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There is growing evidence that chronic inflammation plays a role in both the development and progression of diabetic retinopathy.
There is also evidence that molecules produced as a result of hyperglycemia can activate microglia. However the exact contribution
of microglia, the resident immune cells of the central nervous system, to retinal tissue damage during diabetes remains unclear.
Current data suggest that dysregulated microglial responses are linked to their deleterious effects in several neurological diseases
associated with chronic inflammation. As inflammatory cytokines and hyperglycemia disseminate through the diabetic retina,
microglia can change to an activated state, increase in number, translocate through the retina, and themselves become the producers
of inflammatory and apoptotic molecules or alternatively exert anti-inflammatory effects. In addition, microglial genetic variations
may account for some of the individual differences commonly seen in patient’s susceptibility to diabetic retinopathy.

1. Introduction

It is generally acknowledged that central nervous system
(CNS) disorders involve microglial activation and that pro-
gression and resolution of many diseases depend in part
on the actions of microglia. As resident inflammatory cells
of the CNS, microglia potentially modulate inflammatory
processes. However, microglial functions do not happen in
isolation, but in concert with the activities of neurons, glial,
and vascular cells. Diabetic retinopathy (DR) is the leading
cause of vision loss in individuals 20-75 years of age. It
remains a frightening prospect to patients and physicians as
the cause(s) remain unclear. While DR has been described
classically as a microvascular disease, recent evidence sug-
gests that changes to retinal microglia are an early feature of
retinopathy [1-6]. Clinically, DR is classified as nonprolifer-
ative (NPDR) and proliferative diabetic retinopathy (PDR).
NPDR exhibits damage to retinal vasculature, leaky blood
vessels, and associated mobilization of blood components
into the retina. Proliferative DR associates with growth of
blood vessels on the surface of the retina. Although diabetic

macular edema (DME) can cause vision loss in both NPDR
and PDR, the severe angiogenesis in proliferative disease
can result in retinal detachment with a potential to cause
total blindness. The loss of retinal neurons and the loss
of contrast sensitivity in diabetes have only recently been
described [1-9]. The study of microglia at different stages of
diabetes, and its interaction with peripheral leukocytes and
retinal cells, is crucial to provide insights into mechanisms of
damage and repair. The use of genetic and induced models
of diabetes, in combination with histochemical and imaging
approaches, has provided instrumental information in the
role of microglia during retinal diseases. Understanding the
role of microglia in the diabetic retina is essential in com-
prehending the inflammatory components during disease
progression.

1.1 Microglial Phenotypes. Immune surveillance is the most
common function associated with microglia during healthy
and diseased states. Several studies have elegantly shown
that microglia are continuously surveying their microen-
vironment by extending and retracting their highly motile
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TABLE 1: Distribution of microglia and macrophages in retinal layers.

Location NFL GCL IPL INL OPL ONL PR SS RPE CHD SCL
Vascular network X X X X X X
Early MG X X
Adult MG X X X X
Inflammation

MG X X X X X X X X

Macrophages X X X X X

Key: MG: microglia; OPL: outer plexiform layer; ILM: inner limiting membrane; ONL: outer nuclear layer; NFL: nerve fiber layer; PR: photoreceptor layer;
GCL: ganglion cell layer; SS: subretinal space; IPL: inner plexiform layer; RPE: retinal pigment epithelium; INL: inner nuclear layer; CHD: choroid; and SCL:

sclera.

Based on findings from human, primate, rats, mice, and quail retinas. Adapted from Boycott and Hopkins, 1981, cited by Chen et al., 2002 [10], Santos et al.,

2008 [11], Cuadros and Navascués, 1998 [12], and Tan et al., 2012 [13]

processes [14, 15]. This property is critical to elicit prompt
responses to injury or infection. Hanisch and Kettenmann
hypothesize that microdamage in the brain such as microa-
neurism or the incipient demise of a single neuron can be
monitored and repairs can be initiated without triggering
a more massive activated state [16-18]. Phagocytosis of
cellular debris is an important task of microglia and is
tightly linked to their immune surveillant behavior. The
activation of microglia in response to neural damage involves
proliferative, morphological, immunoreactive, and migratory
changes [14, 19, 20]. Studies have suggested that the severity
of the microglia response is dependent on the gravity of the
neural damage; additionally, the microglia response can be
either neural-protective or toxic [16, 21-28]. Graded changes
in the morphological appearance of microglia are often
used to distinguish surveillant or highly ramified microglia
from activated or amoeboid microglia. The amoeboid state
refers to cells with larger cell bodies and thicker processes
and is usually correlated with activation of microglia in
response to CNS insults such as autoimmune inflammation,
neuronal injury, cancer, infection, or hyperglycemia. In the
retina, under normal conditions, surveillant microglia are
localized to the inner and outer plexiform layers and are
absent from the outer nuclear layer (Table 1) [10, 29]. Reti-
nal microglia activation correlates with neuronal damage
induced by retinopathies such as autoimmune reactions, ocu-
lar infections, ischemia, neural injury,and cytokine exposure
but direct evidence of microglial mediated neurotoxicity is
missing [30]. Interestingly, during normal CNS development,
microglia possess an amoeboid morphology and as microglia
become mature they transition to a ramified form [31]. How-
ever, there are instances in which microglial activation occurs
without evident cellular transformation. For example, low
doses of systemic lipopolysaccharide (LPS) induce the pro-
duction of proinflammatory cytokines without any apparent
change in microglial morphology [32]. Therefore, microglial
responses are shaped by an arsenal of signal transduction
pathways that lead to an effector phenotype associated with
neuroprotection or neurotoxicity. Disregulated microglial
responses could be the result of a triggering receptor or the
loss of a constitutive inhibitory signal [33, 34]. Ultimately,
the balance between these contrasting outcomes guides tissue
repair or exacerbates injury.

