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Multiple effect of social influence 
on cooperation in interdependent 
network games
Luo-Luo Jiang1, Wen-Jing Li2 & Zhen Wang3,4

The social influence exists widely in the human society, where individual decision-making process 
(from congressional election to electronic commerce) may be affected by the attitude and behavior 
of others belonging to different social networks. Here, we couple the snowdrift (SD) game and the 
prisoner’s dilemma (PD) game on two interdependent networks, where strategies in both games are 
associated by social influence to mimick the majority rule. More accurately, individuals’ strategies 
updating refers to social learning (based on payoff difference) and above-mentioned social influence 
(related with environment of interdependent group), which is controlled by social influence strength 
s. Setting s = 0 decouples the networks and returns the traditional network game; while its increase 
involves the interactions between networks. By means of numerous Monte Carlo simulations, we 
find that such a mechanism brings multiple influence to the evolution of cooperation. Small s leads 
to unequal cooperation level in both games, because social learning is still the main updating rule for 
most players. Though intermediate and large s guarantees the synchronized evolution of strategy 
pairs, cooperation finally dies out and reaches a completely dominance in both cases. Interestingly, 
these observations are attributed to the expansion of cooperation clusters. Our work may provide a 
new understanding to the emergence of cooperation in intercorrelated social systems.

Understanding the evolution of cooperation through natural selection is one open challenge in biology 
science1, because altruistic behavior seems inconsistent with Darwinian selection theory2. Nevertheless, 
cooperation is ubiquitous in living organisms, from bacterial colonies to animal and human societies3,4. 
Among the existing attempts at constructing a theory of cooperation, evolutionary game theory together 
with its various extensions has played a central role in addressing the aforementioned problem5. A typical, 
simple example is using the prisoner’s dilemma (PD) game as one paradigm, which has attracted great 
attention from theoretical and experimental viewpoints6. In its basic model, two players are required to 
make the simultaneous selection from two strategies: cooperation (C) and defection (D). If both cooper-
ate (defect), they obtain the reward R (punishment P). If, however, one player cooperates while the other 
chooses defection, the latter gets the temptation T and the former is left with the sucker’s payoff S. These 
payoffs satisfy the ranking T >  R >  P >  S and 2R >  T +  S, from where it is clear that defection maximizes 
the individual payoff, irrespective of the opponent’s selection. On the other hand, when T >  R >  S >  P, 
the so-called snowdrift (SD) game, as an alternative, appears, where cooperation-defection pairs quickly 
arise7.

To overcome the unfortunate dilemma, a great number of mechanisms have been suggested to sus-
tain cooperation behavior in evolutionary games2,3. Up to now, the most prominent mechanisms involve 
kin selection8, direct and indirect reciprocity9, group selection10 and network reciprocity11,12. Among 
them, network reciprocity is the most well-known mechanism, which indicates that on the structured 
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populations cooperators can aggregate into compact clusters and so avoid being wiped out by defectors. 
Although the empirical evidence based on economic experiments indicate that it may be compromised or 
fail13, there still exists an ample place to explore how and why spatial structure promotes cooperation14–16, 
especially with the advent of various complex networks, such as small-world17, scale-free18, hierarchical19 
and co-evolving networks20,21. Recent attention has shifted towards interdependent networks22–24, where 
the slight changes on one network layer may cause catastrophic and very much unexpected consequence 
on another network25. Following this discovery, the robustness of such structure has been tested26 and 
diverse dynamics processes, such as epidemic spreading27, diffusion28, voting29, synchronization30 and 
game model31 have been involved as the hot topics (see refs 32,33 for a recent review).

With regard to evolutionary games on interdependent networks, how to construct interdependence 
between different networks becomes the critical issue. In a recent research work34, the biased utility 
function suppresses the feedback of individual success, which results in a spontaneous separation of time 
scales on both networks. Consequently, cooperation is enhanced due to deceleration of defection inva-
sion. While in35, if the co-evolution between strategy and network structure is established, it is unveiled 
that the interdependence between both networks can self-organize so as to yield the optimal cooperation 
level. In spite of great progress with interdependent networks games, vast majority of existing works just 
consider the simple assumption that different layers have identical social dilemma, namely, the same 
game in each network layer. While in realistic life, different topology layers usually support diverse 
actions, which means that various dilemmas may be in presence on different interaction topology. More 
importantly, another non-negligible fact is that even if the ongoing interactions differ, individual infor-
mation of strategy choice, to large extent, is affected by the collective selection of other systems rather 
than completely comes from the local interaction. In this sense, the question, what we will address in 
what follows, becomes very clear. Namely, if we consider different games on correlated networks and 
assume individual strategy selection is influence by both internal and external information, is this ben-
eficial for enriching network reciprocity or not?

