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Abstract: We derive time evolution equations, namely the Klein–Gordon equations for coherent fields
and the Kadanoff–Baym equations in quantum electrodynamics (QED) for open systems (with a
central region and two reservoirs) as a practical model of quantum field theory of the brain. Next,
we introduce a kinetic entropy current and show the H-theorem in the Hartree–Fock approximation
with the leading-order (LO) tunneling variable expansion in the 1st order approximation for the
gradient expansion. Finally, we find the total conserved energy and the potential energy for time
evolution equations in a spatially homogeneous system. We derive the Josephson current due to
quantum tunneling between neighbouring regions by starting with the two-particle irreducible
effective action technique. As an example of potential applications, we can analyze microtubules
coupled to a water battery surrounded by a biochemical energy supply. Our approach can be also
applied to the information transfer between two coherent regions via microtubules or that in networks
(the central region and the Nres reservoirs) with the presence of quantum tunneling.

Keywords: non-equilibrium quantum field theory; open systems; quantum electrodynamics; brain
dynamics

1. Introduction

What is a physical mechanism of generating memory in the brain, and where is memory stored
in the brain? These are still open questions in contemporary neuroscience [1,2]. We know that
memory has an aspect of information encoding and retrieval as well meaning attached to this
information. In information theory, we adopt Shannon entropy as a measure of information content [3].
This entropy increases as the uncertainty associated with information becomes larger. On the other
hand, in thermodynamics we use thermodynamic Boltzmannian entropy as a measure of disorder
in a physical system. This entropy increases as the order of the system is reduced. If Shannon
entropy represents the same concept as thermodynamic entropy, we must adopt an ordered system to
memorize information. There might be no way to memorize information without adopting an ordered
physical system as has been earlier discussed within quantum field theory (QFT) [4]. In QFT, order is
associated with the breakdown of symmetry [5]. For example, crystals are ordered quantum systems of
discretely arranged atoms, where continuous translational symmetry is spontaneously broken. Order is
maintained by long-range correlations involving phonons, with Nambu–Goldstone (NG) quanta [6–8]
emerging as quantum excitations from the ground state in spontaneous symmetry breaking (SSB).
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Since NG quanta are massless, macroscopic order emerges due to these long-range correlations.
Ferromagnets are examples of ordered quantum systems composed of magnetic dipoles aligned in the
same direction, so that rotational symmetry is spontaneously broken when the ferromagnetic phase
is generated by magnetic moment alignment. This order is maintained by long-range correlations
involving magnons, which are massless NG quanta emerging in SSB. The concept of SSB can be
adopted in QFT (with infinite unitarily- or physically-inequivalent vacua) distinguished from quantum
mechanics in which the concept of SSB does not appear. Furthermore, QFT is conventionally applied
to macroscopic matter, although its application is not restricted only to microscopic phenomena [5].
Hence, it is reasonable and convenient to adopt QFT with the possibility of spontaneous symmetry
breakdown for the physical description of ordered systems, which contain information, or memory.

Quantum field theory of the brain, or quantum brain dynamics (QBD), represents a proposal to
describe memory formation in the brain by adopting the breakdown of symmetry [9,10]. Memory in
the brain has properties of heterogeneity, long-term but imperfect stability, and diffuse nonlocal nature
Each memory is diffused and not localized to particular regions in the brain. It does not disappear due
to the destruction of particular local regions. [11–13]. The QBD can describe these properties of memory
in the brain by adopting unitarily inequivalent vacua, namely diverse coherent states. One vacuum is
imperfectly stable and transferred to another over the course of time. Each vacuum is characterized
by macroscopic spatial extension with long-range correlations. The QBD originated in the work by
Ricciardi and Umezawa in 1967 [14], where external stimuli trigger SSB of the system or macroscopic
order. In the 1970s, this model was further developed by Stuart et al. [15,16], whereby the brain is
envisaged as a mixed system of classical neurons and microscopic degrees of freedom, namely corticons
and exchange bosons, which were not specifically identified at this stage. Around the same time,
Fröhlich studied a theory of biological coherence involving electric dipoles contained in the membranes
of biological systems [17–22]. When the frequencies of oscillating dipoles in the system are within
a narrow range around the resonance frequencies and coupling constants of interaction with heat
bath and energy pump are large enough, an ordered state with the dielectric polarization (where
electric dipoles are dynamically aligned in the same direction) emerges leading to the breakdown
of symmetry and the coherent wave propagation of dipole oscillation forms a so-called Fröhlich
condensate. In 1976, Davydov and Kislukha proposed a theory of solitary waves propagating in
DNA and protein chains (alpha-helices) called the Davydov soliton [23]. The theories of coherence
in biological systems by Fröhrich and Davydov can be described by static and dynamical properties
of the nonlinear Schrödinger equation with an equivalent quantum Hamiltonian, respectively [24].
In the 1980s, Del Giudice et al., studied collective properties of electric dipoles of water in biological
systems based on QFT [25–27]. After the analysis of water’s electric dipole fields in biological systems,
Jibu and Yasue identified concrete microscopic degrees of freedom of QBD (corticons and exchange
bosons) in the 1990s, namely water electric dipole fields and massive photon fields [9,28–31]. The QBD
is essentially Quantum Electrodynamics (QED) of water electric dipoles. They adopted a superradiant
phase, which represents the coherent state of water dipoles and massive photons [32–36]. When water
electric dipoles are aligned in the same direction, the rotational symmetry is spontaneously broken,
and polaritons, NG bosons, emerge in the SSB. They are absorbed into the longitudinal modes of
photons, and photons acquire mass due to the Higgs mechanism. The massive photons are called
evanescent photons. Since these photons have mass which is proportional to coherent dipole fields or
the square root of the number density of aligned dipoles, they can stay in the dynamically-coherent
regions of the brain. Memory in this model, therefore, is the coherent state of water electric dipole
fields and photon fields with the condensation of the NG modes in the vacuum state. In 1995,
Vitiello proposed a dissipative model of QBD to solve the problem of the informational capacity of
memory [37]. As a result, a huge informational capacity of memory capacity was proposed to result by
regarding the brain as an open system and by doubling the degrees of freedom. In 2003, Zheng and
Pollack showed experimentally the existence of the so-called exclusion zone (EZ) water, which formed



