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Microglia, which serve as the defensive interface of the nervous system, are activated in
many neurological diseases. Their role as immune responding cells has been extensively
studied in the past few years. Recent studies have demonstrated that neuronal feedback
can be shaped by the molecular signals received and sent by microglia. Altered neuronal
activity or synaptic plasticity leads to the release of various communication messages
from neurons, which in turn exert effects on microglia. Research on microglia-neuron
communication has thus expanded from focusing only on neurons to the neurovascular
unit (NVU). This approach can be used to explore the potential mechanism of
neurovascular coupling across sophisticated receptor systems and signaling cascades
in health and disease. However, it remains unclear how microglia-neuron communication
happens in the brain. Here, we discuss the functional contribution of microglia to
synapses, neuroimmune communication, and neuronal activity. Moreover, the current
state of knowledge of bidirectional control mechanisms regarding interactions between
neurons and microglia are reviewed, with a focus on purinergic regulatory systems
including ATP-P2RY12R signaling, ATP-adenosine-A1Rs/A2ARs, and the ATP-pannexin
1 hemichannel. This review aims to organize recent studies to highlight the multifunctional
roles of microglia within the neural communication network in health and disease.

Keywords: microglia, microglia-neurons communication, synaptic plasticity, neuronal activity, NVU, ATP

INTRODUCTION

Research on central nervous system (CNS) disorders has largely concentrated on neurons; however,
an increasing body of research suggests that a purely neurocentral focus is insufficient. All cell types
in the brain—including neuronal, glial, and vascular components such as endothelia, pericytes, and
vascular smooth muscular cells—should be examined in an integrated context (Muoio et al., 2014).
Together, these components are termed the neurovascular unit (NVU; Figure 1), which plays an
important role in brain function and disease through cell–cell signaling (Iadecola, 2017). The NVU
is reported to control blood-brain barrier (BBB) permeability and cerebral blood flow (CBF) and to
regulate the neuronal ‘milieu’ (Zlokovic, 2011). Signaling perturbations within the NVU comprise
potential mechanisms for neuronal dysfunction and injury (Sweeney et al., 2016; Yu et al., 2020).
Recent studies have shown that the NVU contributes to both stroke and neurodegenerative diseases
(Cai et al., 2017; Giaume et al., 2021; Minhas et al., 2021). In light of such findings, increasing
research efforts have focused on the NVU as a therapeutic target (Quaegebeur et al., 2011).
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FIGURE 1 | Illustration of the components of the neurovascular unit. The
neurovascular unit (NVU) is composed of neurons (purple), microglia (yellow),
astrocytes (dark green), oligodendrocytes (light green), endothelial cells (red),
and pericytes (orange). Based on intimate anatomical relationships and
chemical signals (gray sphere) secreted by oneself or others, these
components establish an anatomical and functional whole (blue circle) that
participates in physiological and pathological processes in the brain. The
communication network also includes the interactions between NVU and the
outside world (cyan and magenta arrow). The mutual communication and
cooperation between microglia and neurons (gray shaded trapezoid) in the
brain is the focus of this article and will be discussed below.

Microglia perform an immune surveillance function through
highly motile protrusions and ramified processes that sense
their environment during their ‘‘resting’’ state or after activation
in vivo (Nimmerjahn et al., 2005). Notably, microglia do not
patrol in an aimless manner; rather, microglial surveillance
is associated with neuronal activity and synaptic plasticity
(Nayak et al., 2014). Emerging evidence suggests that microglia
contribute to the development, maturation, and aging of the
brain (Liu et al., 2020; Verkhratsky et al., 2021) and are
recognized to express many risk genes for CNS disorders,
including genes associated with Alzheimer’s disease (AD),
Parkinson’s disease (PD), schizophrenia, autism, and multiple
sclerosis (MS; Kékesi et al., 2019; Prinz et al., 2019). Neuron-
microglia signaling can be detected under physiological and
pathological conditions in the brain (Cserép et al., 2020,
2021). The interactions between microglia and neurons establish
complex regulatory loops that involve either the establishment
of neural networks and maintenance of neural circuits in health
or the development of neurological disorders in disease (Cserép
et al., 2021).

