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Abstract 

Background:  We hypothesize higher air pollution and fewer greenness exposures jointly contribute to metabolic 
syndrome (MetS), as mechanisms on cardiometabolic mortality.

Methods:  We studied the samples in the Chinese Longitudinal Healthy Longevity Survey. We included 1755 par-
ticipants in 2012, among which 1073 were followed up in 2014 and 561 in 2017. We used cross-sectional analysis 
for baseline data and the generalized estimating equations (GEE) model in a longitudinal analysis. We examined the 
independent and interactive effects of fine particulate matter (PM2.5) and Normalized Difference Vegetation Index 
(NDVI) on MetS. Adjustment covariates included biomarker measurement year, baseline age, sex, ethnicity, education, 
marriage, residence, exercise, smoking, alcohol drinking, and GDP per capita.

Results:  At baseline, the average age of participants was 85.6 (SD: 12.2; range: 65–112). Greenness was slightly higher 
in rural areas than urban areas (NDVI mean: 0.496 vs. 0.444; range: 0.151–0.698 vs. 0.133–0.644). Ambient air pollu-
tion was similar between rural and urban areas (PM2.5 mean: 49.0 vs. 49.1; range: 16.2–65.3 vs. 18.3–64.2). Both the 
cross-sectional and longitudinal analysis showed positive associations of PM2.5 with prevalent abdominal obesity (AO) 
and MetS, and a negative association of NDVI with prevalent AO. In the longitudinal data, the odds ratio (OR, 95% 
confidence interval-CI) of PM2.5 (per 10 μg/m3 increase) were 1.19 (1.12, 1.27), 1.16 (1.08, 1.24), and 1.14 (1.07, 1.21) 
for AO, MetS and reduced high-density lipoprotein cholesterol (HDL-C), respectively. NDVI (per 0.1 unit increase) was 
associated with lower AO prevalence [OR (95% CI): 0.79 (0.71, 0.88)], but not significantly associated with MetS [OR 
(95% CI): 0.93 (0.84, 1.04)]. PM2.5 and NDVI had a statistically significant interaction on AO prevalence (pinteraction: 0.025). 
The association between PM2.5 and MetS, AO, elevated fasting glucose and reduced HDL-C were only significant in 
rural areas, not in urban areas. The association between NDVI and AO was only significant in areas with low PM2.5, not 
under high PM2.5.

Conclusions:  We found air pollution and greenness had independent and interactive effect on MetS components, 
which may ultimately manifest in pre-mature mortality. These study findings call for green space planning in urban 
areas and air pollution mitigation in rural areas.
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Background
Metabolic syndrome (MetS) is a risk factor for morbidity 
and mortality. Specifically, it is a group of pathologic con-
ditions that precede non-communicable diseases, includ-
ing cardiovascular disease (CVD) and diabetes [1]. It has 
become a global problem with the increasing prevalence 
in both developed and developing countries [2]. There 
are plenty of amenable causes of MetS. An increasing 
number of studies have been focusing on environmental 
determinants.

Fine particulate matter (PM2.5) is an independent risk 
factor for mortality in many locations and exposure lev-
els [3]. PM2.5 has been implicated in causing systemic 
inflammation and altered metabolism of lipids and glu-
cose [4–6]. At the same time, living in areas with higher 
greenness is associated with a reduced risk of mortality 
and cardiovascular disease [7]. However, there was no 
established evidence on the association between PM2.5 
and MetS according to current controversial findings in 
various countries [8, 9]. A limited number of research 
findings in China were inconsistent [10, 11]. Compared 
to air pollution, much less attention has been paid to 
greenness and MetS worldwide, especially for the older 
adults aged 80 or older, and there was also little agree-
ment [12–14]. Some prior findings showed combined or 
synergistic effects of PM2.5 and greenness on mortality 
[15, 16]. No studies looked at their interaction on MetS 
based on our knowledge.

The relationship between air pollution and residential 
greenness can be complex and need additional analyses 
for generalizability in different climates, income levels, 
and places with varying population density. A recent 
study based on a Canadian cohort of 2.4 million individu-
als found adjustment of greenness attenuated the effect 
of PM2.5. The effect of air pollution on cardiovascular 
mortality was the largest in places with the least green-
ness. Studies that do not account for greenness may over-
state the harmful effect of air pollution on mortality [15]. 
In a seven metropolitan cities study in South Korea, the 
effect of PM10 was higher in areas of lower greenness 
for cardiovascular-related mortality, but not for non-
accidental mortality and respiratory-related mortality 
[17]. A cohort study spanning 22 provinces in China of 
elderly individuals found that people living in urban areas 
experienced higher health benefits of greenness. People 
living in rural regions were more likely to be harmed 
by air pollution [16]. Not all studies found a significant 
interaction between greenness and air pollution. An 
Israel-based study found the incorporation of greenness 

into the PM2.5 model did not improve the cardiovascular 
disease predictions for stroke and myocardial infarction, 
although air pollution and greenness had strong inde-
pendent effects on these outcomes [18]. As for MetS, 
KORA F4/FF4 cohort in Germany and Whitehall II study 
in the UK found the association between greenness and 
MetS was reversed and became positive after adjusting 
for PM2.5 in the model. In contrast, 33 Communities Chi-
nese Health Study (33CCHS) in China found this asso-
ciation was only partly attenuated after adjusting for air 
pollution [12–14].

