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Simple Summary: Aberrant epigenetic modifications in oncogenic pathways can lead to the onset
of different cancers. This study aims to explore the role of differential DNA methylation in the
regulation of oncogenic signaling pathways by integrating data from multiple sources including
methylome, transcriptome and clinical presentation to uncover the effect of methylation changes
acting on the four most common cancers. We utilized a differential methylation-parsing pipeline,
which extracted differentially methylated biomarkers based on feature selection. Extracted biomarkers
were integrated with the matching RNA-Seq and clinical data to determine if these differentially
methylated CpGs could serve as potential diagnostic candidates for the four most common cancers.
Our results suggested differential methylation of the genes within the NRF2-PI3K pathway may lead
to the presentation of various cancer and serve as potential epigenetic biomodifiers.

Abstract: Disruption of signaling pathways that plays a role in the normal development and
cellular homeostasis may lead to the dysregulation of cellular signaling and bring about the onset of
different diseases, including cancer. In addition to genetic aberrations, DNA methylation also acts
as an epigenetic modifier to drive the onset and progression of cancer by mediating the reversible
transcription of related genes. Although the role of DNA methylation as an alternative driver
of carcinogenesis has been well-established, the global effects of DNA methylation on oncogenic
signaling pathways and the presentation of cancer is only emerging. In this article, we introduced
a differential methylation parsing pipeline (MethylMine) which mined for epigenetic biomarkers
based on feature selection. This pipeline was used to mine for biomarkers, which presented a
substantial difference in methylation between the tumor and the matching normal tissue samples.
Combined with the Data Integration Analysis for Biomarker discovery (DIABLO) framework for
machine learning and multi-omic analysis, we revisited the TCGA DNA methylation and RNA-Seq
datasets for breast, colorectal, lung, and prostate cancer, and identified differentially methylated genes
within the NRF2-KEAP1/PI3K oncogenic pathway, which regulates the expression of cytoprotective
genes, that serve as potential therapeutic targets to treat different cancers.
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1. Introduction

Over the past few decades, the field of cancer research has continuously evolved [1]. Different
techniques have been applied in the detection and treatment of cancer, including screening for cancers
during early stages of disease, in order to identify different cancers before the onset of symptoms [2–4].
Furthermore, new strategies to predict the outcome of cancer treatments has also emerged [5–7].
With the advent of new technologies in the field of oncology, large amounts of cancer data have
collected (including genomic, transcriptomic and epigenomic data). However, the accurate prediction
of disease outcome and differentiation between different cancers remains one of the most interesting
and challenging tasks for researchers. Machine-learning (ML) methods have become a popular tool in
recent years to assist medical researchers to discover and identify patterns and relationships between
different cancers, in order to create more effective biomarker panels which will be able to predict
potential biomarkers that are present in different cancers [8–12]. ML defines the ability of machines to
learn and predict future events and outcomes based on large datasets, and has been utilized in health
care to improve the interpretation of medical data especially in the development of novel computational
tools for stratification, grading, and prognostication of patients with the goal of improving patient
care [8,13,14].

Genomic data has been associated with rich clinical annotations, and DNA sequencing has now
been incorporated into standard clinical practice [15]. An emerging trend in application of machine
learning in oncology is the integration and analysis of mixed data (e.g., genomic, transcriptomic,
and epigenomics)—multi-omics to uncover patterns that are reflected across the different data.
These studies have painted a portrait of the mutation landscape of multiple cancers including breast,
colorectal, lung and prostate [16–19]. However, some cancers may have relatively few genetic mutations,
with their biology largely driven by other types of variations such as aberrant epigenetic modifications.

Epigenetics is the study of heritable phenotypic changes that do not involve alteration in the
genomic sequence, and includes mechanisms such as histone modification, altered micro (mi) RNA,
or long non-coding (lnc) RNA [20]. Mediated by DNA methyltransferases, DNA methylation is
a major epigenetic mechanism that occurs when a methyl group is transferred to the C5 position
of the carbon to form 5-methylcytosine (5mC). This modification plays an essential role in various
biological processes including the regulation of gene expression, genomic imprinting, cell differentiation
and normal development [21–23]. Aberrant DNA methylation has been associated with various
diseases, including cancers [24–26]. DNA hypermethylation acts as a regulator of gene expression,
and methylation-mediated silencing of tumor suppressor genes or regulatory regions within the
genome can lead to dysregulation of cell growth or altered response to cancer therapies [27–30].
Despite the varied and complex nature of modifications in the epigenetic landscape, many cancers
display a high degree of similarity both across different tissues and within the tissues of origin [31,32].
Therefore, abnormal DNA methylation has been viewed as an attractive avenue for development of
cancer diagnostics and therapeutics.

Although thousands of studies have highlighted the value of using changes in DNA methylation as
candidate biomarkers in the detection and treatment of various cancers, only a handful of these targets
have been approved for clinical use (as summarized in Table 1). Traditionally, these studies have focused
on the association of differential methylation and its effects on individual genes in the phenotypic
presentation of different carcinogenesis. However, few studies have investigated the effects of epigenetic
changes (especially DNA methylation) on individual and complex signaling pathways across cancers
at different anatomical sites. Cell signaling (signal transduction) plays a vital role within biological
systems by relaying extracellular signals in order to regulate intracellular gene expression. The signal
transduction process is typically initiated when a ligand binds to a membrane-bound receptor, triggering
a cascade of intercellular signaling activities through activation of multiple kinases. This ultimately has
an effect on the downstream gene expression activation of different signaling pathways and can lead to
various physiological or cellular responses (e.g., cell proliferation, differentiation, and metabolism),
and any disruptions within these intra and/or extracellular communication chains can lead to the
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development of different diseases, including cancer [33–35]. As DNA methylation is a dynamic and
reversible process, changes in methylation could act as regulators of certain oncogenic pathways,
leading to development of diseases, and provide an attractive target for development of biomarkers
and therapies.

Table 1. Summary of DNA methylation biomarkers in five common cancers that is approved for
clinical use.

Cancer Methylated Gene Description References

Breast
↑AKR1, ↑HOXB4, ↑RASGRF2,
↑RASSF1, ↑HIST1HC3,

↑TM6SF1, ↑GSTP1, ↑RARβ2,
Predictive of early stage metastatic breast cancer [36–39]

Ovarian ↑RASSF1A, ↑RASSF2A, ↑ESR1 Predictive of early stage carcinogenesis [40–42]

Colorectal ↑FBN2, ↑MAL, ↑SST, ↑SFRP2,
↑NDRG4, ↑VIM Predictive of malignant colorectal cancer in tissue and blood [43–47]

Lung ↑p16, ↑DAPK, ↑PAX5b,
↑GATA5, ↑RASSF1A Predictive of non-small cell lung carcinoma [48]

Prostate ↑MCAM, ↑ERα, ↑ERβ,
↑PCDH10, ↑CDH13 Predictive of early stage prostate cancer [49–51]

↑ hypermethylation.

Pathways and network analysis refer to any analytical techniques that benefit from biological
or molecular network information to gain insight into a biological system. The main goal through
these studies is to reduce data involving thousands of altered genes and proteins into a smaller and
more interpretable set of altered process by grouping genes with similar processes together [52].
This process-oriented analysis can generate testable hypothesis, identify druggable targets, and tumor
subtypes with clinically distinct outcomes, and identify mechanisms that are either cancer-specific
or shared across multiple cancers. Both pathway and network analysis consist of interacting genes,
proteins, and other biomolecules that carry out biological functions. Pathways are small-scale systems
of well-studied processes where the interactions consist of consensus biochemical reactions and events
of regulation and signaling based on decades of research that can be visualized via a directed acyclic
graph (DAG) [53]. In contrast, network interactions analysis contains simplified abstractions of complex
cellular organizations. Although network enrichment plots are noisy and challenging to visualize and
interpret, they contain novel information not covered in well-defined pathways by themselves [54].
Additionally, a related concept to pathway and network analysis is the examination of functionally
annotated gene sets that comprise all genes involved in a particular process or pathway without the
actual interactions between different genes [55].