Microglia, as a component of the NVU, play significant roles
in neuroinflammation and innate immunity (Lehnardt, 2010;
Joost et al., 2019). Not only do microglia-derived mediators
participate in inflammation and immune-related responses they
also serve as important messengers in cell-cell signaling between
neuronal and glial cells. In this review, we discuss the evidence
of the contribution of microglia to synapses, neuroimmune
communication, and neuronal activity. In particular, we focus
on bidirectional interactions between microglia and neurons that

depend on soluble factors and intercellular signaling pathways,
with the ultimate aim of better understanding the recently
recognized functional roles of microglial actions in synaptic
function, neuroimmune responses, and regulation of neural
activity.

A SYNAPTIC ROLE FOR MICROGLIA

During postnatal development of the brain, microglia play
major roles in the rapid elimination of dying neurons and
synaptic structures (Tremblay et al., 2010; Ayata et al.,
2018), synaptic pruning (Paolicelli et al., 2011; Schafer et al.,
2012) and promoting the survival of cortical neurons (Ueno
et al., 2013). Maternal immune activation (MIA), which is
induced by injecting pregnant mice with polycytidylic acid
(poly I:C), has been shown to have a significant impact
on the pre-microglia (from embryonic day 14 to a few
weeks after birth) of newborn offspring. As this impact
on pre-microglia is influencing neurogenesis and synaptic
pruning, it explains the later occurrence of behavioral disorders
when the offspring are adults (Matcovitch-Natan et al.,
2016). Emerging evidence suggests that microglia regulate
activity-dependent structural plasticity and promote memory
consolidation by locally clearing the extracellular matrix (ECM).
Furthermore, cytokine interleukin-33 (IL-33), which is expressed
by hippocampal neurons, significantly upregulates ECMprotease
genes (namely Adamts4 and Mmp14), thereby promoting
microglial phagocytosis and engulfment of aggrecan around
parvalbumin+ interneurons in the CA1 hippocampal subregion
(Nguyen et al., 2020). Moreover, this mechanism is demonstrated
in both young mouse (3 months) and old mouse (18 months)
under physiological conditions.

The release of immunological mediators from microglia
has also been shown to influence synaptic function. Beattie
et al. (2002) reported that tumor-necrosis factor-alpha
(TNFα) significantly increases the mean miniature excitatory
postsynaptic currents (mEPSCs) frequency and promotes the
maintenance of synaptic strength, as indicated by mEPSCs
at excitatory synapses that call for the continual presence
of TNFα, which enhances synaptic efficacy by increasing
surface expression of AMPA receptors. Since microglia
are a source of TNFα, they potentiate glutamate-mediated
neurotoxicity or participate in synaptic connectivity in an
indirect way (Stellwagen and Malenka, 2006; Olmos and
Lladó, 2014). Interleukin 1β (IL-1β) has been shown to
impair long-term potentiation (LTP) directly at the synapse,
which could explain why cognitive impairment is worse in
aged hippocampal synapses (Prieto et al., 2015). Aberrant
expression of IL-1β also results in damage to hippocampus-
dependent memory (Patterson, 2015). It is interesting that
either TNFα or IL-1β plays a role in sleep regulation by changing
neuromodulator/neurotransmitter receptor expression, resulting
in altering neuron sensitivity (Krueger et al., 2011). Brain-
derived neurotrophic factor (BDNF), which is reported to
influence synaptic plasticity, learning, and memory formation
(Parkhurst et al., 2013; Leal et al., 2014), also appears to be a
crucial signaling molecule in microglia-neuron communication.
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Preventing BDNF release from microglia has been shown to
reverse allodynia and anion shift, and may thus provide a new
therapeutic strategy for treating neuropathic pain (Coull et al.,
2005). Interleukin 10 (IL-10), which acts on IL-10 receptors
expressed on hippocampal neurons, plays a role in the induction
of synaptic formation, including dendritic spines and excitatory
and inhibitory synapses (Lim et al., 2013). It has been shown that
IL-10 can facilitate LTP in the CA1 region of the hippocampus
and increase synaptic strength, based on observations that the
presynaptic fiber volley field excitatory postsynaptic potential
(FV-fEPSP) slope increases after IL-10 treatment, thereby
promoting synaptic plasticity (Nenov et al., 2019).