Large uncertainty still exists about the pattern and 
mechanisms of greenness and air pollution impact 
on MetS. With the rapid urbanization and population 
aging in developing countries, including China, the role 
of these environmental determinants is yet to be deter-
mined. Using a cohort of older adults in eight regions 
in China, we aim to (1) estimate the prevalence of MetS 
and its components based on measured biomarkers, (2) 
determine the independent effects of PM2.5 and green-
ness on metabolic syndrome biomarkers, (3) assess the 
interactive effect of PM2.5 and greenness, and (4) to assess 
effect modification by age, gender, and urban versus 
rural regions. These analyses are anticipated to generate 
insights that can improve our limited understanding of 
whether and how the two important environmental fac-
tors related to urbanization affect metabolic syndrome, 
a health problem with increasing prevalence in rapidly 
developing parts of the world.

Methods
Study population
We used data from the sub-cohort of the Chinese Lon-
gitudinal Healthy Longevity Survey: Healthy Ageing 
and Biomarkers Cohort Study (HABCS). The study col-
lected blood samples for biomarker examinations dur-
ing 2008 to 2017 in eight places designated as longevity 
areas (Laizhou City of Shandong Province, Xiayi County 
of Henan Province, Zhongxiang City of Hubei Province, 
Mayang County of Hunan Province, Yongfu County of 
Guangxi Autonomous Area, Sanshui District of Guang-
dong Province, Chengmai County of Hainan Province 
and Rudong County of Jiangsu Province). The published 
cohort profile described the study design and sam-
ple method [19]. The waist circumference was meas-
ured since 2012. We set the study baseline at 2012 and 
excluded 85 participants aged younger than 65, 286 par-
ticipants with missing biomarker value, 91 participants 
with missing NDVI or PM2.5 value, and 222 participants 
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with missing covariates value (Fig.  S1). We finally 
included 1755 participants at baseline. During 2012–
2017, 1115 participants were followed up at least twice, 
and 519 participants were followed up three times.

Air pollution and residential greenness measurements
Ground-level PM2.5 concentrations were estimated 
by the Atmospheric Composition Analysis Group. 
They combined aerosol optical depth retrievals from 
the National Aeronautics and Space Administration’s 
Moderate Resolution Imaging Spectroradiometer, 
Multi-angle Imaging SpectroRadiometer, and Sea-
viewing Wide field-of-view Sensor satellite instru-
ments; vertical profiles derived from the GEOS-Chem 
chemical transport model; and calibration to ground-
based observations of PM2.5 using geographically 
weighted regression [20]. The resultant PM2.5 concen-
tration estimates were highly consistent (R2 = 0.81) 
with out-of-sample cross-validated PM2.5 concentra-
tions from monitors. We matched the annual average 
PM2.5 concentrations in a 1 km × 1 km grid to each 
participant’s residence [21].

We calculated Normalized Difference Vegetation Index 
(NDVI) with a 500-m radius around each participant’s 
residence to quantify greenness exposure. We used sat-
ellite images from the Moderate-Resolution Imaging 
Spectro-Radiometer (MODIS) in the National Aeronaut-
ics and Space Administration’s Terra Satellite. The NDVI 
calculation formula is near-infrared radiation minus vis-
ible radiation divided by near-infrared radiation plus 
visible radiation, ranging from − 1.0 to 1.0, with larger 
values indicating higher vegetative density levels. There 
are two NDVI values for January, April, July, and October 
between 2008 and 2014 in our database to reflect the sea-
sonal variation of greenness. We linked NDVI imagery to 
the longitude and latitude of each residential address and 
calculated greenness in 500 m radii.

We matched time-varying annual PM2.5 and NDVI of 
2008–2014 to the data. We calculated the average value 
of one-year, three-year, and five-year exposure time win-
dows as long-term cumulative exposures measurements. 
We used the same exposure results as the 2014 wave for 
the 2017 wave since we lacked the environmental expo-
sure data from 2014 to 2017.

Biomarker measurements
The participants provided the blood sample at the same 
time as the interview time in 2012, 2014, and 2017. The 
medical technician tested blood plasma biomarkers 
included fasting glucose, glycated serum protein (GSP), 
total cholesterol (TC), triglyceride (TG), and high-den-
sity lipoprotein cholesterol (HDL-C) using an Automatic 

Biochemistry Analyzer (Hitachi 7180, Japan) with com-
mercially available diagnostic kits (Roche Diagnostic, 
Mannheim, Germany) at Capital Medical University in 
Beijing. Low-density lipoprotein cholesterol (LDL-C) 
was calculated using the formula of Friedewald et  al.: 
LDL-C = TC-(HDL-C)-TG/5 [22].

Trained medical staff performed anthropometric meas-
urements for the participants, including waist circumfer-
ence, and two blood pressure measurements with at least 
a one-minute interval between them. We used the mean 
value of the two blood pressure measurements.

Definition of metabolic syndrome (MetS) and components
We defined the MetS using the Adult Treatment Panel 
III of the National Cholesterol Education Program (ATP 
III) guidelines, modified in accordance with the waist 
circumference cutoff points proposed by World Health 
Organization (WHO) for Asian populations (modified 
ATP III). It was defined as the presence of at least three 
of the following criteria: elevated fasting glucose (fasting 
glucose≥100 mg/dL), abdominal obesity (AO: Waist cir-
cumference ≥ 90 cm for males and ≥ 80 cm for females), 
hypertension (SBP ≥ 130/DBP ≥ 85 mmHg), hypertri-
glyceridemia (TG ≥ 150 mg/dL), and reduced HDL-C 
(HDLC< 40 mg/dL for males and < 50 mg/dL for females) 
[23, 24]. We also did sensitivity analysis for the MetS 
defined by the Joint Interim Societies [25].