Entropy 2020, 22, 43 3 of 32

around hydrophilic surfaces [38] such as those around proteins. The properties of EZ water correspond
to those of coherent water in QED [39].

However, the preceding research on this topic lacks the non-equilibrium multi-energy-mode
analysis in open systems since it is based on the two-energy-level approximation for charged fields
and single-energy-mode analysis for photon fields. Unsurprisingly, the main criticism found in the
literature is related to the quantum decoherence phenomena, which means the formed coherent
fields might rapidly disappear due to thermal effects destroying the broken symmetry states in
the process [40]. Hence, memory proposed in the QFT models discussed above would be rapidly
erased. In the above approximations, several components which might induce decoherence are
lost, namely field-particle conversion (decoherence), thermal effects, and collision processes with
multi-energy-mode incoherent particles. However, whether the decoherence occurs or not must be
demonstrated by non-equilibrium numerical simulations based on the multi-energy-mode analysis in
open systems. In case coherence is robust, we will be able to find non-equilibrium memory formation
processes through numerical simulations.

The aim of this paper is to derive time evolution equations based on QED with charged bosons
present in open systems in order to provide a theoretical framework for a concrete description of
memory formation processes, which can be further developed in the future. In this paper, to describe
multi-energy-mode phenomena, we adopt the Kadanoff–Baym (KB) equations [41–43] for quantum
fluctuations in QED for open systems, with the use of Klein–Gordon (KG) equations for coherent
fields. We can describe general dynamics with the above equations, since the Boltzmann equation,
the hydrodynamic equations and the Langevin equations are derived from the KB equation [42,44,45].
We introduce a kinetic entropy current by use of the KB equations, and show the H-theorem
in the Hartree–Fock approximation to the 1st order approximation in the gradient expansion.
These approximations are adopted as coarse-graining procedures to define a kinetic entropy. We
also find the total conserved charge and energy in spatially homogeneous systems. By use of the KG
equations and the KB equations, we can describe non-equilibrium, non-secular, multi-energy-mode,
charge-energy-conserving dynamics. Finally, we find that it is possible to describe the time evolution
of gauge-invariant quantities. This is the main result of this paper.

This paper is organized as follows. In Section 2, we provide the Lagrangian density in QED
in open systems (with a central region and two reservoirs coupled to it) and derive time evolution
equations for coherent fields and quantum fluctuations. In Section 3, we analyze the Kadanoff–Baym
equations and show the gauge invariance. In Section 4, we introduce a kinetic entropy current and show
the H-theorem. In Section 5, we derive time evolution equations in spatially-homogeneous systems,
and give the conserved charge and energy expression for total systems. In Section 6, we discuss
our results. In Section 7, we provide conclusions derived from this work. In the Appendix A,
several calculations for the O(e4|ϕ̄|2) self-energy are given. In this paper, we adopt the metric ηµν =

ηµν = diag(1,−1,−1,−1) in 3 + 1 dimensions where the Greek letters (µ, ν) run over 0 to d in d + 1
dimensions and the subscripts (i, j) run over 1 to d. We use the Greek letter α to represent the left L and
the right R reservoirs. The speed of light and the Planck constant divided by 2π are both set to be 1.

2. Two-Particle Irreducible Effective Action and Time Evolution Equations

In this section, we begin with the Lagrangian density of quantum electrodynamics (QED) with
charged bosons in open systems, and derive time evolution equations for coherent fields and quantum
fluctuations.

The Lagrangian density in open systems (the central region C and the two reservoirs L, R [46–49]
with tunneling effects [50–53]) depicted in Figure 1 with the background field method [54–57] is
given by,

L = LC + ∑
α=L,R

Lα + Ltunnel. (1)
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L C R

Figure 1. Open systems given by the central region C and the two reservoirs (L and R).