Aiming to answer the above problem, here we propose the social influence mechanism by assuming 
that, except for the local interaction, individual may refer to the most popular strategy of the interde-
pendent group on other network with a certain probability s (namely, the so-called social influential 
strength, which exists widely in social systems36–39). It thus becomes to determine how strong such influ-
ence strength really oughts to be for the maximal promotion of cooperation on interdependent networks. 
We show, by means of Monte Carlo simulations, that there is a critical threshold of social influence 
strength. Below this threshold, it is exhibited that cooperation is separated in both systems and drops to 
null level with slight increment of social influence strength. However, if the influence strength exceeds 
the threshold, there is an unexpected, fast outbreak of cooperation behavior, which reaches the com-
pletely dominant state (namely, cooperation is promotes best only after an intermediate social influence 
strength). In the following, we will detail the model and the implementation of the dynamics, present 
our main results and summarize and discuss them.

Results
We start by exploring how the social influence drives the evolution of cooperation on interdependent 
networks. As s =  0, our model returns the traditional snowdrift (SD) game and prisoner’s dilemma (PD) 
game in isolated network. It thus becomes interesting to study the impact of positive s on cooperation 

Figure 1. Cooperation frequency fc as a function of b under social influence strength s = 0.05 (a) and 
s = 0.5 (b). Here, SD and PD denote the average value in each network respectively. The black arrows mark 
the critical points for phase transition.
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frequency fc (see Fig. 1). It is clear that the evolution of cooperation in both systems is completely syn-
chronous at s =  0.5, while for s =  0.05 such a synchronized tendency is destroyed towards a higher coop-
eration level in SD, which is similar to the theoretical prediction in single-layer network4. Furthermore, 
there exists the transition from coexisting states of cooperation and defection to full defection state when 
b exceed a critical value bc, marked by black arrows. Along this line, we examine phase diagram between 
C +  D phase and C(D) phase in the b −  s space for snowdrift game and prisoner’s dilemma game, respec-
tively. From Fig. 2, one can find that cooperation coexist with defection for both small and large values 
of s. However, intermediate value of s induces the extinction of cooperation in both snowdrift game and 
prisoner’s dilemma game.

To get a clear image about the total impact of influence strength s, Fig.  3 features the cooperation 
frequency fc in dependence on the influence strength s for both games, as well as for the whole system. As 
evidenced in the figure, we can observe three types of behaviors within the system. When the influence 
strength s is small (which makes interdependent setup close to traditional isolated network), there exists 
a bias towards the evolution of cooperation, which is similar to the symmetric breaking phenomenon 
induced by the utility distribution24. In this case, cooperation almost vanishes in the prisoner’s dilemma 
game yet survives in the snowdrift game. This is actually consistent with what we can expect, because 
cooperation can obtain more benefit when facing a defector in snowdrift game. However, when influ-
ence strength exceeds a threshold sv, a completely different scenario appears: cooperation simultaneously 
dies out in both systems, namely, the increment of social influence is not beneficial for the evolution of 
cooperation. On the other hand, this observation does not agree with the well-known other-regarding 
case40, which emphasizes the impact of external environment and facilitates cooperation. With further 
raising s, interestingly, we can see that there is an abrupt outbreak of cooperation in both games (at 
another threshold so ≈  0.47) and cooperation fast reaches an exclusive dominance, which implies that 
excessive dependence on external environment may bring more benefit for cooperation. Combing with 
these observations, it is thus suggested that when players refer to external strategy information, multiple 
effect takes place: increase of social influence strength results in the biased separation, synchronous 
extinction and abrupt outbreak towards high cooperation frequency. In what follows, we will systemati-
cally examine the validity of this claim.

Figure 2. Phase diagrams in b-s space for SD (a) and PD (b) on each network respectively. 

Figure 3. Cooperation frequency as a function of social influence strength s on interdependent 
networks. There are two threshold sv and so for different phase transitions. The used parameter is b =  1.1.
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To understand the impact of social influence more precisely, we can also visually inspect the charac-
teristic spatial evolution of cooperators and defectors for different values of social influence s. Figure 4 
features snapshots of two interdependent networks at small s value, obtained from a prepared initial state 
(in order to demonstrate the impact of social influence as clear as possible). It is clear that cooperative 
domain of snowdrift game is able to survive the initial onslaught of defectors and then reaches the steady 
state fast. At variance, the observation of prisoner’s dilemma game seems completely different: the initial 
cooperative domain quickly splits into a great deal of smaller clusters, which are further invaded by 
defectors. In the stationary state (the bottom right panel) defectors dominate, and only a quite small frac-
tion of cooperators is able to survive in the form of isolated clusters. All these observations are actually 
similar to previous results obtained for a single square lattice4, since individual decision-making process 
just receives feeble influence from external environment.