Given the rising significance of personalized medicine and the growing trend on the application
of ML techniques in cancer research, in this article, we aimed to identify DNA methylation biomarkers
that could act as epigenetic modifiers of oncogenic signaling pathways in the presentation of four
of the most common cancers—breast, colorectal, lung and prostate [56]. The Cancer Genome Atlas
(TCGA) has been extensively mined in the past for pan-cancer studies, as the initiative has curated over
20,000 primary cancer and matched normal samples spanning 33 cancer types [57]. However, many of
the previous studies have focused on gene expression data [58–60], as opposed to DNA methylation;
with even fewer studies taking a pan-cancer approach to exploring the effects of DNA methylation
on disrupted oncogenic signaling pathways. Given this, we sought to revisit the TCGA dataset
with a view of incorporating both RNA-Seq and DNA methylation data together as an integrated,
multi-omic analysis.

In this study, we probed into the methylation of four canonical oncogenic signaling pathways
using the same TCGA dataset in order to identify aberrant methylation patterns that may be involved
in the disruption of the associated pathways leading to oncogenesis in the four most common cancers
(i.e., breast, colorectal, lung, and prostate). Furthermore, a pipeline that identified epigenetic biomarkers
with distinct methylation profiles (between specific cancers or tissues) through a supervised feature
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selection method was used to screen for differentially methylated biomarkers that are involved in the
disruption of different pathways. Written in the Python language, the MethylMine pipeline classified
biomarkers that are either hypo- or hypermethylated based on the 1st and 3rd quartiles, which are
computed from the combined DNA methylation profile of all patient samples corresponding to a
specific cancer or tissue type (i.e., tumor or normal tissue).

Extracted biomarkers were integrated with the matching RNA-Seq and clinical data, and then
examined using a ML-based application to reflect on potential signaling pathways that might emerge
as potential ‘epigenetic switches’ which could then be used as potential therapeutic targets for
diagnosing and/or treating tumorigenesis. Using this methodology, we identified a number of CpG
sites which are differentially methylated and discuss the potential of using these biomarkers as
screening tools for disruptions in the NRF2-PI3K oncogenic signaling pathway, which acts as the major
regulator of cytoprotective responses to both endogenous and exogenous stresses from reactive oxygen
species (ROS), and serve as potential epigenetic biomodifiers in the diagnosis and treatment of the
screened cancers.

2. Materials and Methods

2.1. Dataset and Preprocessing

Datasets of the four most common cancers [61] were downloaded from The Cancer Genome
Atlas from the NCI Genomic Data Commons portal (https://portal.gdc.cancer.gov/, accessed 2018).
We downloaded two types of publicly-available data—methylation (beta value of methyl 450k array),
and gene expression data (fpkm) using the gdc-client tool [62] (summary of total samples and
variables summarized in Table 2). The beta (β) value represents a quantitative measure of the DNA
methylation level of specific CpG sites for each sample and ranges from 0 (completely unmethylated)
to 1 (completely methylated), while the fpkm represents the number of fragments per kilobase of
exon model per million reads that is mapped to the reference genome. For this study, matrices of
each cancer depending on the state of the sample (i.e., primary tumor and [solid] normal tissue)
were extracted and merged using a custom “matrix merge” script written in Python 3.8 (available on
github—https://github.com/uqjlu8/MethylMine).

Table 2. Overview of multi-omics datasets analyzed in this study.

Dataset
Sample Size in Each Tissue Type

Omics Number of Variables
Primary Tumor Normal Tissue

Breast Cancer (TCGA-BRCA) 780 95
CpG 485,000

mRNA 60,482

Lung Cancer (TCGA-LUSC) 270 42
CpG 485,000

mRNA 60,482

Colorectal Cancer (TCGA-COAD) 313 38
CpG 485,000

mRNA 60,482

Prostate Cancer (TCGA-PRAD) 502 50
CpG 485,000

mRNA 60,482

2.2. Overview of the MethylMine Framework

The MethylMine pipeline was written in the Python (3.8+) language, with the aid of other
scientific libraries including: matplotlib [63], numpy [64], and pandas [65]. An overview of the
MethylMine framework is illustrated in Figure 1. MethylMine was used to filter for CpGs that
were differentially methylated between the four cancers by doing quartile comparisons between
the different cancer samples. Corresponding RNA-Seq transcripts (fpkm) were extracted using a
custom Python script for data integration and further analysis (script available in github—https:
//github.com/uqjlu8/MethylMine).

https://portal.gdc.cancer.gov/
https://github.com/uqjlu8/MethylMine
https://github.com/uqjlu8/MethylMine
https://github.com/uqjlu8/MethylMine
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Figure 1. Hypermethylated genes in the dysregulation of the ARF-MDM2-p53 pathway in cancer.
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(A–D) Volcano plots showing the hypermethylation of breast; ntumor = 785, nnormal = 95), colorectal
(ntumor = 313, nnormal = 38), lung (ntumor =370, nnormal = 42) and prostate cancers (ntumor = 502,
nnormal = 50) in the ARF-MDM2-p53 pathway. The x-axis is log2 fold change of DNA methylation (beta
values), whereas the y axis shows the −log10 of the p values for each CpG site representing the strength
of the association. Each point represents a CpG site (CpG = 310). Dashed lines indicated cutoffs for
significance, where p < 0.05 and log2 (Fold Change) > 1, where the number of hypermethylated CpGs in
each cancer type is shown in green. Using the current parameters, no hypomethylated CpG sites were
observed in the ARF-MDM2-p53 pathway. (E) Outline of the ARF-MDM2-p53 pathway, where the
major interactions are outlined. During homeostasis, p53 is regulated by MDM2, which mediates the
attachment of ubiquitin molecules and transports it to the cytoplasm for proteasome degradation via the
proteasome ubiquitination pathway. Deregulation of p53 MDM2 is crucial for an activated p53 response
during stress situations. Exposures to endogenous and exogenous damage (e.g., radiation, ultraviolet,
genotoxic drugs, etc.) and many DNA-damaging stressors activate several kinases, including ATM
kinase, leading to the modification of p53 and inhibiting their interactions with one another, resulting
in the destabilization of p53. Overexpression and activation of oncogenes (e.g., Myc, EF2, Ras, Bcr-Abl)
stimulate the production of ARF, which sequesters MDM2 into the nucleolus, thus preventing the
degradation of p53. Hypermethylation of TBX2, TWIST1, CDKN2A may disrupt this process by
repressing the expression of ARF2 and MDM2, respectively. Finally, hypermethylation of PIK3R1 and
PIK3R5 may regulate the expression of the AKT gene, which also interacts with the MDM2 gene in the
above pathway.

2.3. Integrated Data Analysis

Transcriptome and methylation data integration (including PLS-DA and correlation studies) were
conducted using the Data Integration Analysis for Biomarker discovery (DIABLO) feature within
the Bioconductor mixOmics [66] package (version 6.12.1) in the R 4.0.2 (https://www.R-progject.org).
The tuning of the component and variable number was performed according to the tutorial at
http://mixomics.org. The R script used to perform this analysis is available via github (https://github.
com/uqjlu8/MethylMine).