Here the Lagrangian density in the center region is

LC = −1
4
Fµν[AC + aC]Fµν[AC + aC]

+[(∂µ + ie(AC,µ + aC,µ))ϕ∗C][(∂
µ − ie(Aµ

C + aµ
C))ϕC]−m2 ϕ∗C ϕC

− 1
2ξ

(∂µaµ
C)

2, (2)

where Aµ
C is the background photon field in C, aµ

C represents the quantum fluctuations in C, Fµν[AC] =

∂µ AC,ν − ∂ν AC,µ, ϕ∗C and ϕC are charged Bose fields in C, m is the mass of the charged bosons.
The Lagrangian density Lα in α = L and R is given by changing the labels C in fields in Equation (2) to
α, namely by Aµ

α , aµ
α , ϕ∗α and ϕα. The tunneling Lagrangian density Ltunnel is

Ltunnel = + ∑
α=L,R

(vα(x)ϕ∗C(x)ϕα(x) + v∗α(x)ϕ∗α(x)ϕC(x) + va,αaC,i(x)aα,i(x)) , (3)

where we have introduced the tunneling variables vα(x) of charged bosons and the tunneling coupling
va,α of photons. We find that the total Lagrangian density in Equation (1) is invariant under the Type I
gauge transformations [54–57] in open systems, that is,

ϕC → eiχC ϕC, ϕ∗C → e−iχC ϕ∗C, Aµ
C → Aµ

C + 1
e ∂µχC, aµ

C → aµ
C,

ϕα → eiχα ϕα, ϕ∗α → e−iχα ϕ∗α, Aµ
α → Aµ

α + 1
e ∂µχα, aµ

α → aµ
α ,

vα → vαei(χC−χα). (4)

To describe non-equilibrium processes, we consider quantum fields in the closed-time-path
C (the Keldysh contour) with the path 1 from t0 to ∞ and the path 2 from ∞ to t0 depicted in
Figure 2. We impose gauge fixing conditions a0

C = 0, and a0
α = 0 with α = L, R on the generating

functional with the above total Lagrangian in Equation (1). We adopt the functional integral with aC,
aα, ϕC, ϕ∗C, ϕα, and ϕ∗α with α = L, R in the generating functional. We shall perform the Legendre
transformation of the generating functional. Then we can derive two-particle irreducible (2PI) effective
action Γ2PI[A, āi = 0, ϕ̄, ϕ̄∗, ∆, D] as

Γ2PI[A, āi = 0, ϕ̄, ϕ̄∗, ∆, D] =
∫
C

dd+1x

[
− 1

4
Fµν[AC]Fµν[AC]

+
[(

∂µ + ieAC,µ
)

ϕ̄∗C
] [(

∂µ − ieAµ
C

)
ϕ̄C

]
−m2 ϕ̄∗C ϕ̄C

+(C → α = L, R)

+ ∑
α=L,R

(vα(x)ϕ̄∗C ϕ̄α + v∗α(x)ϕ̄∗α ϕ̄C)

]

+
i
2

Tr ln D−1 +
i
2

TrD−1
0 D + iTr ln ∆−1 + iTr∆−1

0 ∆

+
1
2

Γ2[A, ϕ̄, ϕ̄∗, ∆, D], (5)
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where d is the spatial dimensions, ϕ̄ ≡ 〈ϕ〉, ϕ̄∗ ≡ 〈ϕ∗〉, and āi ≡ 〈ai〉 with brackets 〈·〉 ≡
Tr(density matrix)× (·). The i∆−1

0 is given by a 3× 3 matrix as

i∆−1
0 (x, y) = δ2 ∫ dd+1zL(z)

δϕ∗(x)δϕ(y)

∣∣∣∣∣
aC=aα=0

=

 i∆−1
0,LL(x, y) vL(x)δd+1

C (x− y) 0
v∗L(x)δd+1

C (x− y) i∆−1
0,CC(x, y) v∗R(x)δd+1

C (x− y)
0 vR(x)δd+1

C (x− y) i∆−1
0,RR(x, y)

 , (6)

with

i∆−1
0,αα(x, y) =

[
−∂2

x + ie
(

Aα,µ(y)∂
µ
y − Aα,µ(x)∂µ

x

)
+ e2 Aµ

α(x)Aα,µ(x)−m2
]

δd+1
C (x− y), (7)

(α = L, R), and

i∆−1
0,CC(x, y) =

[
−∂2

x + ie
(

AC,µ(y)∂
µ
y − AC,µ(x)∂µ

x

)
+ e2 Aµ

C(x)AC,µ(x)−m2
]

δd+1
C (x− y). (8)

1

2

t

t0 ∞

O

Figure 2. Closed-time-path contour C. The label 1 represents the path from t0 to ∞, and the label 2
represents the path from ∞ to t0.

Further, iD−1
0 is given by a 3× 3 matrix as

iD−1
0,ij(x, y) = δ2 ∫ dd+1zL(z)

δai(x)δaj(y)

∣∣∣∣∣
āC=āα=0

=

 iD−1
0,LL,ij(x, y) va,Lδijδ

d+1
C (x− y) 0

va,Lδijδ
d+1
C (x− y) iD−1

0,CC,ij(x, y) va,Rδijδ
d+1
C (x− y)

0 va,Rδijδ
d+1
C (x− y) iD−1

0,RR,ij(x, y)

 , (9)

where

iD−1
0,αα,ij(x, y) =

(
−∂2

x − 2e2 ϕ̄∗α ϕ̄α

)
δijδ

d+1
C (x− y), (α = L, R) (10)

iD−1
0,CC,ij(x, y) =

(
−∂2

x − 2e2 ϕ̄∗C ϕ̄C

)
δijδ

d+1
C (x− y), (11)

and we set the gauge fixing parameter as ξ = 1.
The Green function ∆(x, y) is written by a 3× 3 matrix as