Interestingly, if we increase influence strength s, the above phenomenon will be replaced by the spon-
taneous emergence of coordination and synchronization of the evolutionary process in both systems. 
Figure 5 displays the evolution snapshots of cooperator and defectors for two typical influence strength 
values, below and above the threshold value so, with similar prepared initial distribution of Fig. 4. It is 
obvious that, irrespective of which influence strength, cooperation domains synchronously split, vanish 
or expand in both networks, as the previous report of utility function involving external players41. For 
middle s, since cooperator clusters can not get enough powerful support from the external environment, 

Figure 4. Snapshots of the distribution of cooperators (blue) and defectors (red) on interdependent 
networks at 1, 10, 50 and 50000 MC steps from left to right. The top (bottom) panel is for SD (PD) game. 
The used parameters are s =  0.05, b =  1.1 and L =  200.

Figure 5. Snapshots of the distribution of cooperators (blue) and defectors (red) for s = 0.45 (top) 
and s = 0.5 (bottom) at 1, 20, 2000 and 20000 MC steps from left to right. From Fig. 3, we know both 
values can guarantee the synchronized evolution, we thus select SD (top) and PD (bottom) for better visual 
observation of cluster expansion. The used parameters are b =  1.1 and L =  200.
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which naturally resorts to the undisputed dominance of defectors42. However, when we increase the 
social influence, the most visible change takes place: in the very early stages of games defectors are able 
to plunder very effectively, which results in the remaining cooperators to form small clusters. Then, these 
clusters will quickly expand and finally merge into one giant domain (see bottom panel of Fig. 5), which 
has completely identical location in both networks (namely, spontaneous emergence of coordination and 
synchronization of evolution process). As predicted in the case of joint utility function on interdependent 
networks41, this trend of synchronization generates the interdependent network reciprocity and provides 
beneficial condition for the final dominance of cooperation. Thus, whether there exists the coordination 
of sufficient strong cooperation domains on both networks is crucial for the existence and expansion of 
cooperation.

Next, it is interesting to elucidate why social influence induces multiple effect on the evolution of 
cooperation. In Fig. 6, we inspect the time courses of strategy pairs between networks for different values 
of influence strength. C −  C pair indicates the connection between two cooperators in the whole system, 
and D −  D pair denotes the connection between two defectors in the whole system. While C −  D indi-
cate connection between cooperators and defectors only in SD, D −  C pair denotes connection between 
cooperators and defectors only in PD. Starting from random distribution, the value of C −  D pair is 
always higher than D −  C pair, which explains why cooperation frequency in SD for small s (s =  0.05). 
However, as s increases, the evolution of heterogeneous strategy pairs (namely, C −  D and D −  C) become 
synchronized and goes to extinction together. For intermediate value of s (s =  0.45), the frequency of 
D −  D pair fast reaches stable state and completely dominates system. At variance, large s enables the 
frequency of D −  D firstly reach a meta-stable state. But due to effective expansion of the remaining 
cooperation clusters, C −  C pair fast replaces D −  D and holds the dominance in the final state. These 
results are consistent with the evolution of snapshots in Figs 4 and 5.

To give a holistic profile, the multiple effect of social influence on average cooperation frequency in 
b −  s space is in Fig.  7. For small value of social influence s, there still exist a few cooperators in the 
system; while these cooperators vanish when s increases because intermediate social influence damages 
formation of cooperation clusters. It is interesting that the cooperation is greatly maintained for large s. 
These seem to indicate that the promotion effects only works when competition between social influence 
and social learning leads to the synchronized growth of cooperation clusters, as reported in ref. 43, where 
conformity driven by the social influence favors cooperation.