2.4. Statistical Analysis

Semi-unsupervised clustering: the methylation values of each sample from the TCGA were
obtained as beta values, which represent the level of methylation at a single CpG site (0—no methylation,
1—complete methylation). Semi-unsupervised hierarchical clustering was performed on the probe
sites across the four cancer types (both tumor and normal samples) that were found to be differentially
methylated by the MethylMine pipeline using the “Euclidean” method via a custom Python (3.8) script
using the numpy and seaborn modules.

Interaction network: protein-protein interaction network of proteins correspond to CpG sites that
were found to be differentially methylated between the four cancer types—breast, colon, lung and
prostate were constructed using the online STRING program [67] using the instructions provided at
https://string-db.org/.

Methylation comparison: differentially methylated CpG-sites (β) between normal tissue and
the primary tumor of four cancer types were identified using a custom Python script, which firstly
calculates the significance between the primary tumor and normal tissue of each cancer type using the
non-parametric Mann–Whitney’s test. The log10(p value) and −log(fold change) between the tumor
and normal tissue of each cancer type was visualized on a volcano plot to examine the difference in
methylation of individual CpG sites using the volcano function within the Python bioinfokit module
within Python where the cutoffs are: p < 0.05 and the −log2 (fold change) > 1 (hypermethylation) or
<−1 (hypomethylation).

https://www.R-progject.org
http://mixomics.org
https://github.com/uqjlu8/MethylMine
https://github.com/uqjlu8/MethylMine
https://string-db.org/
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2.5. Enrichment Analysis

Enrichment analysis was performed for transcriptomic targets using the online tool g: Profiler
(g:GOSt)—https://biit.cs.ut.ee/gprofiler/gost [68], with the following options: Organism: Homo sapiens;
Statistical domain scope: only annotated genes; Significance threshold: Benjamini–Hochberg FDR;
User threshold: 0.05; Numeric IDs treated as: ENTREZGENE_ACC. The following data sources
were selected—Gene Ontology: GO molecular functions, GO biological process, Biological pathways:
KEGG, Reactome. A generic enrichment map (GEM) was created, and visualized in the Cytoscape
software [69] using the EnrichmentMap plugin.

2.6. Code Availability and Implementation

The MethylMine pipeline was implemented in the Python language and is available to the public
through our github page—https://github.com/uqjlu8/MethylMine. Instructions on implementation
of pipeline is available through the github page. Input matrix files (beta) need to be presented
in the following format. Although we only presented the filtering of four different cancer types
in this manuscript, the current version of the MethylMine pipeline can filter up to 12 cancer
types simultaneously.

The DIABLO framework was implemented in the mixOmics R Bioconductor package and is
downloadable through their website—http://mixomics.org. Instructions on implementation of DIABLO
is available through the mixomics webpage or through CRAN—https://cran.r-project.org/.

The Cytoscape software is available for download through the Cytoscape website—https://
cytoscape.org/. Tutorials for implementation of Cytoscape is available through their webpage.

2.7. Data Availability

The TCGA datasets analyzed in this article is publically available through the GDC Data
Portal—https://portal.gdc.cancer.gov/.

3. Results

3.1. Differentailly Methylated Genes in the Disruption of Canonical Signalling Pathways

An understanding of the genes and pathways altered in different cancers is essential to identify
potential therapeutic options for diagnosing and treatment of tumorigenesis. In this article, we identified
several oncogenic signaling pathways that have been recognized to be genetically altered in most
cancers. In this section, we investigated the methylation profile of genes associated with four oncogenic
signaling pathways (ARF-MDM2-p53, NRF2-KEAP1 and PIK3, Hippo and Wnt, and retinoblastoma
(RB)) that were found to be disrupted in most cancers, and identified methylated genes which could
serve as potential targets for cancer therapeutics.

3.1.1. Differentially Methylated Genes in the Dysregulation of the ARF-MDM2-p53 Pathway

To identify differential methylation in ARF-MDM2-p53 pathway-associated genes,
DNA methylation data (i.e., β values) from primary tumor and corresponding normal tissue samples
were extracted for comparative analysis. This analysis focused on the CpGs within the promoter
regions (i.e., CpG islands) of the four analyzed cancers (Figure 1), and identified the following number
of hypermethylated locis (FDR < 0.05, fold change > 1): TCGA-BRCA (n = 38), TCGA-COAD (n = 61),
TCGA-LUSC (n = 36), and TCGA-PRAD (n = 14) that were annotated to six genes. PIK3R5, TBX2
and TWIST1 gene were found to be hypermethylated in all four cancers, while CDKN2A (ARF) is
hypermethylated in colorectal and prostate cancers. Additionally, PIK3R1 and PIK3R2 were found to
be hypermethylated, specifically in lung and colorectal cancers, respectively.

A survey of literature suggests the hypermethylation of the associated proteins, including PIK3R5,
TBX2 and TWIST1 individually, have multiple biological functions in various cancers [70,71], and could

https://biit.cs.ut.ee/gprofiler/gost
https://github.com/uqjlu8/MethylMine
http://mixomics.org
https://cran.r-project.org/
https://cytoscape.org/
https://cytoscape.org/
https://portal.gdc.cancer.gov/
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serve as potential methylation targets to screen for onset of different cancers. Additionally, the detection
of hypermethylated PIK3R5, TBX2 and TWIST1 in all four tumor tissues suggests the specificity
of these biomarkers for the four TCGA cancers screened in this manuscript, and their potential as
therapeutic targets.

3.1.2. Differentially Methylated Genes in the Disruption of the NRF2-KEAP1 and PIK3K Pathway

To identify differential methylation in the NRF2-KEAP1 and PIK3K pathway associated genes,
DNA methylation data (i.e., β values) from primary tumor and corresponding normal tissue samples
were extracted for comparative analysis. This analysis focused on the CpGs within the promoter
regions (i.e., CpG islands) of the four analyzed cancers (Figure 2), and identified the following
number of hypermethylated locis (FDR < 0.05, fold change > 1): TCGA-BRCA (n = 13), TCGA-COAD
(n = 10), TCGA-LUSC (n = 7), and TCGA-PRAD (n = 19) that were annotated to three genes. A single
hypomethylated site (FDR < 0.05, fold change < −1) was identified in the lung cancer. The NFEF2L2
(NRF2), MAF genes were found to be hypermethylated in all four cancers, while the hypermethylation
of NQO gene was only observed in prostate cancer. Additionally, the GCLC gene, which was found to
be hypomethylated in lung cancer samples, has been associated with tumor progression and drug
resistance. Given only one GCLC-associated CpG site was hypomethylated, the effects on the actual
gene may be minimal and require further investigation.

3.1.3. Differentially Methylated Genes in the Disruption of the Hippo and Wnt Pathway

The Hippo and Wnt signaling pathways play a crucial role in maintaining tissue homeostasis and
organ size by orchestrating cell proliferation, differentiation, and apoptosis. These pathways are highly
complex and are frequently dysregulated in human cancers. To identify differential methylation in the
Hippo and Wnt pathway associated genes, DNA methylation data (i.e., β values) from primary tumor
and corresponding normal tissue samples were extracted for comparative analysis. This analysis
focused on the CpGs within the promoter regions (i.e., CpG islands) of the four analyzed cancers
(Figure 3), and identified the following number of hypermethylated locis (FDR < 0.05, fold change > 1):
TCGA-BRCA (nhippo = 318, nwnt = 343), TCGA-COAD (nhippo = 349, nwnt = 426), TCGA-LUSC
(nhippo = 219, nwnt = 244), and TCGA-PRAD (nhippo = 218, nwnt = 223).