Baseline covariates
We categorized the ethnicity as Han Chinese or ethnic 
minorities. We used years in schools as a measure of 
literacy level. We classified marital status into two cat-
egories: currently married and living with the spouse, or 
not married (widowed/separated/divorced/never mar-
ried/married but not living with the spouse). We classi-
fied city and town as “Urban”, and village as “Rural.” We 
firstly divided the regular exercise, smoking, and alcohol 
drinking status into three categories: “Current,” “Former,” 
and “Never”. For example, participants were asked, “do 
you do exercise regularly at present (planned exercise 
like walking, playing balls, running and so on)?” and/or 
“did you do exercise regularly in the past?”. We defined 
the regular exercise status as “Current” for participants 
who answered “Yes” to the first question, “Former” for 
who answered “No” to the first question and “Yes” to the 
second question, and “Never” for who answered “No” to 
both two questions. Then we further quantified the cur-
rent smoker based on the number of times smoke (or 
smoked) per day: < 20 times/day and ≥ 20 times/day. 
We also quantified the current alcohol drinker based on 
the kind of alcohol and how much they drank per day. 
The unit of alcohol was a Chinese unit of weight called 
‘Liang’ [50 g (g)]. The level of alcohol consumption was 
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calculated as drinks of alcohol per day, based on the 
beverage type and amount, assuming the following 
alcohol content by volume (v/v) typically seen in China: 
strong liquor 53%, weak liquor 38%, grape wine 12%, 
rice wine 15%, and beer 4% [26]. A standard drink was 
equal to 14.0 g of pure alcohol according to the criterion 
of the Center for Disease Control and Prevention in the 
USA, and moderate drinking is up to 1 drink per day for 
women and up to 2 drinks per day for men according to 
Dietary Guidelines for Americans 2015–2020. Therefore, 
we defined those who drank equal or less than 14 g pure 
alcohol per day for the female or 28 g per day for the male 
as light drinkers, otherwise heavy drinkers. We collected 
Gross Domestic Product (GDP) per capita by county/dis-
trict from the local statistical yearbook.

Statistical analysis
We described univariate statistics of our exposure, 
outcome variables, and covariates in eight areas. We 
built the multivariate logistic regression model in the 
cross-sectional analysis to analyze the association 
between residential environment (residential green-
ness and ambient air pollution) and baseline MetS 
and each component. For the longitudinal analysis, 
we used generalized estimating equations (GEE) to 
assess the association between the repeatedly meas-
ured residential environment and the repeatedly 
measured metabolic biomarkers. For each biomarker: 
firstly, we built the single exposure model to regress 
only one environment factor on the biomarker; Sec-
ond, we built the two-exposure model to regress both 
greenness and air pollution on the biomarker; Third, 
we added the product term of centered greenness and 
air pollution (NDVI×PM2.5) in the model to assess 
their interaction and one exposure’s association with 
the outcome under another exposure’s mean level. 
We adjusted for biomarker measurement year, base-
line age, sex, ethnicity, education, marriage, residence, 
exercise, smoking, alcohol drinking, and GDP per 
capita in these models. Considering gender difference 
plays a vital role in the health of the old population, 
we further examined the greenness, air pollution, 
and gender three-way interaction by adding the term 
“NDVI×PM2.5 × Sex” in the model. We performed 
sensitivity analyses using environment exposure of 
different time windows (1 year or five-year average 
NDVI or PM2.5). Given the selection bias due to lost to 
follow-up, we also built models for those with at least 
one follow-up. We conducted stratified analyses based 
on age, sex, and residence to test the possible modifi-
cation. We set the nominal significance level at 0.05. 
We used R 4.0.0 to run all the analyses.

Results
Population characteristics and environmental exposure 
level
We studied 1755 participants aged 65 to 112 years old, 
with a mean age of 85 (SD:12.2); 53.8% were female. 
Most were Han participants (92.3%), lived in rural areas 
(83.1%), never had regular exercise (81.9%), never smoked 
(75.4%), and never drank alcohol (77.9%). There were 
370 (21.1%) participants who fit the criteria for MetS, 
583 (33.2%) for abdominal obesity (AO), 307 (17.5%) for 
elevated fasting glucose, 1285 (73.2%) for hypertension, 
157 (8.9%) for hypertriglyceridemia, and 679 (38.7%) for 
reduced HDL-C (Table 1). Those who were lost of follow-
up were older, more likely to be female, living in areas 
with higher GDP, not currently married, and without for-
mal education (Table S1).

PM2.5 was not associated with NDVI (Pearson correla-
tion coefficient: 0.0004; p > 0.05). The three-year NDVI 
(0.1 unit) of the rural area was slightly higher than the 
urban area (mean: 4.96 vs. 4.44; range: 1.51–6.98 vs. 
1.33–6.44), and the mean of three-year PM2.5 (10 μg/m3) 
were almost the same in the rural and urban areas (mean: 
4.90 vs. 4.91; range: 1.62–6.53 vs. 1.83–6.42) of our sam-
ple (Table 1). The mean of the three-year NDVI (0.1 unit) 
of the eight counties was 4.88 (SD: 0.94), ranging from 
3.36 (0.81) in Sanshui to 5.37 (0.59) in Rudong. The mean 
of three-year PM2.5 (10 μg/m3) of the eight areas was 4.90 
(SD: 1.53), ranging from 1.83 μg/m3 (SD: 0.03) in Cheng-
mai to 6.42 μg/m3 (SD: 0.02) in Xiayi (Fig. 1, Table S2).

Environmental exposure and MetS
In both the cross-sectional and longitudinal analyses, 
higher PM2.5 was associated with higher odds of MetS 
[OR (95%CI): 1.17 (1.07, 1.28) and 1.16 (1.08, 1.24) 
respectively], and the association between NDVI and 
MetS tended to be negative but was not statistically sig-
nificant [OR (95%CI): 0.94 (0.81, 1.09) and 0.93 (0.84, 
1.04) respectively]. These associations did not change 
when adding both PM2.5 and NDVI in the model, and 
there was no significant interaction between PM2.5 and 
NDVI on MetS (Table 2 & Table S3).