These soluble factors, which have been extensively studied
in the context of neuroinflammation (Perry and Holmes, 2014),
exert their effects on synaptic function as discussed above. The
released cytokines act on neurons in a flexible way and are
not limited by distance. Studies conducted in recent years have
shown that the administration of cytokines, including TNFα
and IL-1β, results in significantly increased astrogliosis at the
brain injury site in neonatal mouse (Balasingam et al., 1994).
Liddelow et al. (2017) reported that the release of IL-1α, TNF,
and C1q from microglia is necessary and sufficient to induce a
subtype of reactive astrocytes (termed A1 astrocytes), leading to
impairment of neuronal survival, outgrowth, synaptogenesis, and
phagocytosis and the death of neurons and oligodendrocytes. In
response to cytokines, astrocytes can produce IL-1, IL-4, IL-6,
IL-10, IL-12, TNF-α, and interferon (IFN) to act on microglia
(Benveniste, 1998). Taken together, these studies have shown that
soluble factors contribute to the establishment of the interplay
between different cell types within the NVU. The influence of
microglia on neuronal networks appears to be sophisticated
since interactions within the NVU cannot be ignored. Thus,
the net effects must be taken into consideration. In light of
this knowledge, the application should be carefully considered,
since the ultimate effects of immunological mediators appear to
depend on time, concentration, and environmental milieu.

NEUROIMMUNE COMMUNICATION WITH
MICROGLIA

Microglia are the resident myeloid cells of the brain (Nayak
et al., 2014). Equipped with specialized pattern recognition
receptors (PRRs) that identify pathogen-associated molecular
patterns (PAMPs) and host-derived danger-associated molecular
patterns (DAMPs) in microorganisms, microglia play a key role
in the neuroimmune system by quickly inducing a fine-tuned
inflammatory response (Scheiblich et al., 2020). Activation
of microglia that play a role in innate immune function is
pivotal in neuroinflammation. In addition to their influences
on synaptic plasticity, the release of cytokines and chemokines
further amplifies the inflammatory process, which has been well
documented in previous studies (Nayak et al., 2014; Prinz et al.,
2019).

The nervous system is involved in regulating immunity and
inflammation, whereas immune dysregulation and inflammation
also affect brain function in disease (Pavlov et al., 2018). For
instance, neural circuits may promote immunosuppression

after injury or stroke by altering microglia function (Pavlov and
Tracey, 2017). Notably, MIA, which involves alterations in the
number and state of activated microglia, is closely associated
with early disruptions in neurodevelopment and may result
in later neuropsychiatric disorders in offspring, including
anxiety-like or depression-like behavior, sensorimotor deficits,
social deficits, and repetitive behaviors. Gumusoglu and Stevens
(2019) proposed that the most common outcomes of maternal
immune perturbation are elevations in the proinflammatory
cytokines IL-6 and IL-1β, resulting in alterations in synapse
formation and function and driving neural progenitors from a
neurogenic to gliogenic fate. Brown et al. (2017) revealed that
exposure to intrauterine inflammation altered metabolic profiles,
including amino acid metabolism, purine metabolism, and lipid
metabolism, in the amniotic fluid and fetal and neonatal brain
of exposed offspring. Interestingly, the changes were sex-specific
and persisted at a later time point (48 h vs. 6 h after intrauterine
inflammation; Brown et al., 2017). Furthermore, metabolic
pathways disturbances, including mitochondrial function,
arborization, and synapse formation, have been observed in the
developmental interneurons of individuals with schizophrenia
(SCZ) co-cultured with activated microglia. Intriguingly, SCZ
cortical interneurons (cINs) show prolonged compromised
metabolic pathways after removal of the activated microglia,
which indicates an interaction between the genetic background
of SCZ donors and the inflammatory environment provided
by activated microglia (Park et al., 2020). It has been suggested
that neuroinflammation mediated by microglia specifically
acting on cINs has long–term effects during brain development.
Notably, the microglial gene expression profiles of the offspring
of mothers administered poly I:C were realigned with the normal
microglial phenotype at adulthood, indicating that transient
perturbation in the early stage of microglia development
(such as the pre-microglia stage) may have far-reaching
implications on the brain at adulthood (Matcovitch-Natan et al.,
2016).