∆(x, y) =

 ∆LL(x, y) ∆LC(x, y) ∆LR(x, y)
∆CL(x, y) ∆CC(x, y) ∆CR(x, y)
∆RL(x, y) ∆RC(x, y) ∆RR(x, y)


=

 〈TCδϕ∗L(x)δϕL(y)〉 〈TCδϕ∗L(x)δϕC(y)〉 〈TCδϕ∗L(x)δϕR(y)〉
〈TCδϕ∗C(x)δϕL(y)〉 〈TCδϕ∗C(x)δϕC(y)〉 〈TCδϕ∗C(x)δϕR(y)〉
〈TCδϕ∗R(x)δϕL(y)〉 〈TCδϕ∗R(x)δϕC(y)〉 〈TCδϕ∗R(x)δϕR(y)〉

 , (12)
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with δϕ = ϕ− ϕ̄, and TC representing the time-ordered product in the closed-time-path C. It is possible
to express each component in the above matrix by a 2× 2 matrix in the closed-time-path,

∆LC(x, y) =

[
∆11

LC(x, y) ∆12
LC(x, y)

∆21
LC(x, y) ∆22

LC(x, y)

]
=

[
〈Tδϕ∗L(x)δϕC(y)〉 〈δϕC(y)δϕ∗L(x)〉
〈δϕ∗L(x)δϕC(y)〉 〈T̃δϕ∗L(x)δϕC(y)〉

]
, (13)

with T representing the time-ordered product, and T̃ representing the anti-time-ordered product.
Similarly, the Green function Dij(x, y) is written as a 3× 3 matrix as

Dij(x, y) =

 DLL,ij(x, y) DLC,ij(x, y) DLR,ij(x, y)
DCL,ij(x, y) DCC,ij(x, y) DCR,ij(x, y)
DRL,ij(x, y) DRC,ij(x, y) DRR,ij(x, y)

 , (14)

where DCL,ij(x, y) = 〈TCaC,i(x)aL,j(y)〉, and D00(x, y) = D0i(x, y) = Di0(x, y) = 0 with i = 1, · · ·d.
The following relations for the 2PI effective action Γ2PI are derived using the

Legendre transformation,

δΓ2PI
δ∆ = 0, δΓ2PI

δD = 0, (15)

and

δΓ2PI

δai

∣∣∣
āi=0

=
δΓ2PI

δAi

∣∣∣
āi=0

= 0, δΓ2PI
δϕ̄∗ = 0,

δΓ2PI

δϕ̄
= 0, (16)

where the coherent fields are labeled by C or α = L, R. By use of the relations in Equation (15),
we can derive,

i
(

∆−1
0 − Σ̃

)
= i∆−1, (17)

and

i
(

D−1
0 −Π

)
= iD−1, (18)

with the definition of self-energy, iΣ̃ ≡ − 1
2

δΓ2
δ∆ and iΠ ≡ − δΓ2

δD . The self-energy is given by,

Σ̃(x, y) =

 Σ̃LL(x, y) 0 0
0 Σ̃CC(x, y) 0
0 0 Σ̃RR(x, y)

 , (19)

and

Πij(x, y) =

 ΠLL,ij(x, y) 0 0
0 ΠCC,ij(x, y) 0
0 0 ΠRR,ij(x, y)

 . (20)

We neglect off-diagonal elements, since they represent a higher order of the tunneling variables
or the tunneling coupling constants. The explicit forms of diagonal elements are given by labeling CC
or αα with α = L, R in Green functions of self-energy in [58]. These relations are the Kadanoff–Baym
(KB) equations in open systems.

Next we derive the Klein–Gordon (KG) equations for coherent fields. The first equation in
Equation (16) is written by,
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∂νFνi[AC(x)] = JC,i, (21)

∂νFνi[Aα(x)] = Jα,i, (22)

where we define

JC,µ ≡ eJC,µ − ie
[ (

∂x1
i − ieAC,i(x1)

)
∆11

CC(x, x1)
∣∣∣
x1=x
−
(
∂x2

i + ieAC,i(x2)
)

∆11
CC(x2, x)

∣∣∣
x2=x

]
− 1

2
δΓ2

δAµ
C(x)

, (23)

and

Jα,µ ≡ eJα,µ − ie
[ (

∂x1
i − ieAα,i(x1)

)
∆11

αα(x, x1)
∣∣∣
x1=x
−
(
∂x2

i + ieAα,i(x2)
)

∆11
αα(x2, x)

∣∣∣
x2=x

]
− 1

2
δΓ2

δAµ
α (x)

, (24)

where JC,µ ≡ i
[
− ϕ̄∗C(∂µ − ieAC,µ)ϕ̄C + ((∂µ + ieAC,µ)ϕ̄∗C)ϕ̄C

]
and Jα,µ ≡ i

[
− ϕ̄∗α(∂µ − ieAα,µ)ϕ̄α +

((∂µ + ieAα,µ)ϕ̄∗α)ϕ̄α

]
. Here δΓ2

δA0
C(x)

= δΓ2
δA0

α(x)
= 0 due to the gauge fixing condition a0

C = a0
α = 0.