Genes that are commonly hypermethylated across the four cancers in the Hippo and Wnt pathways
include APC, CCND2 FZD, TCFs and WNTS (2, 3, 3A, 5A, 7A, and 9B), suggesting a link between
the two pathways during oncogenesis. Furthermore, the hypomethylation of RASSF6 protein in lung
cancer samples was observed (Figure 3C), which was in contrast to current literature, which suggests
the hypermethylation of RASSF6 genes leads to the poor prognosis in colorectal cancer.

3.1.4. Differentially Methylated Genes in the Disruption of the RB Tumor Suppressor Pathway

The retinoblastoma (RB) pathway plays an important role in the cell cycle progression by acting as
a regulator of cell proliferation and growth suppression. To identify differential methylation of genes
associated with the RB suppressor pathway, DNA methylation data (i.e., β values) from primary tumor
and corresponding normal tissue samples were extracted for comparative analysis. This analysis
focused on the CpGs within the promoter regions (i.e., CpG islands) of the four analyzed cancers
(Figure 4), and identified the following number of hypermethylated locis (FDR < 0.05, fold change > 1):
TCGA-BRCA (nhippo = 318, nwnt = 343), TCGA-COAD (nhippo = 349, nwnt = 426), TCGA-LUSC
(nhippo = 219, nwnt = 244), and TCGA-PRAD (nhippo = 218, nwnt = 223).
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Figure 2. Hypermethylated genes in the dysregulation of the NRF2-KEAP1 and PI3K pathway in cancer.



Cancers 2020, 12, 3199 10 of 29

(A–D) Volcano plots showing the hypermethylation of breast (TCGA-BRCA; ntumor = 785, nnormal = 95),
colorectal (ntumor = 313, nnormal = 38), lung (ntumor =370, nnormal = 42) and prostate cancers (ntumor = 502,
nnormal = 50) in the NRF2-KEAP1 and PI3K pathway. The x-axis is log2 fold change of DNA methylation
(beta values), whereas the y-axis shows the −log10 of the p values for each CpG site representing the
strength of the association. Each point represents a CpG site (CpG = 52). Dashed lines indicated
cutoffs for significance, where p < 0.05 and log2(Fold Change) > 1 (hypermethylation) or log2

(Fold Change) < −1 (hypomethylation). The number of hypermethylated CpGs in each cancer type
is shown in green, and hypomethylated CpG sites are shown in red. (E) Schematic of NRF2-KEAP1
and PI3K signaling pathway. NRF2 is regulated by KEAP1. During basal (homeostasis) state, NRF2 is
continuously ubiquitinated through KEAP1 and undergoes proteasomal degradation. Under stress
conditions, KEAP1 is released and the free NRF2 is translocated into the nucleus, where NRF2 binds to
the antioxidant response element (ARE) sites within regulatory sites of antioxidant and detoxification
genes, including KEAP1 and NRF2. Hypermethylation of promoter-associated CpG sites in either the
KEAP1 or NRF2 genes have been shown to play a regulatory role in the regulation of the KEAP1-NRF2
complex and increase the cancerous activity of the NRF2 activity as a result of the reduction in expression
of associated mRNA. Additionally, hypermethylation of the MAF gene also interferes with the activity
of the NRF2 protein.

3.2. Identification of CpG Sites Using the MethylMine Pipeline

Given that comparative analysis identified hypermethylated genes that were commonly found
in breast, colorectal, lung and prostate cancer samples from the TCGA initiative, we sought to
propose a method that could identify pathway-associated genes with a distinct methylation profile
between the tumor and matching normal tissue. The MethylMine pipeline was written in the Python
(3.8+) language to identify distinct methylation biomarkers based on a feature selection method.
This pipeline filters for differentially methylated CpG biomarkers by comparing the Q1 (25th percentile)
and Q3 (75th percentile) of sample methylation of tumor and normal tissue samples, respectively,
across each CpG site (outline of MethylMine outlined in Figure 5). To identify epigenetic biomarkers,
which are differentially methylated between breast (TCGA-BRCA), colorectal (TCGA-COAD), lung
(TCGA-LUSC), and prostate (TCGA-PRAD) cancers or tissues, the MethylMine pipeline was used to
compare the methylation values of both (primary) tumor and normal tissue samples (sourced from the
same patient) across each CpG site, and the total number of predicted biomarkers was summarized
in Table 3.

For cancer-specific hypermethylated CpG sites, the Q1 of the primary tumor (of target cancer) are
above 0.6 (60% methylated), while Q3 of the normal tissue (of target cancer) and the Q3 of the primary
tumor and normal tissue of other cancers are less than 0.3 (30% methylated). For cancer-specific
hypomethylated CpG sites, the Q3 of the primary tumor (of target cancer) are below 0.3 (30% methylated),
while the Q1 of the normal tissue (of target cancer) and the Q1 of the primary tumor and normal tissue
of other cancers are more than 0.6 (60% methylated). For tissue-specific hypermethylation, the Q1 of
the primary tumor and normal tissue of the target cancer is more than 0.6 (60% methylated), and the
Q3 of the primary tumor and normal tissue of the target cancer is less than 0.3 (30% methylated).
For tissue-specific hypomethylation, the Q3 of primary tumor and normal tissue of the target cancer is
less than 0.3 (30% methylated), and the Q1 of the primary tumor and normal tissue of other cancers are
more than 0.6 (60% methylated). These criteria were selected based on previously analyzed data (not
shown), and has been found to be effective in selecting for CpG locis with distinct methylation profiles
between the tumor and matching tissues and can be adjusted to suit the user’s needs. Using this
algorithm, a list of 1053 CpG sites were found to be differentially methylated between the four cancers.
A list of the MethylMine extracted probes is summarized in Table S1. Interestingly, the MethylMine
pipeline returned a limited number of CpG loci that underwent cancer-specific hypermethylation in
breast and lung cancer. Furthermore, there appeared to be a limitation in the number of methylation
biomarkers that underwent tissue-specific hypermethylation. This was in contrast to previous studies
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that reported hypermethylation of a number of promoter-associated CpGs in both tumor tissues and
blood samples [72–74]. Given that the overall goal of the MethylMine pipeline was to screen for
biomarkers with distinct methylation patterns between different tissue types (i.e., tumor and normal),
it was not surprising that the pipeline did not return the same CpG biomarkers as previously reported.
Furthermore, over 59% of CpGs are located in regions outside of the promoters of target genes.
However, these non-promoter-associated CpGs (open sea CpGs) may still play a role in oncogenic
regulated genes, as previous studies have suggested the methylation of CpGs within gene bodies has
led to silencing of alternative promoters, retrotransposons, and other functional elements to maintain
the efficiency of transcription [75–77].