Recent studies suggest that any assessment of the impact
of microglia-mediated immune responses on neurons should
consider differences between short-term and long-term effects.
It can be concluded that the activation of microglia following
immune activation induces inflammation of the brain, which has
a profound impact on neurodevelopment. Although microglia
are primary initiators and effectors of neuroinflammation
(Thurgur and Pinteaux, 2019), the pathological process includes
the contributions of various cell types. It has been established that
astrocytes along with microglia participate in the amplification
of inflammation signals, which in turn may cause apoptosis of
oligodendroglioma cancer cells (Liddelow et al., 2020). More
precisely, microglia are essential for triggering the standard
immune response of microglia with astrocytes, as confirmed
by studies revealing that astrocytes show no response to
pathogens/damage in the absence of microglia (Liu et al.,
2021). At the same time, neuroimmune communication also
occurs between microglia and endothelial cells, where microglia
play a role in maintaining the integrity of the BBB and
thus the influx of blood-derived molecules into the brain
(Muoio et al., 2014).
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In addition, recent studies have uncovered that neuroimmune
interactions are also important regulators of physiology (Huh
and Veiga-Fernandes, 2020). For example, microglia work to
maintain homeostasis in the brain, not only to resolve infections
(Norris and Kipnis, 2019). Pavlov and Tracey (2017) revealed
neural reflex regulation of immunity, finding that neural circuits
are triggered by and control inflammation. Sensory neurons
are capable of monitoring the immune state in the periphery
and interacting with immune cells, which are defined as
neuroimmune cell units. The communicating immune signals,
which then activate the CNS, can derive from any major body
organ including skin, lung, and intestines (reviewed in Huh and
Veiga-Fernandes, 2020). Ultimately, the brain integrates neuro-
immune communication in order to maintain a steady-state.

MICROGLIA-NEURONS COMMUNICATION

New evidence suggests that exacerbated activation of microglia
can promote microglia-mediated neuronal degeneration (Zhao
et al., 2018). It has been shown that loss of striatal microglia
triggers seizures via activation of cortical and hippocampal
neurons in mice (Badimon et al., 2020). Moreover, similar
to inhibitory neurons, microglia can sense neuronal activation
and then lower the activation of dopaminergic neurons to
achieve negative feedback control of neuronal activity (Badimon
et al., 2020). In addition, neuronal excitation affects the process
extension and motility of microglia (Liu et al., 2019; Stowell
et al., 2019). Overall, these studies support reciprocal connections
between microglia and neurons. Understanding the molecular
mechanisms that underlie these bidirectional interactions will
be necessary to achieve an integrated view of microglia-neuron
communication systems, thereby enabling real insight into the
importance of these communication systems in the control of
brain function.