Environmental exposure and MetS components
In both the cross-sectional and longitudinal analyses, 
higher PM2.5 was associated with higher odds of AO [OR 
(95%CI): 1.25 (1.16, 1.36) and 1.19 (1.12, 1.27) respec-
tively], while higher NDVI was associated with lower 
odds of AO [OR (95% CI): 0.81 (0.71, 0.92) and 0.79 
(0.71, 0.88) respectively] (Table  2 & Table  S3). In addi-
tion, higher PM2.5 was associated with higher waist cir-
cumference [mean difference (95% CI): 1.12 (0.83, 1.40)] 
while higher NDVI was associated with lower waist 
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circumference [mean difference (95% CI): − 1.21 (− 1.76, 
− 0.66)] (Table S4).

For the lipids, higher PM2.5 was only associated with 
higher odds of reduced HDL-C [OR (95%CI): 1.14 
(1.07, 1.21)] in the longitudinal analyses. There were 
no significant association between PM2.5 and TG or 

hypertriglyceridemia, or between NDVI and TG, HDL-
C, hypertriglyceridemia or reduced HDL-C. Besides, 
PM2.5 and NDVI were both negatively associated with TC 
and LDL-C (Table 2, Table S4). The association between 
PM2.5 and elevated fasting glucose were not statisti-
cally significant in either cross-sectional or longitudinal 

Table 1  Baseline population characteristics

Variables Residence Overall

Urban (N = 296) Rural (N = 1459) (N = 1755)

3-year average NDVI: mean (SD) (0.1 unit) 4.44 (1.25) 4.96 (0.83) 4.88 (0.94)

3-year average PM2.5: mean (SD) (10 μg/m3) 4.91 (1.14) 4.90 (1.60) 4.90 (1.53)

GDP per capita in 2012: mean (SD) (10,000 RMB) 4.77 (4.85) 4.27 (3.64) 4.35 (3.87)

Sex: n(%) Male 127 (42.9) 683 (46.8) 810 (46.2)

Age: mean (SD) 84.6 (11.9) 85.8 (12.3) 85.6 (12.2)

Schooling year: n(%)
  No formal education 168 (56.8) 918 (62.9) 1086 (61.9)

  1–6 years education 88 (29.7) 417 (28.6) 505 (28.8)

   > 6 years education 40 (13.5) 124 (8.5) 164 (9.3)

Ethnicity: n(%) Han 269 (90.9) 1351 (92.6) 1620 (92.3)

Marriage: n(%) Currently married 115 (38.9) 563 (38.6) 678 (38.6)

Exercise: n(%)
  Never 238 (80.4) 1199 (82.2) 1437 (81.9)

  Former 4 (1.4) 37 (2.5) 41 (2.3)

  Current 54 (18.2) 223 (15.3) 277 (15.8)

Smoking: n(%)
  Never 244 (82.4) 1079 (74.0) 1323 (75.4)

  Former 17 (5.7) 128 (8.8) 145 (8.3)

   < 20 times/day 21 (7.1) 141 (9.7) 162 (9.2)

   ≥ 20 times/day 14 (4.7) 111 (7.6) 125 (7.1)

Alcohol: n(%)
  Never 245 (82.8) 1123 (77.0) 1368 (77.9)

  Former 20 (6.8) 80 (5.5) 100 (5.7)

   ≤ 14 g/d(female) 28(male) 9 (3.0) 91 (6.2) 100 (5.7)

   > 14 g/d(female) 28(male) 22 (7.4) 165 (11.3) 187 (10.7)

TC: mean (SD) (mmol/L) 4.30 (0.954) 4.28 (0.981) 4.29 (0.976)

LDL-C: mean (SD) (mmol/L) 2.43 (0.821) 2.57 (0.821) 2.54 (0.822)

TG: median (P25-P75) (mg/dL) 87 (61–118) 70 (51–98) 73 (52–102)

HDL-C: mean (SD) (mg/dL) 51.3 (15.2) 49.8 (13.7) 50.1 (14.0)

Waist circumference: mean (SD) (centimeter) 79.6 (11.4) 79.7 (10.8) 79.6 (10.9)

Fasting glucose: median (P25-P75) (mg/dL) 76 (54–91) 80 (68–93) 80 (67–92)

SBP: mean (SD) (mmHg) 141 (21.1) 140 (23.1) 141 (22.8)

DBP: mean (SD) (mmHg) 82.8 (11.2) 80.8 (12.1) 81.1 (11.9)

Abdominal obesity: n(%) Yes 107 (36.1) 476 (32.6) 583 (33.2)

Elevated fasting glucose: n(%) Yes 41 (13.9) 266 (18.2) 307 (17.5)

Hypertension: n(%) Yes 225 (76.0) 1060 (72.7) 1285 (73.2)

Hypertriglyceridemia: n(%) Yes 40 (13.5) 117 (8.0) 157 (8.9)

Reduced HDL-C: n(%) Yes 112 (37.8) 567 (38.9) 679 (38.7)

Mets: n (%) Yes 67 (22.6) 303 (20.8) 370 (21.1)
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analyses [OR (95%CI): 1.08 (0.99, 1.19) and 1.06 (0.99, 
1.13) respectively]. NDVI showed a negative associa-
tion with the odds of elevated fasting glucose only in the 
cross-sectional analyses [OR (95%CI): 0.84 (0.72, 0.99)] 

(Table 2, Table S3). Both PM2.5 and NDVI were not asso-
ciated with hypertension in either cross-sectional or 
longitudinal analyses. These results also persisted in the 
two-exposure model (Table 2, Table S3 and S4).