Figure 3. Cont.
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Figure 3. Volcano plots for differential DNA methylation in four different cancers in the Hippo
and Wnt pathways. The x-axis is log2 fold change of DNA methylation (beta values), whereas the
y-axis shows the –log10 of the p values for each CpG site representing the strength of the association.
Each point represents a CpG site. Dashed lines indicated cutoffs for significance, where p < 0.05 and
log2 (Fold Change) < −1 (hypomethylation) or > 1 (hypermethylation). Changes in methylation of
CpG island-associated CpG sites are shown for Hippo (left) and Wnt (right) pathway-related CpG sites
where (A) TCGA-BRCA (ntumor = 785, nnormal = 95), (B) TCGA-COAD (ntumor = 313, nnormal = 38),
(C) TCGA-LUSC (ntumor = 370, nnormal = 42), and (D) TCGA-PRAD (ntumor = 502, nnormal = 50),
where the number of hypermethylated CpGs in each cancer type is shown in green, and the number of
hypomethylated CpGs in each cancer type is shown in red. The number of hypermethylated CpGs and
number of corresponding genes is also shown.
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Figure 4. Hypermethylated genes in the dysregulation of the retinoblastoma (RB) tumor suppressor
pathway in cancer. (A–D) Volcano plots showing the hypermethylation of breast (TCGA-BRCA;
ntumor = 785, nnormal = 95), colorectal (ntumor = 313, nnormal = 38), lung (ntumor = 370, nnormal = 42),
and prostate cancers (ntumor = 502, nnormal = 50) in the RB tumor suppressor pathway. The x-axis is
log2 fold change of DNA methylation (beta values), whereas the y-axis shows the −log10 of the p values
for each CpG site representing the strength of the association. Each point represents a CpG site. Dashed
lines indicated cutoffs for significance, where p < 0.05 and log2 (Fold Change) > 1 (hypermethylation)
or log2 (Fold Change) < −1 (hypomethylation). The number of hypermethylated CpGs in each cancer
type is shown in green, and hypomethylated CpG sites are shown in red. (E) Schematic of the RB
tumor suppressor pathway and its interaction with the p53 pathway. The p53 and RB pathway are two
main tumor suppressor pathways that control cellular response to DNA damage and oncogenic stimuli.
Each pathway consists of several regulators and effectors. For simplicity, only four main components
of each pathway are presented. In the RB pathway, stress signals such as DNA damage and oncogenes
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induce the upregulation of INK4a. Ink4a inhibits cyclin-dependent kinase (CDK)s, which in turn
inactivates RB via phosphorylation or DNA hypermethylation. This inhibits E2F activity by forming
the complex RB-DMNT1-E2F, which acts on the G1 and S phase of the cell cycle, leading to cell cycle
arrest. RB also regulates p53 activity through a trimeric p53-MDM2-RB complex. In this pathway,
DNA hypermethylation occurs at the RB gene, leading to transcriptional repression of the RB gene
and disruption of the M phase of the cell cycle leading to oncogenesis. Alternatively, the epigenetic
silencing of RB may also negatively influence the function of the MDM2 protein in the p53 pathway,
leading to inhibition of key cellular functions (e.g., apoptosis, DNA repair).

3.3. Semi-Unsupervised Clustering Suggests MethylMine-Extracted Biomarkers Are Differentially Methylated

To determine if the MethylMine pipeline can be used to filter for differentially methylated CpG
sites that were either cancer-specific or tissue-specific, the beta values of all filtered CpG sites of the
primary tumor and normal tissue samples across the four cancers (breast, colorectal, lung and prostate)
were extracted using a custom Python script (available through our github page). A semi-unsupervised
clustering (method = average, metric = Euclidean) was performed separately on samples that
displayed cancer-specific hypomethylation, cancer-specific hypermethylation, and tissue-specific
hypomethylation (Figure 6), and related information summarized in Tables S2–S5. Given only two
tissue-specific hypermethylation were detected in the using the MethylMine, pipeline (cg16171838
(ACVR1C), cg18061904 (ACVR1C)), they were excluded from the clustering analysis (Table S5).

Clustering of MethylMine-filtered CpG sites based on the feature selection (i.e., differences in
quartiles) were defined by pronounced differences in the methylation of specific cancers and/or tissues,
suggesting the pipeline used is effective in parsing for biomarkers with distinct methylation patterns
between the different tissues and/or cancers. By further separating the filtered CpG samples into the
MethylMine features (e.g., cancer-specific hypomethylation, tissue-specific hypermethylation), we were
able to get a clearer picture of the CpG loci that were either hypo- or hypermethylated across the
different tissues, when a semi-supervised clustering analysis was performed. This analysis presented
panels of biomarkers that were specific for each cancer and/or tissue. To determine the association of
the differentially methylated genes and its effects on the regulation of associated signaling pathways,
a multi-omic data integration approach was used (Section 3.4).

3.4. Integration and Selection of Relavent ‘Omics’ Data Using the DIABLO Framework

To identify highly correlated multi-omic (methylation and mRNA) cancer-discriminating
signatures between breast, colorectal, lung and prostate cancers, the DIABLO (Data Integration
Analysis for Biomarker discovery) framework from the mixOmics package in R was used to integrate
and analyze the methylation signatures of MethylMine-filtered CpG sites [78]. To determine if the
MethylMine-extracted CpG targets played a role in the dysregulation of different signaling pathways
during oncogenesis, the extracted epigenetic biomarkers were integrated with corresponding transcripts
using a supervised learning approach within the DIABLO framework. The DIABLO framework
performs N-integration by identifying multi-omics signatures that discriminate between the four
cancers in a supervised analysis. To reduce the computational overhead of the program, only transcripts
that were related to the filtered CpGs were included in the integrative analysis. Integration was
performed using the sparse Partial Least Squares Discriminant Analysis (sPLS-DA), which enables the
selection of the most predictive or discriminative features in the data that assist in the classification of
samples. An illustration of the N-integrative supervised analysis using DIABLO of the four cancers was
summarized in Figure S1. The N-integration analysis integrates different types of omics data measured
on matched samples (i.e., mRNA and CpG extracted from the same specimen), and combined with
the sPLS-DA, identified highly correlated sites for further enrichment analysis in order to identify
dysregulated signaling pathways that may be mediated by epigenetic modifiers.
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Figure 5. Overview of the Quartile Parsing methodology in the MethylMine framework.
(A) Cancer-specific hypermethylated CpG site: more than 75% (Q1) of the primary tumor CpG
beta values are above 0.6 (60% methylated), while more than 75% (Q3) of the normal tissue (target
cancer), and the primary tumor and normal tissue of other cancers, are less than 0.3 (30% methylated).
(B) Cancer-specific hypomethylated CpG site: more than 75% of the primary tumor samples of the
target cancer are less than 0.3 (30% methylated), while more than 75% of normal tissue of the target
cancer, and primary tumor and normal tissue of other cancers, are more than 0.6 (60% methylated).
(C) Tissue-specific hypermethylated CpG site: more than 75% (Q3) of the normal tissue and primary
tumor of the target cancer are more than 0.6 (60% methylated), (D) Tissue-specific hypomethylated
CpG site: more than 75% (Q3) of the normal tissue and primary tumor of the target cancer is less than
0.3, and more than 75% of other cancers, are more than 0.6 (60% methylated).
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Table 3. Tally of differentially methylated CpG sites predicted by MethylMine.

Sites Breast Colorectal Lung Prostate

Cancer-specific hypermethylation 0 82 0 5
Cancer-specific hypomethylation 42 250 56 116
Tissue-specific hypermethylation 0 2 0 0
Tissue-specific hypomethylation 23 145 53 279

Figure 6. Visualization of MethylMine-filtered biomarkers of four cancers from the TCGA. Validation of
MethylMine-filtered CpG sites across four cancers using semi-unsupervised clustering was performed
with the following parameters applied on the CpG sites (row): method = average, metric = Euclidean.
Filtered samples were further separated into (A) cancer-specific hypomethylation (samples from tumors
of specific cancers are hypomethylated), (B) cancer-specific hypermethylation (samples from tumors
of specific cancers are hypermethylated), (C) Tissue-specific hypomethylation (samples from tissues
of specific sites are hypomethylated). CpG sites corresponding to different features are in the rows,
while samples from either tumor or normal tissue of the four analyzed cancers are in the columns.