ATP-P2RY12 Signaling Is Essential for
Microglia Neuron Communication
Purinergic signaling plays a central role in microglia-neuron
interactions, of which ATP is recognized as an efferent
neurotransmitter in the CNS (Burnstock, 2006; Burnstock
et al., 2011). ATP, which is mediated by G-protein-coupled
P2 receptors, acts as an activity-dependent signal under
physiological conditions or as a danger signal when dysfunction
or damage occurs in the brain (Agostinho et al., 2020). There is
evidence of the vesicular release of ATP from neurons (Pankratov
et al., 2007; Larsson et al., 2012) and from astrocytes (Darby
et al., 2003; Bowser and Khakh, 2007). ATP released by astrocytes
regulates microglial branch dynamics in the intact brain and
chemotactic responses of activated microglia toward the local
injury site in the brain (Davalos et al., 2005). In neuron-microglia
interactions, ATP supports communication from neurons to
microglia via P2RY12 signaling activation (Badimon et al., 2020;
Figure 2). In general, ATP results in a decrease in neuronal
activity both in normal (Li et al., 2012) and in pathological
conditions (Cserép et al., 2020). Microglial P2RY12 receptors
are exclusively expressed by microglia and are viewed as an

FIGURE 2 | Communication between microglia and neurons. ATP can be
secreted from neurons through vesicles or the pannexin-1 channel. Released
ATP (red) is converted into ADP (yellow) by the microglial enzyme CD39. ADP
acts on P2RY12 receptors to induce activation of P2RY12 signaling, which
attracts microglial processes to synaptic connections. CD39 also converts
ADP into AMP (green). Next, AMP is converted into ADO (pink) by the enzyme
CD73 on microglia. ADO suppresses neuronal activity by acting on A1Rs by
decreasing glutamate (blue) release and inhibiting calcium (Ca2+) channels. In
addition, A2ARs can weaken the inhibitory effect of A1Rs on glutamate
release. ATP = adenosine triphosphate, ADP = adenosine diphosphate,
AMP = adenosine monophosphate, ADO = adenosine, A1R = A1 receptor,
A2AR = A2A receptor.

indispensable component of microglia-neuron junctions (Eyo
et al., 2014; Cserép et al., 2020). 3D electron tomography showed
that P2RY12 receptor density was negatively correlated with the
distance between microglial and neuronal membranes within the
junctions. Meanwhile, in vivo 2P imaging further confirmed that
microglial process recruitment to somatic junctions is linked
to the metabolic activity of neuronal mitochondria through a
P2RY12 receptor–dependent mechanism (Cserép et al., 2020).
Emerging evidence suggests that P2RY12Rs are involved in
chemotaxis and the motility of microglia (Dissing-Olesen et al.,
2014) as well as in microglia activation in the trigeminal nucleus
caudalis (Jing et al., 2019), neuropathic pain (Tozaki-Saitoh et al.,
2008; Gu et al., 2016), epilepticus (Avignone et al., 2008; Milior
et al., 2020), and stroke (Kluge et al., 2017; Li et al., 2020).
Thus, ATP-P2RY12R signaling responses between microglia and
neurons appear to contribute to an important loop in neural
crosstalk (Figure 2).