Fig. 1  The NDVI and PM2.5 level in the eight sample districts. Note: We used “ggplot2” and “sf” packages in R 4.0.0 (URL https://​www.R-​proje​ct.​org/) 
to draw the map

Table 2  The association between the greenness and air pollution with the metabolic syndrome and the components (Binary 
outcome) in the longitudinal analysisa

a All models adjusted for biomarker measurement year, baseline age, sex, ethnicity, education, marriage, residence, exercise, smoking, alcohol drinking, and GDP per 
capita

Outcome Exposure Greenness single 
exposure model (0.1 
unit increase of NDVI)

PM2.5 single exposure 
model (10 μg/m3 
increase of PM2.5)

Greenness & PM2.5 two 
exposure model

Centered Greenness & 
PM2.5 interaction model

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value Beta std error p value

Abdominal obesity NDVI 0.79 (0.71, 0.88) < 0.001 0.81 (0.73, 0.90) < 0.001 −0.210 0.056 < 0.001

Abdominal obesity PM2.5 1.19 (1.12, 1.27) < 0.001 1.18 (1.11, 1.26) < 0.001 0.199 0.037 < 0.001

Abdominal obesity NDVIPM2.5 −0.088 0.039 0.025

Elevated fasting glucose NDVI 0.93 (0.84, 1.04) 0.192 0.94 (0.85, 1.05) 0.277 −0.054 0.055 0.332

Elevated fasting glucose PM2.5 1.06 (0.99, 1.13) 0.071 1.06 (0.99, 1.13) 0.096 0.027 0.037 0.464

Elevated fasting glucose NDVI*PM2.5 0.076 0.042 0.073

Hypertension NDVI 0.99 (0.89, 1.11) 0.902 0.99 (0.89, 1.10) 0.872 −0.008 0.055 0.885

Hypertension PM2.5 0.99 (0.93, 1.06) 0.762 0.99 (0.93, 1.06) 0.75 −0.015 0.039 0.696

Hypertension NDVI*PM2.5 0.012 0.049 0.808

Hypertriglyceridemia NDVI 1.01 (0.89, 1.16) 0.843 1.02 (0.89, 1.17) 0.752 0.042 0.074 0.574

Hypertriglyceridemia PM2.5 1.04 (0.95, 1.13) 0.449 1.04 (0.95, 1.14) 0.43 −0.026 0.049 0.592

Hypertriglyceridemia NDVI*PM2.5 0.158 0.056 0.005

Reduced HDL-C NDVI 0.98 (0.88, 1.08) 0.646 1.00 (0.90, 1.11) 0.998 0.001 0.055 0.981

Reduced HDL-C PM2.5 1.14 (1.07, 1.21) < 0.001 1.14 (1.07, 1.21) < 0.001 0.095 0.036 0.009

Reduced HDL-C NDVI*PM2.5 0.095 0.041 0.019

MetS NDVI 0.93 (0.84, 1.04) 0.213 0.96 (0.86, 1.07) 0.462 −0.042 0.057 0.461

MetS PM2.5 1.16 (1.08, 1.24) < 0.001 1.15 (1.07, 1.24) < 0.001 0.121 0.040 0.003

MetS NDVI*PM2.5 0.053 0.043 0.213

https://www.r-project.org/
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Sensitivity analyses
Using the one-year and five-year average exposure win-
dow, the above associations persisted except for that the 
positive association between one-year PM2.5 and odds of 
elevated fasting glucose became statistically significant 
(Table S5). Among those with at least one follow-up, the 
results did not change significantly either (Table S6). The 
findings based on the Joint Interim Societies definition of 
MetS were also similar (Table S7).

Possible effect modification
We found a significant interaction of PM2.5 and NDVI 
on AO (beta estimate of interaction term = − 0.088, 
P =  0.025) and waist circumference (beta estimate of 
interaction term = − 0.396, P = 0.031) (Table 2, Table S4). 
Higher PM2.5 was associated with a higher probability of 
AO, and the association for exposure beyond 30 μg/m3 
became stronger with the increase of the greenness level. 
Higher NDVI was associated with a lower probability 
of AO and the association was stronger under relatively 
higher PM2.5 exposure (Fig. 2). For the three-way interac-
tion of air pollution, greenness, and gender on metabolic 
biomarkers, we only found a significant three-way inter-
action on GSP. In areas with low NDVI, the association 
strength and direction of PM2.5 with GSP in the females 
were different from males, and applies in areas with high 
NDVI (Fig. S2).

In the stratified analysis, the association between PM2.5 
and AO was weaker in areas with high NDVI exposure 
than areas with low NDVI [OR (95%CI): 1.17 (1.08, 1.28) 
vs. 1.25 (1.13, 1.39)]. The association between NDVI 
and AO was only significant in areas with low PM2.5 
[OR (95%CI): 0.61 (0.52, 0.73)]. PM2.5 shown a harmful 
association with MetS, AO, elevated fasting glucose, and 
reduced HDL-C only in rural areas [OR (95%CI): 1.18 
(1.09, 1.28) for MetS, 1.22 (1.14, 1.30) for AO, 1.08 (1.01, 
1.16) for elevated fasting glucose, and 1.15 (1.07, 1.23) for 
reduced HDL-C], not in urban areas. NDVI’s protective 
association with AO was a little stronger in urban areas 
than rural areas. The association between PM2.5 with 
MetS, AO, reduced HDL-C were stronger in the male 
than female, and the association between NDVI with 
AO were similar for males and females. The association 
between PM2.5 and MetS as well as its components were 
all more significant in the population aged younger than 
80 compared to those aged 80 or older. NDVI was still 
not associated with MetS in the two different age groups, 
but had a stronger association with AO in those younger 
than 80 (Table 3).