The second and the third equations in Equation (16) are written by

−
(
∂µ − ieAC,µ

) (
∂µ − ieAµ

C

)
ϕ̄C −m2 ϕ̄C − e2D11

CC,ii(x, x)ϕ̄C + ∑
α=L,R

vα(x)ϕ̄α(x) +
1
2

δΓ2

δϕ̄∗C
= 0, (25)

−
(
∂µ + ieAC,µ

) (
∂µ + ieAµ

C

)
ϕ̄∗C −m2 ϕ̄∗C − e2D11

CC,ii(x, x)ϕ̄∗C + ∑
α=L,R

v∗α(x)ϕ̄∗α(x) +
1
2

δΓ2

δϕ̄C
= 0, (26)

−
(
∂µ − ieAα,µ

) (
∂µ − ieAµ

α

)
ϕ̄α −m2 ϕ̄α − e2D11

αα,ii(x, x)ϕ̄α + v∗α(x)ϕ̄C(x) +
1
2

δΓ2

δϕ̄∗α
= 0, (27)

−
(
∂µ + ieAα,µ

) (
∂µ + ieAµ

α

)
ϕ̄∗α −m2 ϕ̄∗α − e2D11

αα,ii(x, x)ϕ̄∗α + vα(x)ϕ̄∗C(x) +
1
2

δΓ2

δϕ̄α
= 0. (28)

By using the above four equations and the Kadanoff–Baym equations in Equation (17), we can
derive the total charge conservation

∂µ

(
JC,µ + ∑

α=L,R
Jα,µ

)
= 0, (29)

in the Hartree–Fock approximation in the coupling expansion, in 1
2 Γ2 in [58] and to the leading-order

(LO) in the tunneling coupling expansion for the KG and the KB equations. Using the total charge
conservation, the identity ∂µ∂νFµν = 0, and Equations (21) and (22), we arrive at,
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∂0

(
JC,0 + ∑

α=L,R
Jα,0

)
= −∂i

(
JC,i + ∑

α=L,R
Jα,i

)

= −∂ν∂i

[
Fνi[AC] + ∑

α=L,R
Fνi[Aα]

]

= ∂ν∂µFνµ

[
AC + ∑

α

Aα

]
− ∂ν∂iFνi

[
AC + ∑

α

Aα

]

= ∂ν∂0Fν0

[
AC + ∑

α

Aα

]
, (30)

namely,

∂νFν0

[
AC + ∑

α

Aα=L,R

]
= JC,0 + ∑

α=L,R
Jα,0. (31)

Here, the time-independent term in the time integration which might be interpreted as an initial
condition is set to be zero.

3. The Kadanoff–Baym Equations in QED in Open Systems

In this section, we write the Kadanoff–Baym (KB) equations in QED in open systems to the
1st order approximation in the gradient expansion by introducing gauge-invariant Green functions
under Type I gauge transformation in Equation (4). We find that time evolution equations in diagonal
elements are written only by gauge-invariant functions to the 1st order in the gradient expansion.
We use the α = L, R to represent the two reservoirs to avoid confusing ‘R’ (Retarded in Green functions
and self-energy) and ‘L’ (Longitudinal modes in Green functions and self-energy for photons) in this
section. We set t0 to −∞.

We begin with the KB equations given in the previous section. We multiply the matrix ∆ from the
right in Equation (17) and take the (C, C) component, then we write,[

i
(

∆−1
0,CC − Σ̃CC

)
∆CC

]
(x, y) + ∑

α

v∗α(x)∆αC(x, y) = iδC(x− y). (32)

We define

IC(x, y) ≡ e
∫ x

y
dzµ Aµ

C(z). (33)

We then multiply Equation (32) by exp (iIC(x, y)) [59,60] and define the gauge-invariant Green
function and gauge-invariant self-energy as

GCC(x, y) ≡ exp (iIC(x, y))∆CC(x, y), (34)

ΣCC(x, y) ≡ exp (iIC(x, y)) Σ̃CC(x, y), (35)

under the Type I gauge transformation in Equation (4). We next Fourier-transform by the relative
coordinate x − y with

∫
d(x − y)eip·(x−y) and neglect terms beyond than 1st order in the gradient

expansion in Equation (32), then we know that the 1st term on the left-hand side in Equation (32)
can be written by gauge-invariant functions in the 1st order in the gradient expansion [58,61–65].
We show that the 2nd term on the left-hand side in Equation (32) is invariant under the Type I gauge
transformation in Equation (4) in the 1st order in the gradient expansion. The (α, C) component in
Equation (17) multiplied by the matrix ∆ from the right is written as[

i
(

∆−1
0,αα − Σ̃αα

)
∆αC

]
(w, y) + vα(w)∆CC(w, y) = 0. (36)
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Here, it is convenient to define the function ∆−1
g,αα satisfying

i∆−1
g,αα = i

(
∆−1

0,αα − Σ̃αα

)
. (37)

Using Equation (37) in Equation (36), we arrive at

∆αC(x, y) = −1
i

∫
C,w

∆αα(x, w)vα(w)∆CC(w, y). (38)