ATP-Adenosine-A1Rs/A2ARs Are Essential
for Microglia Neuron Communication
Following ectoenzymatic breakdown of extracellular ATP,
adenosine is produced and binds to A1 or A2A receptors in
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the brain, thereby regulating nerve activity and transmitter
release (Fredholm et al., 2005). It has been demonstrated
that adenosine (ADO) lowers neuronal excitability by acting
on A1Rs and is a prominent physiological mediator of sleep
homeostasis (Ribeiro et al., 2002). Recent studies have revealed
that cholinergic and glutamatergic neurons show highly
correlated activity with changes in adenosine concentration,
with glutamatergic neurons contributing much more to
adenosine increases in the mouse basal forebrain (BF; Peng
et al., 2020). A1Rs and A2ARs are widely abundant in the
brain, particularly in glutamatergic synapses (Yoon and
Rothman, 1991; Rosin et al., 1998; Rebola et al., 2005). As
a synaptic neuromodulator curtailing excitatory synaptic
transmission, A1Rs-mediated inhibition can fully block
glutamatergic transmission (Coelho et al., 2006; Rodrigues
et al., 2008) by inhibiting adenylate cyclase (AC), increasing
potassium (K+) conductance, and inhibiting presynaptic calcium
(Ca2+) channels (Benarroch, 2008). A2ARs are activated by
ATP-derived adenosine upon increased synaptic activity to
act on synaptic plasticity (d’Alcantara et al., 2001; Augusto
et al., 2013; Kerkhofs et al., 2018). In contrast, presynaptic
A2ARs may form heteromeric receptor complexes with
presynaptic A1Rs (Benarroch, 2008), which antagonizes the
inhibitory effect of presynaptic A1Rs on glutamate release
from axon terminals in the striatum, cerebral cortex, and
brainstem (Ribeiro et al., 2002; Boison, 2006). In addition to
ATP-P2RY12R signaling as described above, a recent study
demonstrated that ATP-adenosine-A1Rs signaling in mice
suppresses D1 neuronal activity in the striatum, which could
be regarded as a novel mechanism for communication between
microglia and neurons (Badimon et al., 2020). Metabolic
stress, such as ischemia, seizures, or trauma, may result in the
upregulation of extracellular adenosine (Benarroch, 2008). The
release of adenosine from parallel fibers has also been reported
in the rat cerebellum. Moreover, activity-dependent adenosine
release is known to regulate cerebellar circuit output through
feedback inhibition of parallel fiber-Purkinje cell transmission
(Wall and Dale, 2007). Much research consideration has
surrounded adenosine as an endogenous neuromodulator
in the CNS (Benarroch, 2008). Such studies have revealed
roles for adenosine as well as adenosine receptors, greatly
adding to our understanding while simultaneously expanding
the complexity of the signaling system’s mechanisms of
action.

ATP-Pannexin 1 Hemichannel Are Essential
for Microglia Neuron Communication
Pannexin 1 forms intercellular hemichannels and plays multiple
roles in channel-mediated ATP release (Dahl and Locovei,
2006; Bhat and Sajjad, 2021). As nonjunctional membrane
channels, pannexin 1 is abundantly expressed in the brain,
including the hippocampus, olfactory bulb, cortex, and
cerebellum (Bruzzone et al., 2003; Ray et al., 2005). These
hemichannels can be activated by extracellular Ca2+ under
physiological conditions (Barbe et al., 2006), and alterations
in intracellular Ca2+ levels also open pannexin 1 channels
(Giaume et al., 2021). Pannexin 1 channel-mediated ATP release

has been shown to contribute to cell communication in vivo
(Giaume et al., 2021; Figure 2). Reciprocal regulation between
microglia and neurons involves pannexin-1 hemichannels
in neurons and ATP/P2 receptors in microglia, and so
intraneuronal calcium plays a functional role in neuronal
activity-induced microglia-neuron contact (Li et al., 2012).
When pannexin 1 hemichannels are inhibited by trovafloxacin,
both ATP release and migration of microglia are significantly
repressed, resulting in the reduction of pro-inflammatory
cytokines (Garg et al., 2018). Probenecid, which is an inhibitor
of the pannexin 1 hemichannel, has been demonstrated
to attenuate cognitive impairment after cecal ligation and
puncture (CLP)-induced sepsis in mice by inhibiting pannexin
1-dependent ATP release in the hippocampus (Zhang et al.,
2019). In addition, recent findings have proposed a role for
pannexin-1 hemichannels in the suppression of glutamate
release from hippocampal CA1 pyramidal neurons in male
rat or mouse brains (Bialecki et al., 2020). In mice with
pannexin-1 channels blocked or genetically deleted, the
onset of seizures is reduced in neocortical slices in vitro
(seizure-like events) and the hippocampal CA3 region in vivo,
indicating a pivotal role of pannexin-1 in maintaining neuronal
hyperexcitability (Aquilino et al., 2020). Similarly, the activation
of pannexin-1 hemichannels in postoperative tissue samples
from patients with epilepsy promotes seizure generation and
maintenance through ATP signaling ex vivo (Dossi et al.,
2018). Importantly, the ATP, glutamate, and other metabolites
released from stimulated pannexin-1 hemichannels can go
on participating in cell-to-cell communication in the brain
(Aquilino et al., 2019).