Discussion
We found air pollution could increase the risk of MetS, 
AO, and reduced HDL-C while residential greenness 
could decrease the risk of AO. We further identified an 

Fig. 2  The interaction model of PM2.5 and NDVI on abdominal obesity in the longitudinal analysis. Note: The figure was based on the logistic 
regression for abdominal obesity including the interaction term of PM2.5 and NDVI adjusting for biomarker measurement year, baseline age, 
sex, ethnicity, education, marriage, residence, exercise, smoking, alcohol drinking, and GDP per capita. Higher PM2.5 was associated with higher 
probability of AO, and the effect size decreased with the increase of the greenness level for exposure beyond 30 μg/m3. Higher NDVI was associated 
with lower probability of AO and the effect size was stronger under relatively higher PM2.5 exposure. We used R package "interactions" to draw the 
figure.
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Table 3  The association between the greenness and air pollution with the metabolic syndrome and the components (Binary 
outcome) in the longitudinal analysis stratified by PM2.5, NDVI, age, sex, and residencea

a All models adjusted for biomarker measurement year, baseline age, sex, ethnicity, education, marriage, residence, exercise, smoking, alcohol drinking, and GDP per 
capita

Outcome (Yes vs. No) 3-year average NDVI (0.1 unit) 3-year average PM2.5 (10 μg/m3)

Subgroup OR (95% CI) p value Subgroup OR (95% CI) p value

Abdominal obesity PM2.5 (10 μg/m3) < 5.32 0.61 (0.52, 0.73) < 0.001 NDVI (0.1 unit) < 5.24 1.25 (1.13, 1.39) < 0.001

Elevated fasting glucose 0.91 (0.77, 1.06) 0.224 0.98 (0.88, 1.08) 0.625

Hypertension 0.94 (0.81, 1.10) 0.433 1.02 (0.91, 1.14) 0.767

Hypertriglyceridemia 0.89 (0.73, 1.08) 0.238 0.91 (0.79, 1.06) 0.241

Reduced HDL-C 0.98 (0.83, 1.15) 0.784 1.11 (0.99, 1.23) 0.064

MetS 0.82 (0.69, 0.97) 0.021 1.12 (1.00, 1.26) 0.051

Abdominal obesity PM2.5 (10 μg/
m3) ≥ 5.32

0.99 (0.85, 1.15) 0.893 NDVI (0.1 unit) ≥5.24 1.17 (1.08, 1.28) < 0.001

Elevated fasting glucose 0.99 (0.86, 1.15) 0.911 1.07 (0.98, 1.18) 0.123

Hypertension 0.96 (0.81, 1.15) 0.679 1.01 (0.92, 1.10) 0.838

Hypertriglyceridemia 1.16 (0.92, 1.45) 0.203 1.05 (0.93, 1.18) 0.423

Reduced HDL-C 1.04 (0.90, 1.20) 0.637 1.06 (0.97, 1.16) 0.187

MetS 1.06 (0.91, 1.24) 0.441 1.13 (1.02, 1.25) 0.015

Abdominal obesity Urban 0.76 (0.62, 0.93) 0.007 Urban 1.07 (0.88, 1.31) 0.493

Elevated fasting glucose 0.90 (0.73, 1.10) 0.297 0.92 (0.73, 1.15) 0.450

Hypertension 1.09 (0.88, 1.34) 0.438 1.02 (0.80, 1.30) 0.848

Hypertriglyceridemia 1.08 (0.84, 1.37) 0.549 1.05 (0.80, 1.38) 0.720

Reduced HDL-C 1.09 (0.89, 1.34) 0.422 0.96 (0.77, 1.19) 0.706

MetS 1.00 (0.82, 1.22) 0.984 1.01 (0.80, 1.28) 0.923

Abdominal obesity Rural 0.82 (0.72, 0.93) 0.003 Rural 1.22 (1.14, 1.30) < 0.001

Elevated fasting glucose 0.94 (0.83, 1.06) 0.292 1.08 (1.01, 1.16) 0.024

Hypertension 0.96 (0.84, 1.09) 0.530 0.99 (0.92, 1.06) 0.742

Hypertriglyceridemia 0.98 (0.82, 1.16) 0.800 1.05 (0.95, 1.15) 0.370

Reduced HDL-C 0.95 (0.84, 1.07) 0.371 1.15 (1.07, 1.23) < 0.001

MetS 0.91 (0.80, 1.04) 0.150 1.18 (1.09, 1.28) < 0.001

Abdominal obesity Male 0.78 (0.67, 0.92) 0.003 Male 1.37 (1.22, 1.53) < 0.001

Elevated fasting glucose 0.95 (0.81, 1.10) 0.464 1.05 (0.95, 1.15) 0.334

Hypertension 1.07 (0.92, 1.25) 0.373 1.05 (0.96, 1.14) 0.336

Hypertriglyceridemia 1.09 (0.88, 1.36) 0.420 1.03 (0.90, 1.18) 0.667

Reduced HDL-C 0.95 (0.82, 1.11) 0.553 1.17 (1.04, 1.32) 0.008

MetS 0.97 (0.81, 1.16) 0.751 1.22 (1.08, 1.39) 0.002

Abdominal obesity Female 0.79 (0.68, 0.92) 0.002 Female 1.11 (1.02, 1.20) 0.011

Elevated fasting glucose 0.91 (0.79, 1.05) 0.201 1.06 (0.97, 1.16) 0.183

Hypertension 0.95 (0.81, 1.11) 0.525 0.96 (0.87, 1.06) 0.392

Hypertriglyceridemia 0.96 (0.80, 1.14) 0.614 1.04 (0.92, 1.18) 0.500

Reduced HDL-C 0.98 (0.85, 1.13) 0.791 1.11 (1.02, 1.20) 0.012

MetS 0.91 (0.80, 1.05) 0.199 1.11 (1.02, 1.22) 0.018

Abdominal obesity Age < 80 0.75 (0.63, 0.89) 0.001 Age < 80 1.26 (1.14, 1.40) < 0.001