1.2. Hyperglycemia, Inflammation, and Microglia. It has been
suspected that chronic inflammation played a role in DR
since 1964 when Powell found that high dose aspirin used
to treat rheumatoid arthritis was also helpful in treating
DR [35]. Several molecular changes associated with chronic
inflammation have been detected in the diabetic retina and
there is growing evidence that this plays a role in both
the development and progression of DR [36-38]. Various
mechanisms including ischemia, hypoxia, hyperglycemia,
dyslipidemia, advanced glycation end products (AGE), and
endoplasmic reticular (ER) stress have been hypothesized
to contribute to the inflammatory component of DR [39,
40]. Chronic inflammation has also been linked to diabetic
nephropathy and peripheral neuropathy [37]. Since there is
significant evidence that chronic inflammation plays a role in
diabetic retinopathy and microglia are the resident immune
cells in the retina, it is likely that unleashed microglial
activation may play a role in the neurotoxicity and tissue
damage in the diabetic retina. Microglia may function in
acute inflammation protecting the CNS, but have also been
linked to deleterious effects on the CNS when they exhibit
chronic inflammation in diseases such as HIV, multiple
sclerosis, and Alzheimer’s [41]. Yang et al. defines DR as
a “chronic, low-grade inflammatory disease of the retina”
[42]. Since inflammatory conditions present in diabetes can
activate microglia, they further state that “activated microglia
thereby stimulate a cycle of inflammation that recruits leuko-
cytes, causes vascular breakdown, and directly induces glial
dysfunction and neuronal cell death through the release of
cytotoxic substances” [42].

It is well established that hyperglycemia results in
increased cellular oxidative stress. This can be either through
(1) direct generation of reactive oxygen species (ROS),
(2) alteration of the oxidation-reduction balance, that is,
increase of polyol pathway flux reducing NADPH reservoirs
and/or conversion of oxidized glutathione to glutathione, (3)
increase of AGE formation, protein kinase C (PKC), or (4)
superoxide overproduction by the mitochondrial electron
transport chain [43-45]. It is also known that hyperglycemia
induced ROS can cause nuclear factor kappa B (NF-xB)
translocation to the nucleus [46, 47]. Many of these pathways
work to elevate NF-«xB, which when activated produces
many inflammatory cytokines including tumor necrosis
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factor alpha (TNF-«), interleukins 1 beta, 6, and 8 (IL-1f3,
IL-6, IL-8), vascular cell adhesion molecule 1 (VCAM-1),
and intercellular adhesion molecule 1 (ICAM-1) [43, 48-
50]. Wautier et al. found increased AGE formation on the
erythrocytes of human subjects with diabetes, which, when
cultured with human umbilical cord endothelial cells, caused
an increase in the generation of ROS and activation of NF-
xB. This increase in ROS was reversed by antioxidants [46,
51, 52]. Such soluble mediators have the potential to activate
perivascular microglia [50]. Furthermore, it is known that
AGE concentration increases in the retina during diabetes
[50, 53]. Wang et al. found that AGE exposure activated
microglia, as measured by NF-«B translocation, increased
ROS production and promoted TNF-a mRNA production
and release of TNF-a from retinal microglia [50]. The
increase in ROS can also locally damage vessels. TNF-«
was found to enhance the expression levels of adhesion
molecules such as ICAM-1 and VCAM [54]. Therefore,
TNF-a production may trigger leukocyte infiltration to
retinal vessels with resulting vascular inflammation [50].
The breakdown of the blood-retinal barrier (BRB) is an
early development in the progression of DR [55]. This
leads to increases in AGE concentration throughout the
retina, resulting in vessel and neuronal damage [50, 55].
Increased exposure of inflammatory agents, such as AGE to
the microglia, as a result of early BRB breakdown, results
in activation of perivascular microglia. This activation leads
to a release of microglial products further breaking down
the BRB and an increase in retinal chronic inflammation
[50, 56, 57]. However, the contribution of hematogenous
cells such as neutrophils, T cells, or B cells is still yet to be
determined.

As previously mentioned nonenzymatic glycoxidation
of proteins, AGE formation, is elevated in oxidative stress
including diabetes [46, 58]. AGE formation involves the irre-
versible glycation of long-lived tissue proteins which can alter
their conformations and their physiological functions [59].
The receptor for AGE (RAGE) is a member of the cell surface
molecule immunoglobulin superfamily which responds to
multiple ligands including AGE, amyloid, amphoterin, and
S$100/calgranulins. The receptor tends to accumulate where
the concentration of its ligand is the highest and contains a
short cytosolic tail, which appears to be crucial for cellular
activation, and therefore has important functions in signal
transduction. Leakiness in bovine aortic endothelial mono-
layers induced by diabetic red cells and blood brain barrier
vascular permeability in streptozotocin-induced (STZ) dia-
betic rats was reduced by inhibiting the AGE-RAGE inter-
action using either anti-RAGE antibody or soluble RAGE
(sRAGE) which lacks the transmembrane portion [46, 52].
This permeability was also blocked with the antioxidants
vitamin E and probucol [52]. Wautier et al. report that AGE-
RAGE binding generates ROS through activation of NADPH
oxidase [60]. Furthermore, RAGE expression has been found
in microglia [61, 62]. Wong et al. report that AGE-RAGE
induces microglial activation and oxygen free radicals serve
as second messengers in AGE-RAGE inflammatory signal
transduction pathways [63]. AGE-RAGE interactions have
been linked to tumor angiogenesis. Thus, it is reasonable that

3
TABLE 2: Distribution of microglia in healthy eyes [64].
Retinal Inner retinal Perivascular
parenchyma layers space
CD-45 X X
CD-68 X
HLA-DR X X

RAGE-mediated cellular interactions of chronic inflamma-
tion and angiogenesis render tissues susceptible to diabetic
complications [46].