When we define

Iα(x, y) ≡ e
∫ x

y
dzµ Aµ

α(z), (39)

φC,yxw ≡ IC(y, w) + IC(x, y) + IC(w, x) ∼ e
∫

dSµνFµν, (40)

(with the Stokes theorem and the surface integral
∫

dSµν of the triangle yxw) and

gαα(x, y) ≡ exp(iIα(x, y))∆g,αα(x, y), (41)

we arrive at

v∗α(x) exp (iIC(x, y))∆αC(x, y) = −1
i

∫
C,w

v∗α(x)ei(φC,yxw+IC(x,w)+IC(w,y))∆g,αα(x, w)

×ei(Iα(x,w)−Iα(x,w))vα(w)∆CC(w, y)

= −1
i

∫
C,w

eiφC,yxw Vα(x, w)gαα(x, w)GCC(w, y), (42)

with the definition

Vα(x, w) ≡ v∗α(x) exp(iIC(x, w)− iIα(x, w))vα(w). (43)

We find Vα(x, w) is gauge invariant under the Type I gauge transformation in Equation (4). Later,
we show gαα is a gauge-invariant function in the 1st order in the gradient expansion. With the use of
Equation (42), the Fourier transformation of Equation (32) by

∫
x−y eip·(x−y) after multiplying eiIC in the

matrix notation is rewritten as,

i(G−1
0 1− ΣCCσz) ◦C GCC(X, p) + i ∑

α

∫
x−y

eip·(x−y)
∫

w
eiφC,yxw Vα(x, w)gαα(x, w)σzGCC(w, y) = i, (44)

where X = x+y
2 , iG−1

0 (p) = (p2 −m2), 1 = diag(1, 1), and σz = diag(1,−1). Here, we have used the
Moyal product [61–65] in QED in open systems. When we neglect terms beyond the 1st order of the
gradient expansion in the Moyal product, we find that

M ◦C N = M(X, p)N(X, p) +
i
2
{M, N}C + O

(
∂2

∂X2

)
, (45)

with the arbitrary function M(X, p) and N(X, p) and the Poisson bracket in C written as

{M, N}C =
∂M
∂pµ

∂N
∂Xµ

− ∂M
∂Xµ

∂N
∂pµ
− eEC ·

(
∂M
∂p

∂N
∂p0 −

∂M
∂p0

∂N
∂p

)
+ eBC ·

(
∂M
∂p
× ∂N

∂p

)
, (46)
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where the electric field E and the magnetic field B in the central region C are introduced.
The electromagnetic fields appear by expanding eiφC,yxw in the convolution integral. In Equation (44),
we define

Uαα(x, w) ≡ Vα(x, w)gαα(x, w), (47)

to arrive at

i

(
G−1

0 1− ΣCCσz + ∑
α

Uαασz

)
◦C GCC = iσz, (48)

where Uαα is a function of (X, p). The functions G−1
0 (p), GCC(X, p), ΣCC(X, p), gαα(X, p), and σz are

written using a 2× 2 matrix in the closed-time-path, but the Fourier-transformed Vα(X, p) is a scalar
function.

Next, we multiply the matrix ∆ from the left in Equation (17) and take the (C, C) and (C, α)

component. Then we can write[
∆CC

(
i∆−1

0,CC − iΣ̃CC

)]
(x, y) + ∑

α

∆Cα(x, y)vα(y) = iδC(x− y), (49)

and [
∆Cα

(
i∆−1

0,αα − iΣ̃αα

)]
(x, w) + ∆CC(x, w)v∗α(w) = 0. (50)

With the use of Equations (37) and (50), we can write

∆Cα(x, y) = −1
i

∆CC(x, w)v∗α(w)∆g,αα(w, y), (51)

and taking into account Equations (33), (39), (40), and definitions (34), (41) and (43),

eiIC(x,y)∆Cα(x, y)vα(y) =
∫
C,w

ieiIC(w,y)+iIC(x,w)+iφC,yxw ∆CC(x, w)v∗α(w)∆g,αα(w, y)vα(y)

×eiIα(w,y)−iIα(w,y)

=
∫
C,w

eiφC,yxw GCC(x, w)gαα(w, y)v∗α(w)eiIC(w,y)−iIα(w,y)vα(y)

=
∫
C,w

GCC(x, w)gαα(w, y)Vα(w, y)eiφC,yxw . (52)

With the use of the above equation, we can rewrite Equation (49) in the matrix notation after the
Fourier transformation:

GCC ◦C (i1G−1
0 − iσzΣCC + iσz ∑

α

Uαα) = iσz, (53)

where Green functions, self-energy and Uαα are functions of (X, p) and a 2 × 2 matrix in the
closed-time-path.