Discussion
To conclude, we have studied the evolution of cooperation in prisoner’s dilemma game and snowdrift 
game on interdependent networks that are subject to interconnectedness by means of the so-called 
“social influence” mechanism44–46. Except for imitating the strategy of local neighbor, player is also 
allowed to learn the most popular strategy from other network based on the influence strength s. By 
means of systematic simulations, we have shown that such a mechanism can lead to the multiple effect 
on the evolution of cooperation, which is different from games played in isolated network47. Small social 
influence causes the asymmetric cooperation, which is higher in snowdrift game (similar to traditional 

Figure 6. Time course of frequency of strategy pairs for (a) s = 0.05, (b) s = 0.45 and (c) s = 0.5. C −  C 
pair indicates the connection between two cooperators in the whole system, and D −  D pair denotes 
the connection between two defectors in the whole system. While C −  D indicates connection between 
cooperators and defectors only in SD, D −  C pair denotes connection between cooperators and defectors 
only in PD. The used parameters are b =  1.1.
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setup). Large social influence enhances the tendency to cooperate, resulting from the fast and synchro-
nized expansion of cooperative clusters on different networks. However, the intermediate social influence 
strength inhibits cooperation. Our model not only incorporates social influence into cooperative dynam-
ics48, but also involves the information exchange of different games in multilayer framework49. It thus 
may open a new door to understand the controllability of cooperation via social influence.

Methods
We consider two different evolutionary games, namely the prisoner’s dilemma (PD) and the snowdrift 
(SD) games, on two regular, L ×  L square lattices with nearest-neighbors interactions and periodic 
boundary conditions. More specifically, one network is used to support prisoner’s dilemma game, while 
snowdrift game is carried out on the other network. The payoffs in both games follow the standard pro-
cedure to govern the social dilemma. The prisoner’s dilemma game is characterized by the temptation to 
defect T =  b, reward for mutual cooperation R =  1, and punishment P =  0.2 as well as the sucker’s payoff 
S equaling 0, whereby 1 <  b ≤  2 ensures a proper payoff ranking4. It is worth mentioning that qualitatively 
similar results are obtained also for negative values of S. While for snowdrift game, we just need to take 
a negative value of P to keep the payoff ranking. For simplicity (yet without loss of generality), we set 
P =  − 0.2 throughout this paper.

Regardless of the type of the game, initially each individual on site x of both networks is designated 
either as a cooperator (sx =  C) or defector (sx =  D) with equal probability. Then, every player has one part-
ner located in the same position of another network for possible information sharing (i.e., point-to-point 
interdependency as the generalization setup24). The evolutionary process proceeds via the Monte Carlo 
simulation procedure, comprising the following elementary steps. First, a randomly selected player x of 
random chosen network acquires its accumulate payoff Px by playing the games with all its neighbors. 
Next, player x updates its strategy according to the collective strategy information of another network or 
the payoff information of local topology, which is detailed as follows.

I) We incorporate “social influence” into interdependent network games, which means that the indi-
vidual behavior choice is affected by the state of corresponding group (consisting of parter ′x  and 
its four neighbors) on the other network. Under this scenario, player x learns the most popular 
strategy of that group with the social influential strength s (0 ≤  s ≤  1). To consider the influence of 
noise, it is allowed that player randomly choose one strategy with probability 0.1. It is worth men-
tioning that the size of such a group may play a significant role in determining the final results, as 
reported in50.

II)   On the contrary, if the above “social influence” event does not take place, player resorts to the clas-
sical updating fashion as the case of single network4. Player x chooses one of its nearest neighbors 
at random, and the chosen player y also acquires its payoff Py in the same way as player x. Subse-
quently, player x attempts to adopt the strategy sy from player y with a probability determined by 
the Fermi function

( )
( → ) =

+ 

− / 


,

( )
W s s

P P K

1

1 exp 1
y x

x y

where K =  0.1 quantifies the uncertainty related to the strategy adoption process3,4, which is usually asso-
ciated with errors in decision making and imperfect information transfer between the players. During 
a full Monte Carlo (MC) step, each player on both networks is selected once on average to change its 
strategy.

Figure 7. Average cooperation frequency in b-s space. The color represents cooperation frequency.
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Importantly, different from existing achievements where the interdependence affects the utility of 
players22,24,34,35, this novel framework allows strategies to be transferred or mimicked across two net-
works. The parameter 0 ≤  s ≤  1 determines the strength of social influence. Obviously, s equaling to 
0 returns the case of traditional single network4, which means both networks are decoupled. While 
its increment means that more potential influence of individual strategy choice comes form external 
environment.

Presented results were obtained by means of Monte Carlo simulations on lattices of linear size varying 
from L =  200 to 500 in order to avoid finite size effects. The necessary relaxation times varied between 
105–107 MC steps. Moreover, since the initial distribution of strategies may involve additional distur-
bances, final results were averaged over up to 30 independent runs to further improve accuracy.
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