2. Microglia in Human and Animal Models of
Diabetic Retinopathy

2.1. Histopathological Evidence of Microglial Involvement in
Diabetic Retinopathy. Microglia activation in different forms
of DR has been studied in healthy controls and DR [64].
Microglia labeling with antibodies against human microglial
markers CD45, CD68, and HLA-DR, a major histocompat-
ibility complex II antigen, was evaluated in individuals with
no diabetes (Table 2), background (Table 3), pre-proliferative
(Table 4), proliferative DR (Table 5), and diabetic macular
edema (DME) [64]. Microglia were generally increased
in number (proliferation) and in size and found mainly
associated with retinal vasculature, dilated veins, cotton-
wool spots, and around microaneurisms in the inner retina.
The eyes with proliferative retinopathy had an increase in
activated microglia in the ganglion cell layer (GCL) and
the neovascular area of the vitreous. In the DME eyes,
proliferated microglia were found throughout the retina and
subretinal space [64].

2.2. Morphological and Molecular Studies of Retinal Microglia
in Various Animal Models of DR. Zeng et al. using STZ-
induced diabetic rat model propose an association between
microglia and neuronal cells [6]. After 1 month of diabetes
symptoms, microglia appeared hypertrophic and their num-
bers had increased significantly. Interestingly the number of
microglia peaked at 4 to 6 months in the inner plexiform layer
(IPL) coinciding with the decrease in the number of neuronal
cells. Additionally, microglia were observed in the outer
plexiform layer (OPL) at 4 months, but at 14-16 months, acti-
vated microglia were observed also in the outer nuclear layer
(ONL) and photoreceptor layer (PRL) of the outer retina. The
authors suggest that these microglia were attracted to these
areas by damage to neuronal cells and photoreceptors, respec-
tively. Initial signals eliciting microglial activation within the
inner retina were likely from cell death in the nerve fiber layer
(NFL) and inner nuclear layer (INL) [6]. Also the activation,
proliferation, and trafficking of microglia in both the inner
and outer retina in the Goto-Kakizaki rat model (GK) has
been reported [65]. Interestingly, Omri et al. found the devel-
opment of transcellular pores lined with occludin, caveolin-
1 (CAV-1), and protein kinase C zeta (PKC () in RPE cells
which reached a maximum at 6 months of hyperglycemia in
streptozotocin (STZ) induced diabetic mice. By 12 months the
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TaBLE 3: Distribution of microglia in background diabetic retinopathy [64].

LM RNFL GCL IPL INL OPL ONL OLM PR RPE L[ndo ppyy  Fresh Arterioles o, jlaries  Retinal
cell heme/MA venules parenchyma
CDh-45 X X X X X X X X
CD-68 X X X X X X X X
HLA-DR X X X X X X X X X X X X X
ERM: Epi-rental membrane.
TaBLE 4: Distribution of microglia in preproliferative diabetic retinopathy [64].

ILM RNFL GCL IPL INL OPL ONL OLM PR RPE Cottonwoolspots Dilated venules Pial septa ONH
CD-45 X X X X X X X X
CD-68 X X X X X X X X
HLA-DR X X X X X X X X

ONH: Optic nerve head.

number of pores is reduced in diabetic mice, but increased
non-diabetic controls. Interestingly, this reduction correlated
with an increased population of microglia/macrophages in
the outer retina and also with microglial migration through
a disorganization of the intracellular RPE tight-junctions.
Rhodamine-liposomes were injected in the vitreous helping
to identify microglial migration through the retina into the
choroid. A PKC inhibitor reduced accumulation of microglia
and macrophages, implicating PKC { as a factor in the
diabetic retina and suggests that manipulation of microglia
activity might be therapeutic in the treatment of diabetic
retinopathy. Furthermore, while retinal microglia express
MHC class II markers and ramified microglia have many
features similar to ocular dendritic antigen-presenting cells
(APCs), there remains doubt as to whether they can function
as antigen presenting cells [10, 66, 67].

The cooperative function of microglia and hematogenous
macrophages was defined more recently in the removal of
dead photoreceptors resulting from light damage in sus-
ceptible (albino) mice models. Joly et al. exposed mice
injected with green fluorescent protein (GFP) positive bone
marrow cells or GFP-labeled microglia to focal blue light
[68]. Blood borne macrophages entered the retina via the
optic nerve and ciliary body and migrated to the damaged
area. Resident microglia were activated throughout the retina
but assumed the phagocytic phenotype only at the site of
photic injury. The macrophages, which had ingested debris,
including rhodopsin from photoreceptor outer segments,
were observed to leave the retina via the optic nerve head. The
authors suggest that the departing macrophages could reach
the spleen and raise an immune response against specific
retinal proteins.

The role of microglia in initiating chronic neuroinflam-
mation in the diabetic retina has been recently reviewed
by Abcouwer [69]. Once activated, microglia can assume
any of the several phenotypic states, some inflammatory,
others anti-inflammatory. In diabetic retinas, macrophages of
hematogenous origin are also present in damaged portions of
the retina. Future research should aim to distinguish the rela-
tive importance of these two retinal monocytic populations in

the chronic inflammatory response to diabetes. Therapeutic
approaches to diabetic inflammation and homeostasis could
employ signals to modify microglial and/or macrophage
function.

3. Molecular Mechanisms Linking
Hyperglycemia and Microglial Activation

3.1. Classic Molecular Mechanisms. Cytokines considered
markers of inflammation in DR include TNF-«, IL-1, IL-
6, IL-8, CRP, and chemokine (C-C motif) ligand 2 (CCL2).
These cytokines are produced chiefly by activated immune
cells, although resident glial cells such as astrocytes have the
potential to also secrete a wide array of chemokines [37, 70].
Cyclooxygenase (COX) enzymes whose end-products are
prostaglandins, thromboxanes, and leukotrienes have also
been associated with DR [37, 71, 72]. In fact, thromboxanes
and prostaglandins have been associated with the develop-
ment of angiogenesis [37, 71, 73].