When both the RNA-Seq and CpG (meth) are plotted individually (Figure S1A), with the exception
of the lung (TCGA-LUSC) (primary) tumor samples, there was a general overlap between the mRNA
and CpG biomarkers. Indeed, when the differences between the mRNA and CpG (meth) were
summarized in an arrow plot (Figure S1B), the long arrows indicated a weak agreement between the
matching lung (TCGA-LUSC) (primary) tumor samples (i.e., mRNA and CpG). Similarly, a diagnostic
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scatterplot (plotDiablo) was used to determine the pairwise correlation between two omics datasets
(i.e., CpG (meth) and mRNA) and has been modelled according to its design.

Here, we can see the MethylMine-filtered CpG sites are highly correlated with the integrated
RNA-Seq mRNA transcripts (Figure S1C), with a correlation score of 0.96 (Pearson’s), which indicates a
high correlation between the two. In this context, the score refers to the strong correlation between the
location of the CpGs and the mRNA site and not the correlation between the level of DNA methylation
and expression level of corresponding biomolecules. Additionally, the scatterplot suggests that the
prostate cancer (TCGA-PRAD) tissues (both (primary) tumor and (tissue) normal) were discriminated
from the other three cancers (i.e., breast, colorectal and lung). This observation was not surprising
given MethylMine screened for biomarkers that had a pronounced difference in methylation between
input cancers. Furthermore, a performance plot (Figure S1D) was used to evaluate and tune the
performance of the sPLS-DA model for a large number of components (ncomp = 10) using repeat
k-fold (k-fold = 3) cross validation. This plot displays the classification error rate when the number
of samples in each group is unbalanced, and shows three predictive distances (max distance (dist),
centroids dist, mahalanobis dist) as well as the overall error rate and the balanced error rate across
the ten components. Although the plot suggested best performance can be achieved when ncomp = 3
(in both the overall and balanced error rate), only data from the first two components underwent
further analysis given this appeared to provide a lower error rate (data not shown).

Following the performance analysis, the correlation between the CpG sites and RNA-Seq transcripts
(mRNA) were visualized using two different methods. Firstly, a circos plot (Figure S1E) was used to
visualize the correlation (positive or negative) between the level of methylation and RNA expression
at each matched CpG-mRNA site, when the ncomp = 1–2 and the correlation cutoff = 0.6. With the
exception of six matched CpG-mRNA sites that were shown to be positively correlated, all other matched
sites were negatively correlated, and reflected the large number of cancer-specific hypomethulated
sites presented by the MethylMine pipeline. Again, given the stringent criteria used to filter for
differential methylation, the lack of cancer-specific hypermethylated sites detected was not unexpected.
Interestingly, a previous study has found positive correlation between methylation and gene expression
(i.e., association of hypermethylated CpG sites with expressed genes) of a number of sites using
matching patient data from the TCGA [79], an observation that was reflected in the four positively
correlated CpG-mRNA matches in Figure S1E, and closer inspection suggested these CpG sites are
not promoter-associated, which indicates not all genes are affected by methylation in the same way,
and the location of hypermethylation plays an important role in the final repression of the genes.

Moreover, a correlation circle plot (CCP) was used to highlight the correlation between the
integrated mRNA and CpG sites. Corresponding to the circos plot, the CCP suggested there was
a negative correlation between most CpG sites and the mRNA transcripts. The single CpG site
(cg21393713), which overlapped with other mRNA sites, is located within the promoter region
of the autism susceptibility gene (AUTS) 2 gene, a component of a polycomb group multiprotein
complex required to maintain the transcriptionally repressed state of many genes, including the Hox
genes throughout development. Although predominantly associated with neurological disorders
(e.g., autism), dysregulation of AUTS2 has been implicated in both lung adenocarcinoma and prostate
cancer [80].

Furthermore, a clustered image map (cim) was employed to visualize the multi-omic molecular
signature expression for each sample (Figure S1G), with the level of correlation of expression shown by
the color key. The cim showed a tight clustering of each sample type and different blocks of mRNA
and CpG (meth) that are negatively correlated, which suggests they may play a role in the regulation
of transcription of corresponding genes in these tissues, which will be further investigated using a
network enrichment analysis. Multi-omic signatures that are highly correlated between the omics
datasets were imported into the Cytoscape software package for analysis and visualization of complex
pathways and networks [69].
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3.5. Identification of Enriched Pathways in the Four Common Cancers

Pathway enrichment analysis has helped researchers gain a mechanistic insight into compiled gene
lists by identifying biological pathways that are enriched in gene lists more than would be expected
by chance [81]. It is an automated and statistically rigorous technique to analyze and interpret large
gene lists from prior knowledge [82]. To investigate the function of the differentially expressed genes
identified by the DIABLO framework in Section 2.3, a pathway enrichment map was constructed using
the methodology outlined by Reinmand et al., 2019 [81]. In brief, the N-integrated CpG sites and mRNA
targets (from DIABLO) were screened for enriched pathways by using the EnrichmentMap plugin of
the cytoscape software, and an enrichment map (Figure 7) was generated, which grouped proteins
with similar pathways together. Associated genes associated with each pathway were summarized
in Table S6.

Figure 7. Representative biological and molecular networks derived from the TCGA dataset.
Enrichment results were mapped as a network of gene sets (nodes) related by mutual overlap
(edges), where the intensity in color indicates the level of enrichment of gene set. Node colour is
proportional to the level of enrichment in each set and line color represents the pathways involved.

The enrichment map showed pathways that were dysregulated as a result of abnormal methylation
between the four cancers screened—breast, colorectal, lung and prostate. The enrichment analysis
appeared to highlight processes that are essential in normal cellular processes such as regulators of
phosphorylation (most widespread type of post-translational modification used in signal transduction)
and receptor-binding integrin (regulates cell adhesion, migration, invasion, and cell survival).
We found that most of the genes were connected together to form a giant linked network component
involved in positive regulatory processes. Interestingly, the enrichment analysis (Figure 7) did
not highlight any of the commonly disrupted pathways (e.g., ARF-MDM2-p53, NRF2-KEAP1 and
PI3K pathways) found in most cancers, despite our initial comparative analysis, which suggested
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the hypermethylation of associated genes across the four canonical pathways in this manuscript
(Section 3.1). Therefore, we sought to determine if any of the aberrantly methylated genes detected
using the current pipeline corresponded to a specific oncogenic signaling pathway and could therefore
be used as potential epigenetic biomodifiers.

3.6. MethylMine-Filtered CpG Sites Are Involved in the Disruption of the KEAP1-NRF2 and PIK3 Signalling
Pathway in Cancer

To determine if MethylMine identified differentially methylated CpG sites (in the four cancers)
that are dysregulated in a common oncogenic signaling pathway, samples of filtered CpGs were
analysed using a semi-supervised analysis. To reduce noise, only CpG sites located within the promoter
region of associated genes were analyzed (Figure 8A). Clustering using this methodology suggested
that the MethylMine pipeline could be used to filter for biomarkers that showed distinct methylation
patterns between the cancers and different tissues. Furthermore, to determine if the differentially
methylated proteins overlapped with any genes within the canonical pathways surveyed in Section 3.1,
the STRINGS protein-protein interaction analysis [67] was performed to determine the functional
interactions and identify the most related pathway(s). Interestingly, only 15 proteins, which intersected
with the NRF2-KEAP1 and PIK3 signaling pathway, were identified (Figure 8B).