Elevated fasting glucose 0.97 (0.82, 1.14) 0.728 1.10 (0.99, 1.22) 0.067

Hypertension 0.98 (0.84, 1.15) 0.816 1.05 (0.95, 1.16) 0.326

Hypertriglyceridemia 1.04 (0.85, 1.27) 0.699 1.13 (1.00, 1.29) 0.048

Reduced HDL-C 0.86 (0.74, 1.01) 0.065 1.23 (1.10, 1.37) < 0.001

MetS 0.95 (0.80, 1.12) 0.513 1.27 (1.13, 1.42) < 0.001

Abdominal obesity Age ≥ 80 0.82 (0.71, 0.94) 0.005 Age ≥ 80 1.16 (1.07, 1.26) < 0.001

Elevated fasting glucose 0.90 (0.79, 1.03) 0.128 1.03 (0.94, 1.12) 0.546

Hypertension 1.00 (0.86, 1.17) 0.968 0.97 (0.89, 1.06) 0.473

Hypertriglyceridemia 1.00 (0.82, 1.21) 0.966 0.94 (0.83, 1.07) 0.362

Reduced HDL-C 1.06 (0.92, 1.21) 0.425 1.10 (1.01, 1.19) 0.022

MetS 0.93 (0.81, 1.07) 0.306 1.09 (0.99, 1.20) 0.078
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environment-environment interaction of air pollution-
greenness on AO. The association strength for air pol-
lution decreased along with the increase of greenness. 
The association for greenness was stronger under high-
level air pollution exposure than that under low-level air 
pollution.

Two recent meta-analysis studies on air pollution 
and MetS showed inconsistent findings. One found 
PM2.5 (per 10 μg/m3 increase) was not significantly 
associated with MetS prevalence [OR (95% CI): 1.34 
(0.96, 1.89), P = 0.09] or MetS incidence [Hazard ratio 
(HR): 2.78 (95% CI: 0.70, 11.02), P = 0.15] [8], while 
another one found annual PM2.5 (per 5 μg/m3 increase) 
was associated with 14% of MetS risk  increase [Risk 
Ratio (RR): 1.14 (95% CI: 1.03, 1.25)] [9]. The included 
studies reported associations of different sizes in var-
ied areas. Some studies were conducted in areas with 
a mean PM2.5 higher than 50 μg/m3. A study in north-
ern rural China reported the adjusted OR of MetS 
for per 5 μg/m3 increment in PM2.5 was 1.42 (95% CI: 
1.36, 1.49) [11], while another study only found bor-
derline associations and reported the adjusted odds 
ratio of MetS per 10 μg/m3 increment in PM2.5 was 
1.09 (95% CI: 1.00, 1.18) in northern urban China 
[10]. A Korean national cohort found PM2.5 level was 
significantly associated with a higher risk for develop-
ing MetS [HR (95% CI): 1.07 (1.03, 1.11)] [27]. Some 
studies were conducted in areas with a mean PM2.5 
lower than 50 μg/m3. The study in Saudi Arabian pop-
ulation in Jeddah observed a significant association 
between a 10 μg/m3 increase in PM2.5 and increased 
risks for MetS [RR (95% CI): 1.12 (1.06, 1.19)] [28]. 
Another study in the highly urbanized German Ruhr 
Area reported the OR of per interquartile range 
(IQR = 1.5 μg/m3) PM2.5 was 1.04 (95% CI: 0.92, 1.17) 
for MetS prevalence and 1.21 (95% CI: 0.99, 1.48) for 
MetS incidence [29]. A 1-μg/m3 increase of PM2.5 was 
associated with a higher risk of developing MetS [HR 
(95% CI): 1.27 (1.06, 1.52)] in an US older men cohort 
[27]. We found PM2.5 was only significantly associated 
with MetS in rural areas [OR (95%CI) for 10 μg/m3 
increment in PM2.5: 1.18 (1.09, 1.28)], and not in urban 
populations. More studies on air pollution-MetS risk 
association, especially in low−/middle-income coun-
tries, are warranted.

There are a few meta-analyses demonstrated the 
association between PM2.5 and MetS composition 
biomarker: long-term exposure of PM2.5 was associ-
ated with a higher level of BMI with the pooled β (95% 
CI) of 0.34 (0.30, 0.38) per 10 mg/m3 increment [30], 
higher type 2 diabetes incidence [HR (95% CI): 1.10 
(1.04, 1.17) per 10 μg/m3 increment] [6], and higher 

hypertension prevalence [OR (95% CI):1.05 (1.01, 1.09)] 
[31]. A few studies found air pollutants only signifi-
cantly associated with TC, not with HDL-C or TG [5]. 
A previous CLHLS study reported higher 3-year aver-
age exposure to PM2.5 was associated with higher fast-
ing blood glucose [32]. In our research, we also found 
higher PM2.5 associated with AO, reduced HDL-C and 
elevated fasting glucose, which was robust among dif-
ferent age and sex groups. However, we only saw PM2.5 
increased the risk for elevated fasting glucose in rural 
areas, and risk for hypertriglyceridemia in the popu-
lation aged younger than 80. We found no significant 
association between PM2.5 and hypertension.

The negative association between greenness and MetS 
tended to be insignificant in the elderly based on previ-
ous studies, which congruent to our observation. KORA 
F4/FF4 cohort in German found a negative association 
between greenness and MetS in both cross-sectional 
and longitudinal analysis in German but both were insig-
nificant [14]. The 33CCHS conducted in northern urban 
China found the adjusted OR of MetS per IQR increase 
in 500 m buffer NDVI of August was 0.81 (95% CI: 0.70, 
0.93) for the total population aged 18–74 years, but the 
association disappeared in subgroup participants aged 
≥65 [13]. Whitehall II study in the UK (aged 45–69 years 
at baseline) found a significant negative association [12]. 
We did not find a significant association of NDVI on 
MetS in any subgroup in urban or rural areas, for female 
or male, aged from 65 to 80 or older than 80.