It is well known that elevated levels of IL-1, IL-6, gamma-
interferon (y-IFN), and TNF-« cytokines activate microglia
[56, 74]. Zorena et al. report that higher than normal serum
levels of CRP, IL-6, and TNF-a have been found in children
with type 1 diabetes and NPDR [37, 75]. Several studies have
given conflicting reports over the role of CRP in DR [76-
82]. Correlations to plasma levels of TNF-«, IL-13, IL-8, and
CCL2 and vitreous levels of TNF-«, IL-1, IL-6, IL-8, and
CCL2 have been found for both NPDR and PDR [37, 38,
83-86]. In children and adolescents with type 1 diabetes,
serum TNF-a, vascular endothelial growth factor (VEGF),
AGE concentration, and urinary albumin excretion were all
predictive of retinal microvascular disease [87]. Similarly
Ben-Mahmud et al. found a correlation between the levels
of plasma TNF-a and the degree of DR in patients with
either type 1 and type 2 diabetes [84]. Diabetic retinopathy is
typically treated as a vascular disease, and thus proangiogenic
factors such as vascular endothelial growth factor (VEGF)
have been shown to be elevated in DR rodent models and in
the vitreous of human patients leading to increased leakage
through retinal vascular walls [88, 89].
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TABLE 5: Distribution of microglia in proliferative diabetic retinopathy [64].

ILM RNFL GCL IPL INL OPL ONL OLM PR RPE Neovascularization area of the vitreous Central Kuhnt meniscus ONH

CD-45 X
CD-68 X
HLA-DR X

X X
X X
X X

ONH: Optic nerve head.

TABLE 6: Retinal Cell Cytokines.

Cytokine Condition™ References

11 mimoryeine trested: e medium quantified (ra) Wang et ol 2005 [57]

IL-18 Ex vivo, S'TZ treated; LPS and minocycline treated; Liu et al. 2012 [90, 91]; Yang et al. 2009 [42];
whole retina homogenate (rat) Krady et al. 2005 [56]

IL-3 In vivo, vitreous quantified (mouse) Liu et al. 2012 [90, 91]

1IL-6 In vivo, vitreous quantified (mouse and human) Liu et al. 2012 [90, 91]; Abcouwer 2013 [69]

1L-8 In vivo, vitreous quantified (mouse and human) Liu et al. 2012 [90, 91]; Abcouwer 2013 [69]

IL-10 In vivo, vitreous quantified (mouse) Liu et al. 2012 [90, 91]

IL-12 In vivo, vitreous quantified (mouse) Liu et al. 2012 [90, 91]

IL-18 Ex vivo, STZ treated; whole retina homogenate (rat) Yang et al. 2009 [42]
In vitro, primary microglia culture; LPS and

TNF-« minocycline treated; AGE treated; culture medium Wang et al. 2005 [57]; Krady et al. 2005 [56]
quantified (rat)

TNF-a Ex vivo, LPS and minocycline treated; STZ treated; Yang et al. 2009 [42]; Krady et al. 2005 [56]

whole retina homogenate (rat)

*The condition column represents how cytokine level was quantified, i.e., culture medium collected; whole retina homogenate; or vitreous humor collected

and assayed for cytokine production.

Molecules released by activated retinal microglia include
glutamate, proteases, leukotrienes, IL-1f3, IL-3, IL-6, TNF-
«, VEGE, lymphotoxin, macrophage inflammatory protein 1
(MIP-1), matrix metalloproteinases (MMPs), and other ROS
(Table 6) [56, 57, 92-97]. Glutamate, proteases, leukotrienes,
IL-1B3, IL-6, TNF-«, VEGE lymphotoxin MMPs, and ROS
have all been linked to diabetic retinopathy and a role for
MIP-1, IL-1, and IL-3 in angiogenesis has been established
in ischemic mouse models [56, 85, 98-102]. IL-1f3 is a
trigger of the neuroinflammatory cascade [90, 103]. Wang
et al. found increased production of IL-18, TNF-«, and
nitric oxide (NO) produced into the culture medium by rat
retinal microglia that had been stimulated with LPS [57].
Intracellular calcium levels can regulate release of microglia
inflammatory mediators such as IL-1§3, TNF-«, and NO [104].
De-Oliveria-Simoes-Pereria et al. found that when rat retinal
cells were cultured in high glucose conditions, purinergic P2
receptors in microglia were upregulated, causing a calcium
influx and release of additional microglial and associated
proinflammatory mediators seen in the early stages of DR
[104]. This release of inflammatory mediators and neuro-
transmitters may also contribute to early retinal neuron death
associated with diabetes [104]. TNF-« and IL-13 are known to
increase caspase 3 activity, inducing endothelial cell apoptosis
[40, 105, 106]. Microglia are considered the early primary
source of IL-1 in CNS injury, infection, or inflammation.
Cardona et al. found that systemic inflammation induces IL-
1 as a mediator of microglial neurotoxicity in mice lacking

the inhibitory fractalkine receptor [103, 107]. While Liu et
al. found lack of IL-1f production from brain microglial
cultures in hyperglycemia, Yang et al. found increased retinal
production of IL-18, TNF-«, and IL-18 in hyperglycemic
rats which was reduced with the anti-inflammatory and
suppressor of microglia baicalein [42, 90].

Yoshida et al. found activated NF-«B in pericytes, vas-
cular endothelial cells, macrophages, and microglia in a
C57BL/6N hypoxia-induced mice model of neovasculariza-
tion [49]. They also propose that NF-«b activation is required
for retinal angiogenesis and that inhibition of NF-xb could be
used to ameliorate neuronal cell death in PDR [49]. Inhibition
of NF-«b by the antioxidant resveratrol, a naturally occurring
phenol that increases the action of superoxide dismutase
(SOD), resulted in decreased serum levels of IL-1f3, IL-6,
and TNF-«a. However, the direct correlation between NF-
kb inhibition and neuronal damage has not been addressed
[43, 48].