Combined with the pathway analysis, the heatmap revealed the differential methylation of
different tumors, such as CYBA in prostate cancer and CSMD2 in lung cancer, which were previously
reported to be involved in the progression of the respective cancers by being involved in the production
of superoxide and/or hydrogen peroxides [83], which plays a role in the NRF2-KEAP1 pathway.

Figure 8. Visualization of MethylMine-filtered methylation biomarkers that overlap with the
NRF2-KEAP1 and PIK3 pathway. (A) Visualization of differentially methylated CpG sites within the
promoter associated CpG sites. CpG sites corresponding to different types of methylation are in the
rows, while samples from either tumor or normal tissue of the four analyzed cancers are in the columns.
(B) Protein-protein network analysis of filtered proteins from the MethylMine pipeline-filtered probes
that found 15 corresponding genes that are associated with the NRF2-KEAP1 and PIK3 pathway.
The mode of action between each protein (node) is described by the different colors of the lines, while the
effects of the action are summarized by the direction of the arrow or symbol.
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4. Discussion

Aberrant DNA methylation is a widespread feature in cancer that can lead to the transcriptional
regression of genes and alterations in different biological and molecular pathways that may play a role
in the progression of oncogenesis. Although many studies have described the effects of aberrant DNA
methylation on the onset and progression of cancer [84], a survey of literature suggests there is still a
limitation in studies that links abnormal methylation to the alterations of different signaling pathways
that commonly occur in cancers across different anatomical sites [85,86]. In this study, we investigated
the methylation profile of four canonical oncogenic signaling pathways by revisiting the TCGA dataset
of the four most common cancers in the world [61], and explored the pathway-associated genes that
may be epigenetically-driven among cancers across the different cancers, and could therefore be used
as potential drug targets to correct the altered signaling pathways and the possibility of combination
therapy to target multiple sites in patient care. By filtering for CpG sites that corresponded to genes
associated with each of the oncogenic signaling pathways described in this manuscript, we identified
cohorts of CpG sites that are universally hypermethylated in the tumor samples of the four TCGA
cancers screened and could serve as potential pan-cancer biomarkers.

The ARF-MDM2-p53 pathway (commonly referred to as the p53 pathway) has become the focus
of many investigations due to its importance in tumor suppression, as shown by its genetic inactivation
in more than half of human cancers and its functional impairment occurring in most of the remaining
cancers, suggesting the reactivation of p53 as a treatment option that is potentially effective for a
wide range of human cancers [34,87–89]. This process is involved in protecting cells against genetic
instability by initiating cell cycle arrest, apoptosis, or senescence in response to cellular stress and
DNA damage [90] (Figure 1E), and creates effector functions that impact on most of the hallmarks
of cancer as described by Hanahan and Weinberg [1]. Previous studies have suggested that the
inactivation of ARF (p14) through epigenetic silencing plays an important deregulating mechanism of
the ARF-MDM2-p53 pathways, leading to a restriction of the tumor-suppressing activity of p53 [91].
However, studies that focused on the effects of DNA methylation in the disruption of this pathway
are still limited. Therefore, we compared the DNA methylation profile in the primary tumor and
normal tissue samples of the top four cancers (breast, colorectal, lung and prostate) in order to identify
ARF-MDM2-p53 pathway-associated genes, which may be universally hypermethylated in the cancers
investigated. Volcano plots was used to screen for differential methylation patterns in the four TCGA
cancers (Figure 1A–D). This analysis suggested the hypermethylation of TWIST1, CDKN2A (ARF2),
PIK3R5 and TBX2 are present in cancers of the breast, colon, lung and prostate. Hypermethylation
of the associated proteins (e.g., TWIST1) individually have multiple biological functions in various
cancers [70,71] by acting on different components within the p53 pathway (Figure 1E), and could
therefore serve as potential targets for cancer therapeutics.

The KEAP1-NRF2 and PI3K pathway is the major regulator of cytoprotective responses to
endogenous and exogenous stresses caused by reactive oxygen species (ROS) and electrophiles [92].
ROS defines any oxygen-containing radicals that are capable of independent existence with one or
more unpaired electrons and act as mediators of both physiological and pathophysiological signal
transduction [93]. Elevated levels of ROS are a common hallmark of cancer progression and have
been detected in cancer cells due to an increase in metabolic activity, cellular signaling, activation of
oncogenes, and increased enzymatic activity of oxidases (including cyclooxygenases, lipoxygenases,
and thymidine phosphorylases). The NRF2 protein is a master regulator of redox homeostasis and plays
a key role in regulating a wide array of genes for antioxidant and detoxification enzymes [94]. A large
number of existing literatures have recognized the extensive alterations in this signaling pathway
and its potential as drug-able cancer targets [95,96]. Activation of the PI3K pathway (induced by
ROS) leads to the accumulation of the transcription factor NRF2 that has a protective role in metabolic
pathways [97]. In many cancers, the NRF2 and KEAP1 will undergo hypermethylation, leading to
a repression of expression of the KEAP1 protein and the release of NRF2 [98–100]. This epigenetic
modification has been shown to regulate the expression of cervical cancer, renal cell carcinoma and
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glioblastoma [100,101]. There is a clear implication of DNA methylation on the complex regulation of
the KEAP1/NRF2 couplet (most frequent mechanism of KEAP1 silencing in solid tumors) required in
the NRF-PI3K pathway. Furthermore, epigenetic reprograming of NRF2 can lead to its reactivation
and subsequent induction of downstream target genes involved in cellular protection (Figure 2E),
further suggesting the use of KEAP1 within the NRF2 pathway as a potential target for cancer treatment.
Comparative analysis of methylation sites associated with genes within the KEAP-NRF2 and PI3K
pathway in this study suggested the MAF transcription factor and NFE2L2 (NRF2) are hypermethylated
in the four TCGA cancers screened. As MAF forms a couplet with NRF2 and binds to the antioxidant
response element (ARE) in the regulatory regions of target genes to promote the transcription of
cytoprotective genes, the methylation of MAF and NRF2 could serve as potential therapeutic targets to
treat the analyzed cancers in this study.

The Hippo and Wnt signaling pathways play a crucial role in maintaining tissue homeostasis and
organ size by orchestrating cell proliferation, differentiation, and apoptosis. These pathways are highly
complex and have been frequently found to be dysregulated in human cancers. The Hippo pathway
consists of a large network of proteins that controls the growth of different tissue during development
and growth, as well as in different diseases such as cancer [102], while the Wnt (wingless-related
integration site) signaling pathway orchestrates various biological processes, such as cell proliferation,
differentiation, organogenesis, tissue regeneration, and tumorigenesis [103–107]. The importance of the
Hippo and Wnt pathway in human cancers was first demonstrated when the human tumor suppressor
adenomatous polyposis coli (APC) protein was found in association with β-catenin. In these studies,
it was found that the APC protein is mutated and inactivated in colorectal cancers, typically in the early
stages of cancer development [108]. Methylation analysis of genes associated with either the Hippo
or Wnt pathway revealed hypermethylation of a wide range of genes that are shared between the
two pathways across the four cancers screened (Figure 3A–D). This cross-talk between the Hippo and
Wnt signaling pathways has been explored in a number of studies, and the hypermethylation of these
common genes between the two pathways may provide novel therapeutic targets for cancer treatment.

