
trometer (Nicolet 5700). For oblique incidence measurements, the samples were mounted on a home-made 
variable-angle reflection accessory to collect the angle-resolved reflectivity in 2° increments to a maximum 
incident angle of 50°. In each case, the reflectivity was determined by comparing the measured values to the 
reflectivity of a gold mirror, which acted as a reference. The optical spot size of the incident beam on the sample 
was approximately 0.8 mm. Polarization-dependent measurements were performed with an adjustable polarizer. 
Sample structures were characterized by SEM (FEI Philips XL-30).

Numerical simulations. Three-dimensional numerical simulations were performed using a commercial 
software package (COMSOL Multiphysics) based on the finite-element method. The maximum mesh sizes of the 
gold layer, PS, and air were set to 13.5 nm, 90 nm and 150 nm, respectively. The periodic boundary conditions 
were adopted in the x and y directions for the periodic metal-capped PS microsphere simulations. A perfectly 
matched layer condition was imposed at the boundaries along the z-axis. The relative permittivity of gold was 
described by the Drude mode, ε ω ω ω ω= − + i1 /[ ( )]Au p c

2 , with the plasma frequency, ωp =  8.99 eV, and the 
collision frequency, ωc =  0.0269 eV43,45. The refractive index of the PS was taken as 1.5945. The absorption (A) was 
deduced by recording the reflected and transmitted fluxes, R and T. Because of the presence of the optically 
opaque gold back-reflector, there was no light transmitted through the sample, and thus the absorption satisfies 

Figure 5. The spectral absorption evolution of the disordered microstructures in the volume mixture ratio 
(f = Vsmall_PS: Vlarge_PS) of colloidal suspensions containing PS microspheres of 1.019 μm and 1.587 μm in 
diameter. Left column: f is increased from 1/3 to 1/2, 1/1, 2/1, and 3/1. The nominal Au layer thickness is kept at 
t =  20 nm, and the spectra are sequentially offset by 0.5 for clarity. Right column: the corresponding SEM images 
of the 2D plasmonic-photonic microstructure corresponding to different values of f. All scale bars represent 2 μ m.
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the relation A = 1 − T − R = 1 − R. The proper energy density that accounted for the energy stored in the 
non-magnetic materials where the permittivity was dispersive and absorptive could be derived by Ruppin’s for-
malism, ε′ + +ε ωε

γ

µ″( ) E H
4

2 2
4

20 0 , where ε ′ and ε ″ represent the real and imaginary parts of the dielectric 
permittivity of the materials and γ is the damping frequency55.
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