Microglia in rat retinas become activated soon after
the onset of hyperglycemia and some studies indicate that
inhibition of microglial activation correlates with neuronal
protection in the diabetic retina [2, 6, 56]. Krady et al.
found the microglia at this early stage in the inner retina
become transformed to an activated amoeboid state, with
few or no processes, corresponding to an increase in retinal
expression of IL-15 and TNF-a« mRNA [56]. They found a
6-fold increase in TNF-« mRNA and a 4.5 fold increase in
IL-18 mRNA. Diabetic rats treated soon after STZ injection



with minocycline did not show this increase in IL-13 and
TNF-a mRNA. In addition, in microglial cell culture the
addition of minocycline prevented an increase in the expres-
sion of COX-2 mRNA induction by TNF-« and caspase 3
activation was blocked with a resulting decrease in retinal
neuron death [56]. It is known that minocycline has anti-
inflammatory effects separate from its antimicrobial effects
[108]. Minocycline is a semisynthetic tetracycline derivative
found to cross the blood-brain/retinal barrier and inhibit
microglial proliferation and activation by inhibiting the p38
MAPK pathway [109]. Minocycline inhibits matrix MMPs,
nitric oxide synthases (NOS), COX-2, phospholipase A2, and
(IL-1B-) converting enzyme (ICE) mRNA, each of which is
thought to be produced by activated microglia [109].

Microglia are known to produce COX-2 [56, 110]. As
mentioned earlier, the use of COX inhibitors such as aspirin
in diabetes has had questionable results with the early work
of Powell showing promising results [35, 111]. The Dipyri-
damole Aspirin Microangiography of Diabetes Study Group
(DAMAD) in 1989 found a small reduction in the number of
microaneursyms (MAs) in an aspirin treated group (990 mg
daily), while the Early Treatment of Diabetic Retinopathy
Research Group (ETDRS), in 1991, found no significant
difference (650 mg daily) [112]. ETDRS found no significant
help from aspirin usage in the development of high-risk
DR, the risk of vision loss, or the development of vitreous
hemorrhage [113]. Kern and Engerman found a significant
inhibition in the development of acellular capillaries and reti-
nal hemorrhages in diabetic dogs using 40 mg/kg/day aspirin
(considered the maximum dose for dogs), but insignificant
effect on the number of MAs or pericyte ghosts [111]. Acellular
capillaries lose their pericytes and then their endothelial
cells, leaving empty tubes formed by basement membrane
before eventually losing perfusion [114]. Talahalli et al. found
increased leukotriene production from retinal “glial” cells
only when stimulated by precursor exogenous leukotriene
from bone marrow derived cells. Whole retina lysates from
diabetic mice exhibited significantly more LTA, hydrolase,
which converts leukotriene A (LTA,) to leukotriene B (LTB,),
than nondiabetic mice [115]. Therefore the use of nonsteroidal
anti-inflammatory drugs (NSAIDS) is questionable for long
term management of DR.

The hypothesis that glycated products trigger cytokine
release by microglia and initiate a circle of inflammation is
supported by the following observation. Using STZ induced
diabetic rats, TNF-« colocalized to Iba-1+ microglia but not
to Muller cells or astrocytes [116]. In vitro cultures showed
that TNF-a production was induced by glycated albumin
and cytokine production and blocked by the ERK and
p38MAPK inhibitors [116]. The link between increased TNE-
a serum levels and activation of the glycosylating enzyme
2GlcNac-T provides evidence of the complex pathways
induced by hyperglycemia [99]. The involvement of glycation
and enzyme-mediated glycosylation therefore awaits further
investigation.

The role of NO in the diabetic retina is still not clear.
NO can be generated from L-arginine by catalysis of reac-
tions involving nitric oxide synthase expressed by neurons
(nNOS), endothelial (eNOS), and induced on inflammatory
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cells (iNOS). NO regulates vascular tone and can also react
with superoxide to form peroxynitrate which can damage
proteins, lipids, and DNA. Increased expression of iNOS
has been found in diabetic retinas of human patients and
in rodent models [117]. Blocking iNOS with aminoguani-
dine inhibited AGE formation and decreased hyperglycemia
induced microvascular anomalies in dogs, rats, and mice
[35, 36, 59, 118, 119]. Diabetic iNOS-deficient mice exhibited
decreased capillary degeneration, pericyte ghost, superoxide
production, and reduced leukostasis [117]. Increased eNOS
expression has also been associated with retinal vascular
complication in diabetic mouse models [120]. Therefore, the
effects of iNOS and eNOS in the retina may act synergistically
to promote chemotaxis and tissue damage and may explain
the pathology associated with extravasation in PDR.

3.2. Other Modifiers of Retinal Inflammation. Pigment epi-
thelial-derived factor (PEDF), a protein exhibiting both
antiangiogenic and neuroprotective properties, has been
shown to effectively modulate diabetic retinal complications
such as neurodegeneration, inflammation, and microvascular
insult. Furthermore, when topically applied to Ins2*® mice,
the PEDF peptide PEDF78-121 (P78) prevented microglia
activation and retinal ganglion cell dropout, ultimately lead-
ing to vascular stability. Insulin-2 Akita (Ins2**%) have been
used as a model of type 1 diabetes due to a mutation in the
insulin 2 gene that leads to an abnormal protein structure and
aggregation leading to death of pancreatic beta cells [121]. It
is well established that the Ins2*""* mouse model develops
significant retinal pathology as shown by quantifiable vision
deficits in an optomotor behavior [122]. Several cytokines,
IEN-y, TNF-a, IL-3, IL-6, IL-10, and IL-12, were increased
in the vitreous of diabetic mice (see Table 6). P78 reduced
the quantity of all of these cytokines, while another PEDF
peptide, PEDF60-77 (P60), reduced all but IL-2 and TNF-«
[91].