The RB pathway has been a focus in cancer therapy [109,110], as several components of this
pathway, including p16Ink4a, cyclin D1 and RB, are frequently deleted or mutated during the
progression of cancer. The hypermethylation of CpG 106, which overlaps the promoter and exon 1 of
RB, was observed to be methylated in most retinoblastoma tumors, thereby suggesting the implications
of hypermethylation of promoter-associated CpGs of tumor suppressors in tumorigenesis [111].
Subsequently, hypermethylation of CpG sites at the 5′ end of RB1 promoter were found to lead
to reduced gene expression [112,113]. Since then, many studies have recorded the role of RB1
promoter hypermethylation in different cancers [114–118], most commonly in gliomas (the most
common cancer of the brain) [119]. Specifically, glioma-CpG island methylator phenotype tumors are
associated with hypermethylated promoters and IDH 1 mutations [120]. A recent study by Daniel et al.
revealed a connection between the methylation at the MGMT (methylguanine DNA methyltransferase)
promoter and a hypermutator phenotype secondary to mismatch repair deficiency occurring in glioma.
Therefore, the DNA methylation of profile of the RB tumor suppressor pathway of the four common
cancers was visualized using a volcano plot with hypermethylated CpGs of genes within thin associated
protein highlighted in green on the left of each related plot (Figure 4A–D). Hypermethylated genes
were observed across the four cancers, such as ZNF655, RB1, and TFDP2, which have previously been
reported to be epigenetic diagnostic biomarkers for various cancers (including breast and colorectal
cancers) [121–123].

Finally, to identify genes that are differentially methylated between the four cancers
screened, we used a combination of our differential methylation parsing pipeline—MethylMine—
and unsupervised clustering to identify an initial panel of methylation sites, which are
differentially methylated across the four selected cancers—breast, colorectal, lung and prostate.
Furthermore, multi-omic integration and pathway enrichment analysis were conducted to identify
signaling pathways, which may be dysregulated during the onset of the four cases as a result of
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these aberrant methylations. In contrast to previous studies that used inferential statistical methods
(e.g., t-test, ANOVA, etc.) to mine for differentially methylated genes between different sample
groups, the MethylMine pipeline extracted differentially methylated biomarkers by comparing the
quartiles of methylation values at each probe across both (primary) tumor and normal tissue samples
of selected cancers. The assumption here is that most of the methylation pattern of at least 75%
of the samples across a CpG site would be above a certain beta value (i.e., 0.6) if the CpG was
hypermethylated. As opposed to inferential statistical methods, we found biomarkers extracted using
the MethylMine pipeline returned biomarker panels that presented a marked difference between the
different tissues and cancers (Figure 2), and required less post hoc adjustments to reach the final
results. As methylation of CpGs within gene bodies has been demonstrated to lead to the silencing of
alternative promoters [75–77], these epigenetic targets could serve as therapeutic targets to correct the
function of downstream pathways.

Interestingly, given the same dataset, the MethylMine pipeline extracted different a set of
biomarkers then the comparative analysis performed above (Figures 1–4), as this feature-based
method screened for biomarkers that showed a distinct methylation profile between different cancers
and/or tissues (Figure 6). Therefore, it was not surprising the above pipeline extracted a set of
different methylation biomarkers to the hypermethylated CpG sites identified during the comparative
methylation screening where the main selection criteria was the fold change in methylation between
the tumor and normal tissue samples. Furthermore, given the stringent criteria used to filter for CpGs
sites with distinct methylation patterns (Figure 5), it was not surprising MethylMine did not detect the
same CpG biomarkers (with a lower difference in methylation) as previously reported [72–74] or in the
comparative analysis.

To determine if MethylMine-extracted CpG sites influenced the activity of associated genes, the
1053 CpG extracted CpG sites were integrated with the corresponding RNA-Seq transcriptomic data
using the N-integration method within the DIABLO module of the mixOmics package. This integration
allowed the merge of CpG sites with its corresponding mRNA transcripts so we could determine if the
expressed genes (mRNA transcript) were influenced by the methylation pattern of corresponding CpG
loci. The integrated data was then analyzed using an enrichment analysis to identify differentially
methylated pathways that were disrupted in the four cancers. Interestingly, the enrichment analysis
highlighted pathways that were predominantly involved in the regulation of developmental and
phosphorylation processes (Figure 7). This suggested that the developmental and regulatory processes,
which are important in the homeostatic state of healthy cells, are disturbed during oncogenesis.
This builds up the complexity of cancer signaling pathways, therefore complicating the process of
finding treatments to target different cancers.

Given this, we sought to determine if MethylMine identified differentially methylated biomarkers
that overlapped with any of the four signaling pathways analyzed. By using a combination of interaction
analysis and semi-supervised clustering, we identified a total of 15 differentially methylated genes,
which corresponded to the NRF2-KEAP1 and PIK3 pathway (Figure 8B). Furthermore, differentially
methylated genes, which play a role in the production of reactive oxygen species (ROS), were identified
in tumors of the breast, colon and prostate, respectively. Reactive oxygen species and hypoxia have been
viewed as major hallmarks of cancer due to their ability to influence the tumor micro-environment and
initiate cancer angiogenesis and metastasis [1]. The NRF2-KEAP1 and PIK3 pathway are involved in the
regulation of expression of cytoprotective genes under stress conditions (Figure 2E), such as presentation
of the ROS and hypoxia during disease [92]. This finding supports the ability of MethylMine to identify
differentially methylated CpG sites corresponding to genes that are associated with canonical signaling
pathways in various cancers.

5. Conclusions

Despite the boost in the post-genomic era, there is an urgent need to explore the large volume of
methylation data that is curated in publicly available databases in order to explore the commonalities
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and differences between signaling pathways that may drive the progression of cancer. To explore
the use of epigenetic modifiers in various cancers, we revisited the TCGA dataset, and performed a
comparative methylation analysis, which suggested the hypermethylation of genes associated with four
canonical oncogenic signaling pathways. Although they have individual functions, all four pathways
shared common proteins and transcription factors, which could be targeted by different biomodifiers
to diagnose or treat cancer. As changes in DNA methylation may result in altered signaling pathways
leading to the progression of cancer, here we demonstrated the potential of altering methylation-based
targets within these pathways to change their phenotypic expressions, and ultimately switch the
pathway back into a non-disease state. Furthermore, we described a differential methylation parsing
pipeline MethylMine that filters for differentially methylated biomarkers by comparing the different
quartiles between the (primary) tumor and normal tissue of each CpG site of corresponding cancers.
By integrating the corresponding RNA-Seq transcript data, we were able to screen for transcripts and by
extension, genes that were expressed and enriched in different signaling pathways. As the MethylMine
framework filtered for differentially methylated CpGs between different cancer types, we propose this
algorithm can be used to screen for cancer-specific CpG markers. Our analysis suggested the pipeline
used is effective in filtering for differential methylation of genes associated with the NRF2-KEAP1
and PIK3 pathway, which acts as a major regulator of cytoprotective responses to endogenous and
exogenous stresses via ROS. Additionally, genes that encode for ROS-generating NADPH oxidases
(e.g., NOX, CYBA) were also detected using the current pipeline and have been found to play a role
in most cancers. Therefore, the MethylMine pipeline is able to screen for differentially methylated
biomarkers with distinct changes in methylation profile between the different cancers and tissues.
Additionally, this algorithm will be improved in future versions to screen for pan-cancer biomarkers in
order to mine for biomarkers that are shared between different cancers to uncover epigenetic modifiers
that can be used to target multiple cancers. As such, the use of DNA methylation as an epigenetic
modifier is promising, opening an avenue for identification of novel drug targets, resistance patterns,
and the development of combination therapies to treat multiple targets across various signaling
pathways to target different cancers.
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