For MetS composition biomarker, a recent meta-analy-
sis showed higher NDVI was associated with lower odds 
of overweight/obesity [OR (95% CI): 0.88 (0.84, 0.91)], 
and most studies were from developed nations (88%) 
[33]. We also found NDVI associated with lower odds of 
AO. The possible pathway can be that green spaces could 
decrease sympathetic nervous system activation [34]. A 
study in urban northeastern China found higher green-
ness was consistently associated with lower TC, TG, 
LDL-C levels, higher HDL-C levels [35], and lower fast-
ing glucose levels [36]. We also found greenness nega-
tively associated with TC, LDL-C, but not associated 
with TG, HDL-C, or fasting glucose.

We found PM2.5 and NDVI were both associated with 
the metabolic biomarkers. The association varied in dif-
ferent age, sex, and residence categories. PM2.5 inhala-
tion could cause pulmonary and systemic inflammation. 
According to the animal findings, rats that were exposed 
to Beijing’s highly polluted air experienced the follow-
ing changes: perivascular and peribronchial inflamma-
tion in the lungs, increased tissue and systemic oxidative 
stress, dyslipidemia, and enhanced proinflammatory sta-
tus of epididymal fat. TLR2/4-dependent inflammatory 
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activation and lipid oxidation in the lung can spill over 
systemically, leading to metabolic dysfunction and weight 
gain [37]. The pathways linking greenness to health 
include physical activity (50 studies), air pollution (43 
studies), social interaction/cohesion (27 studies), mental 
health/stress/well-being (17 studies), perceived green-
ness/use (16 studies), and physical health/biomarker 
(14 studies) and other factors according to the latest 
review of previous empirical studies [38]. Greenness 
may decrease the risk for obesity by promoting exercise. 
Greenness and air pollution may act in separate pathways 
since our two exposure models showed no major media-
tion effect according to the similar estimates of the single 
exposure and two-exposure models.

For the relationship between air pollution and green-
ness, a longitudinal study in China found a significant 
interaction between PM2.5 and NDVI on all-cause 
mortality, and individuals living in areas with more 
greenness appear to be affected more by air pollution, 
but it showed no monotonic trend [16]. An ecological 
study in Greece found a significant inverse interaction 
between PM2.5 and NDVI on cardiovascular mortality 
with the PM2.5 effects decreasing in areas with higher 
greenery, and they found no interaction on natural-
cause mortality [39]. Previous studies have related 
both greenness and PM2.5 with metabolic syndrome 
and biomarkers. However, most studies only consid-
ered PM2.5 as a mediator of greenness. There has been 
no study reported on the interaction of air pollution 
and greenness on metabolic biomarkers. We reported 
NDVI had a significant interaction with PM2.5 on AO, 
but no interaction on metabolic syndrome.

Our study has several strengths. First, our cohort has a 
relatively older mean age than previous studies, and it has 
a large sample of centenarians which is rare in the world. 
Secondly, a limited number of studies focused on green-
ness and the multiple exposures of both air pollution and 
greenness. While individual studies on environmental 
predictors exist, ours is a novel approach to assessing the 
interaction of air pollution and greenness on metabolic 
syndrome biomarkers. Third, many previous studies were 
conducted in specific regions like rural or urban areas. 
We identified high-risk vulnerable older adults from 
different geographic regions of China. Fourth, we had 
repeat measurements of a variety of individual metabolic 
biomarkers. Fifth, we calculated the greenness and air 
pollution level at the individual residence level, and we 
tested different exposure time windows before the health 
outcome. We also surveyed a wide range of lifestyle and 
district factors to adjust for possible confounding.

There are several limitations to our study. The specific 
oldest-old population also limited the generalizability 

of our findings. Those who were lost to follow-up were 
older, with a possible selection bias. Thus, we did sensi-
tivity analysis only for those with at least one follow-up, 
and the results persisted. We lacked the exposure data 
from 2015 to 2017 and used the same exposure as the 
2014 wave for the 2017 wave. We found this should not 
affect our results much since the trend of PM2.5 across 
2008–2014 was steady within each area. The sensitivity 
analysis showed no significant difference among one-
year, three-year, and five-year exposure windows. There 
is also no extensive heterogeneity of PM2.5 measurement 
among participants within each area. This possible mis-
classification usually attenuates the association to null, 
which means the exposure of higher resolution may show 
a stronger association with the health outcomes. In addi-
tion, we have no indoor air pollution measurements or 
greenness accessibility data to account for the dynamic 
personal exposure, which limited the accuracy of the 
exposure measurement. For the outcome, we lack the 
metabolism medication information to better define the 
metabolic syndrome, which may cause underestimating 
MetS prevalence. We presented the real-world observa-
tional evidence, and there may be residual confounding 
like the diet. We conducted multiple comparisons with-
out correction, for which we exercised caution by pre-
senting confidence intervals and exact p-value.

Conclusions
Our findings contributed to the evidence of harmful 
association of PM2.5 and protective association of NDVI 
with specific MetS components in an oldest-old popula-
tion, newly identified a significant interaction between 
PM2.5 and NDVI on AO, and demonstrated the differ-
ence between urban and rural areas. Other than the per-
sonal actionable lifestyle risk factors, it is also necessary 
to incorporate environmental determinants into meta-
bolic diseases prevention. This study emphasized the 
importance of green space planning in urban areas and 
air pollution mitigation in rural areas to decrease the 
CVD burden contributed by MetS biomarkers for the 
policymakers. Further studies can examine if PM2.5 and 
NDVI only interact or if their effect can counteract each 
other and explore the underlying biology pathway.
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