Among other mediators the chemokine fractalkine
(CX3CLI or FKN) has been shown to modulate microglial
function. FKN exists as a cell membrane-bound or soluble
protein [123]. In the CNS it is constitutively produced by
neurons while its receptor CX3CRI is only expressed by
microglia [107, 124]. FKN and its receptor play an integral
role in the process of both inflammation and neurotoxic
responses [107]. Cardona et al. report that CX3CR1 in vivo
“governs critical components of the microglial response to
systemic inflammation” [107]. Hatori et al. report in cell cul-
ture the application of nanomolar concentrations of soluble
CX3CLl1 to the treating media increases the proliferation of
microglia 3 fold [124]. In addition, a deficiency of microglial
CX3CRI induces neurotoxicity and an increase in inflam-
matory cytokines such as IL-13, IFN-y, and IL-17 [107, 125].
Diabetic mice with microglial CX3CRI1 deficiency exhibit
increased numbers of vitreal and subretinal macrophages and
also showed severe morphological retinal microglial network
abnormalities [126]. While the precise role of CX3CR1 on
the retina remains unclear, four allelic variants of this gene
have been found in 20-30% of the population. One of
these variants, the M280, has been associated with enhanced



Journal of Ophthalmology

susceptibility to age-related macular degeneration (AMD)
[127-129]. Does this variant also result in higher susceptibility
to DR?

3.3. Genetic Variations in Microglial Responses. Gene expres-
sion profiling has offered clues as to the potential regulators
of the effector responses of microglia. Some of the most inter-
esting potential targets are chemokines and other myeloid
specific transmembrane receptors. The team of immunologist
and computational biologist of the Immunological Genome
Project ImmGen) performed gene expression and regulatory
networks analyses in tissue resident macrophages [130]. They
reported a high degree of diversity in gene expression among
dendritic cells and macrophages isolated from peritoneum,
spleen, lung, and microglia. A few of the transcripts that
were upregulated in microglia and linked to diabetes are
discussed. Serpinfl (serpin peptidase inhibitor, clade F) or
PEDF is reported to promote neuronal survival and differ-
entiation and to be a potent inhibitor of angiogenesis [131].
Plasma levels of secreted protein acidic and rich in cysteine
(SPARC) associated with insulin resistance, dyslipidemia,
and inflammation during gestational diabetes mellitus [132].
Since SPARC is a widely expressed profibrotic protein that
modulates tissue physiology by altering cell-extracellular
matrix interactions, it has the potential to mediate microglia
cell proliferation and migration. IL-7r was studied in a
Spanish cohort of patients with type 1 diabetes and the
homozygous IL-7r allele rs1445898 showed a trend towards
a protective effect based on the genotype and an association
to early onset diabetes [133]. The adenosine A3 receptor
(Adora3) binds adenosine, a phosphohydrolytic derivate of
ATP, and mediates microglial migration [134, 135]. Also,
A2A adenosine receptor engagement led to TNF-« release
by retinal microglia, and treatment with A2AAR antagonist
resulted in a marked decrease in diabetes-induced retinal cell
death [136, 137].

In conclusion, the ImmGen study provides novel infor-
mation to further our understanding of microglia regulation
during retinopathies. Several genes have been associated with
susceptibility to eye diseases but how genetic backgrounds
affecting microglia effect functions, neuronal damage, and
inflammation awaits further investigation.

4. The Effects of Diabetes
Treatments on Microglia

The nature of retinal microglia under normal and reac-
tive conditions, and how phenotypic transformations affect
microglia function, is not well understood. Recent studies
have focused on the effects that current therapies such as
laser photocoagulation and growth factor inhibitor injections
have on microglia. In this section we discuss recent findings
regarding the effects of light induced retinal treatments and
the use of anti-VEGF therapy, steroids, and tetracycline
inhibitors.

4.1. Light-Induced Retinal Damage and Laser Photocoagula-
tion. It is known that prolonged exposure to bright light
induces retinal damage and photoreceptor degeneration

[138-140]. However, the effects that light induced photore-
ceptor degeneration has on microglia cells are not well
understood. A study conducted by Santos et al. demonstrated
that microglia were activated in the retina of mice with light
induced photoreceptor degeneration. Microglia were shown
to change from a ramified to an amoeboid morphology and
to migrate from inner retinal layers to the outer nuclear layer.
Additionally, the activated retinal microglia expressed CDI1b,
CD45, F4/80, and SRA consistent with immunophenotypic
activation [141]. Additionally, increases in signal peptides
such as CCL2, MIP-la, and TNF-a have been noted in
a study of light-induced photodegeneration. These signals
or their analogs induce apoptosis of photoreceptor cells in
the ONL [26, 142]. The dynamic activation of microglia in
response to light induced retinal degeneration suggests a
damaging inflammatory response at the photoreceptor cell
layer. However, microglia can also be neuroprotective thus
the nature and function of these cells after light induced
retinal damage remain unclear.

Laser retinal photocoagulation is routinely used in the
clinical setting for treatment of eye diseases such as prolif-
erative diabetic retinopathy. Laser retinal treatment delivers
varied degrees of coagulation through the retinal thickness;
these vary from mild, moderate, or heavy depending on
the retinal layers involved. The objective is to use light
energy to cauterize blood vessels, coagulate tissue to reduce
oxygen consumption, and prevent the formation of new
vasculature and its effects, such as retinal detachment. How-
ever, the effect of retinal photocoagulation on microglia
activation has not been determined. A study using ex vivo
live retinal imaging in conjunction with laser treatments
describes microglial behavior in response to focal retinal
injury. In this study, 50-100 ym photocoagulation injuries
were induced using an argon laser platform in mice retina
explants. Using time-lapse confocal microscopy, microglia
were observed to change from a ramified, symmetrical, and
arbor-shaped cell to a polarized morphology. The microglia
morphology was observed to become less branched and
extended fewer but longer processes toward the site of injury;
these microglia were also reported to acquire migratory drive
toward the injury. Additionally, other activated microglia
were reported to gain an amoeboid morphology and migrate
toward the laser induced retinal injury, and some microglia
were observed to maintain their normal ramified arbor
morphology [143]. The observations in this study suggest that
retinal microglia may be in multiple states of activity and may
transform from being at rest to a dynamic active state after
focal laser treatment.