It is possible to derive the solution of the retarded Green function GCC,R ≡ i(G11
CC−G12

CC) of the 0th
and 1st order equations in the gradient expansion. We rewrite the self-energy as ΣCC(x, y) = −iδC(x−
y)ΣCC,loc(x) + ΣCC,nonl(x, y) and use the Fourier transformation of the self-energy. By summing
Equations (48) and (53) and taking the difference of (1, 1) and (1, 2) components, we arrive at,(

iG−1
0 (p)− ΣCC,loc(X)− ΣCC,R(X, p) + ∑

α

Uαα,R(X, p)

)
GCC,R(X, p) = −1, (54)
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where the retarded functions are defined as ΣCC,R ≡ i(Σ11
CC,nonl − Σ12

CC,nonl) and Uαα,R ≡ i(U11
αα −U12

αα).
Furthermore, by taking the difference of Equations (48) and (53) and taking the difference of (a, b) =
(1, 1) and (1, 2) components, we arrive at,{

iG−1
0 (p)− ΣCC,loc(X)− ΣCC,R(X, p) + ∑

α

Uαα,R(X, p), GCC,R(X, p)

}
C

= 0. (55)

The solution of the above two equations is

GCC,R =
−1

p2 −m2 − Σloc − ΣCC,R + ∑α Uαα
. (56)

The spectral function defined as ρCC(X, p) ≡ i(G21
CC − G12

CC) is given by taking the imaginary part
of GCC,R and multiplying by 2.

Next, with the help of the relation (37), we can derive an expression for gαα as

(iG−1
0 1− iΣαασz) ◦α gαα = iσz, (57)

and

gαα ◦α (i1G−1
0 − iσzΣαα) = iσz, (58)

in the matrix notation in the closed-time-path. Here the Moyal product ◦α in the reservoir α represents

M ◦α N = M(X, p)N(X, p) +
i
2
{M, N}α + O

(
∂2

∂X2

)
, (59)

with the arbitrary function M(X, p) and N(X, p) and the Poisson bracket in α written as

{M, N}α =
∂M
∂pµ

∂N
∂Xµ

− ∂M
∂Xµ

∂N
∂pµ
− eEα ·

(
∂M
∂p

∂N
∂p0 −

∂M
∂p0

∂N
∂p

)
+ eBα ·

(
∂M
∂p
× ∂N

∂p

)
. (60)

We derive the solution of the retarded Green function gαα,R ≡ i(g11
αα − g12

αα)

gαα,R =
−1

p2 −m2 − Σαα,loc − Σαα,R
, (61)

where we rewrite the self-energy as Σαα(x, y) = −iδC(x − y)Σαα,loc(x) + Σαα,nonl(x, y) and define
Σαα,R ≡ i(Σ11

αα,nonl − Σ12
αα,nonl).

Next we derive time evolution equations of the (α, α) components. Let us multiply the matrix ∆

from the right in Equation (17) and take the (α, α) components. Then we can write them as[
i
(

∆−1
0,αα − Σ̃αα

)
∆αα

]
(x, y) + vα(x)∆Cα(x, y) = iδC(x− y). (62)

We know that the 1st term in the above equation is written by gauge-invariant functions given by

Gαα(x, y) ≡ exp (iIα(x, y))∆αα(x, y), (63)

Σαα(x, y) ≡ exp (iIα(x, y)) Σ̃αα(x, y), (64)

by multiplying the link variable eiIα(x,y) in the same way as in the isolated system [58,65]. Taking into
account Equation (51) and the definition

φα,yxw ≡ Iα(y, w) + Iα(x, y) + Iα(w, x), (65)



Entropy 2020, 22, 43 12 of 32

we can write

eiIα(x,y)vα(x)∆Cα(x, y) =
∫
C,w

eiIα(x,y)vα(x)i∆CC(x, w)v∗α(w)∆g,αα(w, y)

=
∫
C,w

eiIα(x,y)vα(x)i∆CC(x, w)eiIC(x,w)+iIC(w,x)v∗α(w)

×∆g,αα(w, y)eiIα(w,y)+iIα(y,w)

=
∫
C,w

eiIα(x,y)vα(x)iGCC(x, w)eiIC(w,x)v∗α(w)gαα(w, y)eiIα(y,w)

=
∫
C,w

iGCC(x, w)g(w, y)vα(x)eiIC(w,x)−iIα(w,x)v∗α(w)eiφα,yxw

=
∫
C,w

iGCC(x, w)Vα(w, x)g(w, y)eiφα,yxw , (66)

with the definitions (34), (41) and (43). Using the definition

Qαα(x, w) ≡ GCC(x, w)Vα(w, x), (67)

Equation (62) is written after the Fourier transformation with
∫

x−y eip·(x−y) as

(iG−1
0 1− iΣαασz) ◦α Gαα + iQαασz ◦α gαα = iσz. (68)

Multiplying the matrix ∆ from the left in Equation (17) and taking the (α, α) components,
we arrive at

Gαα ◦α (i1G−1
0 − iσzΣαα) + igαα ◦α σzQαα = iσz. (69)

In a similar way to [66], the 0th order solution of the retarded Green function Gαα,R ≡ i(G11
α,α−G12

αα)

is derived as

Gαα,R = gαα,R + gαα,RQαα,Rgαα,R, (70)

with Qαα,R ≡ i(Q11
αα − Q12

αα). It is derived by multiplying Equation (62) by ∆g,αα from the left,
multiplying eiIα , and taking only the 0th order terms in the difference of (1, 1) and (1, 2) components
after the Fourier transformation. It is also the solution of the 1st order equation of the retarded Green
function written by {

iG−1
0 − Σαα,loc − Σαα,R, Gαα,R

}
α
+ {Qαα,R, gαα,R}α = 0, (71)

which is derived by taking the difference of Equations (68) and (69) and taking the difference of (1, 1)
and (1, 2) components. The spectral function ραα ≡ i(G21

αα − G12
αα) is given by taking the imaginary part

in Equation (70) and multiplying by 2.
Next, we comment on the gauge dependence of gαα. The relation (37) means that the

gauge-dependent function ∆−1
g,αα has the same gauge dependence as that on the right-hand side.