Collectively, microglia are tightly regulated by the brain
microenvironment and controlled by a sophisticated system of
receptors and signaling cascades (Figure 2). However, there
are some open questions worth discussing. For instance, ATP
itself can act presynaptically, rather than solely postsynaptically,
in the CNS (Cunha and Ribeiro, 2000). Despite a series of
articles on the mechanisms of purinergic regulatory systems
duringmicroglia-neuron communication (Phillis andWu, 1981),
the balance between the effects of different signaling is yet
to be considered. Besides acting on microglia and neurons,
both ATP and adenosine are recognized to play a role in
astrocyte proliferation and the formation of reactive astrocytes
(Fumagalli et al., 2003). Similar to microglia, astrocytes are
capable of releasing ATP and adenosine, which are then involved
in cell–cell communication (Stout et al., 2002; Agostinho et al.,
2020). ATP can be released along with neurotransmitters from
nerve terminals, acting either as a neurotransmitter in central
synapses or as a neuromodulator (Agostinho et al., 2020).
Hence, the proposal of the NVU was quite significant and
has inspired researchers to explore the signaling mechanisms
spatially and temporally.

CONCLUSIONS AND PERSPECTIVES

In this review, we have brought together a series of articles
exploring the roles of microglia, including their contributions to
synapses, neuroimmune communication, and neuronal activity.
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In recent years, the development of imaging, genetics, and
sequencing has made it possible to understand the real
story of the complex and fascinating roles of microglia in
health and disease. As a result, microglia manipulation has
been proposed as a novel therapeutic method for modulating
activity in various neurological diseases (Klawonn et al., 2021;
Minhas et al., 2021). In the context of the neuroimmune
roles of microglia, targeting microglia for immunotherapy in
neurological disorders is aimed to maintain homeostasis of
the brain by controlling neuroinflammation. However, the
appropriate way to use microglia in immunotherapy remains
unclear since they display both beneficial and detrimental roles.
To gain deeper insight into the microglial shift from being
protective to pathogenic, the molecular mechanisms involved
warrant extensive study.

The overlapping results across MIA studies (reviewed in
Gumusoglu and Stevens, 2019) inspire us that we can evaluate
the psychiatric risk and disease etiologies by clinically testing
the immune milieu of offspring. However, as discussed above,
the transient perturbation in microglia development could
have a profound impact on neurodevelopment. It still requires
more efforts to prevent the occurrence of neuropsychiatric
disorders in offspring. Moreover, inhibiting specific molecular
pathways that mediate neuronal microglial communication is
also a promising therapeutic approach, such as the application
of probenecid in cerebral dysfunction of sepsis (Zhang et al.,
2019). Novel research has reported that neuron-derived IL-33
(Nguyen et al., 2020) and astrocyte-derived IL-3 (McAlpine
et al., 2021) as a key mediator of neuron-microglia crosstalk
and astrocyte-microglia crosstalk, respectively, are associated

with memory consolidation. It provides a new strategy for
the future treatments of age-related memory decline (IL-
33) and Alzheimer’s disease (IL-3). In addition, eliminating
about 80% microglia in the 5xfAD mouse model of AD
by blocking the CSF1 receptor is able to reverse deficits
in contextual memory via preventing dendritic spine loss
and neuronal loss, despite the disease being at a late stage
(Spangenberg et al., 2016).

Another challenge is that bulk interventions using microglia
could veil the true physical function of microglia since the
overall outcome would be determined by microglia-mediated
changes at different temporal and spatial scales (Cserép et al.,
2021). The different effects could also be explained by the
multifunctional roles of microglia and their communication
within the NVU. Therefore, future studies should consider the
molecular anatomy and functional heterogeneity of microglial
processes and compartment-specific actions by microglia.
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