In a report by Song et al., the activation of microglia and
the intracellular pathways involved in activation were studied
in response to low-level laser therapy (He-Ne 632.8 nm,
64 mw/cm®). Using a tissue culture system, the investigators
showed that low-level laser therapy could activate Src and
may lead to microglial phagocytic activity. Additionally, it is
suggested that activation of Src kinases may downregulate
the expression of proinflammatory cytokines and NO. In this
experiment, low-level laser therapy was delivered to cultured
SH-SY5Y neuroblastoma cells. Thus it is possible, as the
author mentions, that the microglia in the culture system



may have responded to malignancy markers, in addition to
the laser treatment [144]. Thus, to determine the effects of
low-level laser therapy in a more physiological system, future
studies could benefit from the use of primary neuronal or
microglial cultures and in vivo photocoagulation models of
variable degrees.

4.2. Anti-VEGF Injections. It is well documented that block-
ing VEGF has inhibitory effects on neovascularization. How-
ever, the effects that blocking VEGF receptors have on retinal
microglia are not well understood; recently, studies have
begun to elucidate information regarding the control of
microglia infiltration by targeting VEGF receptors. Huang et
al. demonstrated that blocking of the chemoattractant recep-
tors VEGFRI and VEGFR2 reduced microglia/macrophage
infiltration in laser-induced choroidal neovascularization
(CNV) [145]. This report shows that VEGFRI and its endoge-
nous ligands were expressed early in the CNV development
process, while VEGFR2 expression appeared in late stages.
Additionally, blocking of VEGFRI inhibited infiltration of
activated microglia at early and late stages of CNV, while
VEGFR2 was also reported to inhibit microglia infiltration
but only at the late stage of CNV development [145]. This
study suggests a potential use for VEGF receptor blockers and
their inhibition of the microglia inflammatory response as a
therapeutic approach.

4.3. Steroid Therapy. Corticosteroids have potent anti-in-
flammatory effects and have a long history of use in the eye.
Given the apparent role of inflammation in the pathogenesis
of DR and DME, intravitreal steroids have been utilized for
the treatment of DME. The mode of action is unclear, but
it has been suggested to be through multiple mechanisms
including their ability to inhibit expression of VEGF [146,
147]. The effects of steroids on microglia under DR and DME
conditions remain unknown; however, other ocular disease
models are starting to elucidate the effects of intravitreal
corticosteroid delivery on microglia.

For example, in a study focused on N-methyl D-aspartate
(NMDA) induced glaucoma, Singhal et al. observed a reduc-
tion in the number of microglia induced by the loss of
the retina ganglion cells when triamcinolone acetonide (TA)
was used along with the NMDA. Then Muller cells from
the Muller cell line MIO-M1 were transplanted into the
eyes of the glaucoma model. A reduction of transplant
induced activated microglia was observed in eyes that had
been treated with TA [148]. In a separate study, Shen et al.
delivered TA by intraocular injection to a transgenic model
which mimics the type of damage that might occur in AMD
or DR. In this model the results of Muller cell ablation
are retina degeneration with photoreceptor loss, vascular
leaks, and retinal neovascularization. This study reported
that TA prevented photoreceptor degeneration and inhibited
activation of microglial and Muller cells. Additionally, TA
attenuated Muller cell loss and inhibited overexpression
of p75 neurotrophin receptor (NTR), TNF-«, and proneu-
rotrophin (NT) and the activation of p53 and p38/stress-
activated protein kinase (SAPK) signaling pathways. It is
unclear whether TA inhibited these reactions from microglia,
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Muller cells, or both [149]. Treatment with TA also prevented
the development of retinal vascular lesions and inhibited flu-
orescein leakage from established vascular lesions. Further-
more, in a study using retina degeneration model, S334ter-
line-3, the corticosteroid fluocinolone acetonide (FA) was
implanted and delivered to the vitreous. Electrophysiology
results from this study show that the ERG a and ERG b
waves are preserved in experimental eyes over nontreated
controls. The thickness of the ONL was also reported to be
between 22% and 25% higher in the eyes that were treated
with the corticosteroid. Finally, changes in microglia cells
were examined on retinal whole mounts. Activated microglia
were found in the ILM and the photoreceptor cell layer. The
activated microglia count was reported to be 4 times lower in
the FA treated eyes than the control samples [150]. Thus the
effects of corticosteroids on microglia seem to be of those of
an anti-inflammatory agent preventing microglia activation,
attenuation of proinflammatory mediator expression, and
modulation of immune signals. Cortisol is known to reduce
the activated microglial expression of iNOS mRNA as well as
reducing the amount of iNOS, NO, COX-2, and TNF-« [150].
Additionally, corticosteroids have a protective effect, which
may be the result of their ability to attenuate overexpression
of VEGF and transcription factors that regulate proapototic
genes.

4.4. Inhibition of Microglia as a Therapeutic Therapy. Asmen-
tioned previously, the tetracycline derivatives minocycline
and doxycycline have been linked to inhibition of inflamma-
tion and prevention of microglial activation in the retina [56,
151,152]. Recent clinical trials have investigated the inhibition
of microglia as a method to inhibit DR. Cukras et al.
performed a prospective, nonrandomized, and uncontrolled
single center pilot study to evaluate the use of oral minocy-
cline on 5 human subjects with DME that had previously
had focal laser photocoagulation, but in whom DME had
persisted [153]. At six months they found a modest increase
in best-corrected visual acuity (BCVA), a 5-10% reduction in
central subfield retinal thickness (CST) on optical coherence
tomography (OCT), and a decrease in the area of late leakage
on fluorescein angiography (FA) [153]. The authors note that
this improvement, though small, compared favorably with
the control arm of the Ranibizumab in Diabetic Macular
Edema (RESOLVE) study at 6 months [153, 154]. Recently,
Scott et al. performed a randomized, double-masked, 24-
month clinical trial using doxycycline monohydrate orally on
30 patients who had at least one eye with severe NPDR or
PDR eyes rated as ETDRS less than high risk [113, 155]. While
they found no significant difference between those taking the
doxycycline and the control group on white/white visual field
testing, contrast sensitivity, visual acuity, or anatomic factors,
foveal frequency doubling perimetry (FDT) was improved at
6, 12, and 24 months after treatment [155]. Foveal FDT has
been determined to be an accurate measure of inner retinal
function and has high diagnostic test sensitivity for subjects
with NPDR and PDR [156]. However, another randomized,
double-masked, 24-month clinical trial using doxycycline
monohydrate in 33 patients with mild to moderate NPDR
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FIGURE 1: Inflammation during diabetic retinopathy. Increased plasma levels of blood glucose, vascular endothelial growth factor (VEGF),
advanced glycation end-products (AGE), reactive oxygen species (ROS), chemokine (C-C motif) ligand 2 (CCL2), interleukins 1 beta and
8 (IL-1f3 and IL-8), and tumor necrosis factor alpha (TNF-«) profuse through leaky capillary endothelial cell junctions by the actions of
VEGE. IL-183, AGE, ROS, and TNF-« activate microglia to produce glutamate, matrix metalloproteinases (MMPs), nitric oxide synthases
(NOS), IL-1B, and TNF-a. IL-1f and TNF-« drive the production of caspase 3, which along with glutamate is neurotoxic to retinal ganglion
cells. Caspases also damage capillary endothelial cells and pericytes. TNF-« leads to production of ICAM-1 and VCAM that help recruit
macrophages through the capillary walls sustaining a chronic inflammatory response. COX-2 is also a product stimulated by IL-13 and TNEF-

.

reported no significant difference between control and treat-
ment groups using the previously mentioned test including
foveal FDT [113, 157]. Studies with an increased number of
patients may clarify in the future the broad application of
these treatments. Therefore, there is an urgent need to find
additional therapeutic alternatives for the management of
DR.

5. Conclusions and Perspectives

Many have proposed that chronic inflammation, including
cytokine and chemokine release, cell death, increased vascu-
lar permeability, neovascularization, and repair attempts play
arole in DR, not only in early changes, but also during the late
proliferative stage. It is now established that the loss of retinal
ganglion cells occurs early in the DR process. Microglia have
been linked to neuronal loss in several neurodegenerative
diseases by a mechanism of chronic inflammation. Therefore,
it is probable that disregulated microglial activation also
functions in the loss of these retinal cells. We propose that
some of the first signals of hyperglycemia are picked up by
the perivascular microglia from capillary blood or the inner
retinal parenchymal microglia, which are exposed from the
vitreous. This may be either from hyperglycemia itself or from
a systemic deluge of inflammatory cytokines, AGE, or ROS
which have been found to increase in the capillary blood and
vitreous (Figure 1). The effects of VEGF may elevate exposure
to inflammatory mediators in the retinal capillaries. This
leakage leads to microglial activation resulting in production
of glutamate, IL-18, TNF-o, MMPs, and NOS. IL-1f and

TNF-« lead to production of caspase 3, which along with
glutamate, results in neurotoxicity of retinal ganglion cells.
Caspase 3 also can be toxic to retinal capillary endothelial
cells and pericytes. TNF-a leads to production of ICAM-
1 and VCAM, leading to increased leakage of macrophages
through capillary walls, sustaining chronic inflammation.
COX-2 is also a product of IL-1 and TNF-« stimulation.
MMP remodeling of capillary basement membranes can
further play a role in vessel destruction. Activation of NF-xB
as well as its release of inflammatory cytokines is linked to
both early and late stages of diabetic retinopathy. Stages of the
inflammatory pathway mediated through ROS, AGE-RAGE,
NF-«B blockers, or genetic manipulation of fractalkine could
be targeted to reduce chronic activation and retinal translo-
cation of microglia in the diabetic retina.

It has also become obvious that people react differently
to hyperglycemia. Some develop extremely morbid cases of
DR and some seem to go unscathed. It is well established
that control of systemic factors such as blood glucose level
and blood pressure plays significant roles, but genetic factors
likely alter the variability of DR morbidity when systemic
factors seem to be similar. As pointed out in this paper, certain
genetic variations may regulate the microglial responses to
diabetes. Certainly, other yet unknown genetic factors are
likely playing a role in this degenerative process.

Microglial responses to treatment of DR including anti-
VEGF therapies, panretinal photocoagulation, steroids, and
tetracycline derivatives are not yet well investigated but
clearly may play a role in how patients respond to these
treatments. Studies have focused on microglia behavior
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under light-induced retinal damage and laser treatments and
the role that anti-VEGF treatments have on retinal microglia.
Although microglia are activated and migrate toward the site
of insult, the effects of the morphological and phenotypic
changes of activated microglia on the damaged and surround-
ing tissue remain unknown. Additionally, to appreciate the
effects of these treatments on retinal microglia under disease
conditions, the presence of activated microglia due to the
initial insult and prior to treatments should be considered
in future studies. Available studies performed to determine
the effect of anti-VEGF treatments have shown a decrease
in activated microglia due to treatment. However, these
studies have been performed in the absence of diabetic insult.
Retinal photocoagulation has been demonstrated to induce
activation of microglia, but variable phenotypes have been
observed. The roles of the different phenotypes of activated
microglia observed after retinal photocoagulation have yet
to be determined. Additionally, it is good to remember
that the functions of microglia do not happen in isolation
but likely influence and are influenced by neighboring cells
such as astrocytes, neurons, and the blood-retina barrier.
Investigators must determine how DR treatments affect the
actions of microglia and in turn how the actions of microglia
can be modified to enhance the benefits of treatments.
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