The explicit form of ∆−1
0,αα is given in Equation (7), and the explicit form of self-energy Σ̃αα in O(e2)

and O(e4|ϕ̄|2) is calculated in the same way as the case in the isolated system [58] or the Appendix A.
We then show that H ≡ eiIα ∆−1

g,αα = eiIα

(
∆−1

0,αα − Σ̃αα

)
is written in gauge-invariant form as in the

isolated system [65]. But no explicit gauge dependence of ∆g,αα is given, although the explicit gauge
dependence of ∆CC and ∆αα is given in their definition. We then multiply ∆g,αα, the inverse function of
∆−1

g,αα, in Equation (37) from left and right and multiply eiIα , and then take the Fourier transformation
to arrive at

H ◦ g = 1, g ◦ H = 1, (72)
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where g ≡ eiIα ∆g and we omit the label αα and the label α in the Moyal product. We now perform
Type I gauge transformation for Equation (37) and repeat the same procedures as above. Since H is
gauge invariant, we can write gauge transformed gh as

H ◦ gh = 1, gh ◦ H = 1. (73)

If there is gauge dependence gh = g + ε, the above two relations impose

H ◦ ε = 0, ε ◦ H = 0. (74)

We can write the solution of the retarded εR in Equation (74) in the 0th and 1st order in the
gradient expansion in the same way as [58,67]

εR =
ζ

p2 −m2 − Σloc,αα − ΣR,αα
, (75)

with ζ = 0 since the right-hand side in Equation (74) is zero. Since the charged bosons are massive
(no infrared divergence), m 6= 0, and the spectral width ImΣR,αα(X, p) in Γ2 6= 0 around p0 =

±
√

p2 + m2 + · · · is nonzero (even if much smaller than m2) in the presence of nonzero continuous
particle distributions in (X, p) in general, the solution is εR(X, p) = 0 (no peaks) and ε(x, y) = 0.
Hence, even if the gauge dependence in g remains, it is of higher order in the gradient expansion.

Finally, we write the Kadanoff–Baym equations for photons. Starting with Equation (18), we
can derive (

iD−1
0,CC1− iΠCCσz

)
ik
◦ DCC,kj + i ∑

α

v2
a,αdαα,ikσz ◦ DCC,kj = iσzδij, (76)

DCC,ik ◦
(

i1D−1
0,CC − iσzΠCC

)
kj
+ i ∑

α

v2
a,αDCC,ik ◦ σzdαα,kj = iσzδij, (77)

with iD−1
0,CC,ik(X, p) =

(
p2 − 2e2 ϕ̄∗C(X)ϕ̄C(X)

)
δik and

(iD−1
0 1− iΠαασz)ik ◦ dαα,kj = iσzδij, (78)

dαα,ik ◦ (i1D−1
0 − iσzΠαα)kj = iσzδij. (79)

Here, the Moyal product ◦ for photons to the 1st order in the gradient expansion is

M ◦ N = M(X, p)N(X, p) +
i
2
{M, N}+ O

(
∂2

∂X2

)
, (80)

with

{M, N} = ∂M
∂pµ

∂N
∂Xµ

− ∂M
∂Xµ

∂N
∂pµ

. (81)

The (α, α) components are(
iD−1

0,αα1− iΠαασz

)
ik
◦ Dαα,kj + iv2

a,αDCC,ik ◦ σzdαα,kj = iσzδij, (82)

Dαα,ik ◦
(

i1D−1
0,αα − iσzΠαα

)
kj
+ iv2

a,αdαα,ikσz ◦ DCC,kj = iσzδij, (83)

with iD−1
0,αα,ik(X, p) =

(
p2 − 2e2 ϕ̄∗α(X)ϕ̄α(X)

)
δik.
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4. Kinetic Entropy Current and the H-Theorem

In this section, we derive a kinetic entropy current in QED in open systems by adopting the 1st
order approximation in the gradient expansion as a coarse-graining procedure [67–71], and show the
H-theorem in the Hartree–Fock approximation in the coupling expansion and in the leading-order (LO)
approximation of the tunneling variable and tunneling coupling expansion. In this section, we use
the α = L, R to represent the two reservoirs, the R represents the ‘retarded’ and the L represents the
longitudinal of photons.

If we subtract Equation (53) from Equation (48), then we can derive

i
{

p2 −m2 − ΣCC,loc, Gab
CC

}
C

= i

[(
ΣCC,nonl −∑

α

Uαα

)
σz ◦C GCC

]ab

−i

[
GCC ◦C σz

(
ΣCC,nonl −∑

α

Uαα

)]ab

. (84)

We find that this equation has the same form as [58] with changing Σnonl to ΣCC,nonl − ∑α Uαα

in deriving the kinetic entropy current. By using the Kadanoff–Baym Ansatz G12
CC = ρCC

i fCC, G21
CC =

ρCC
i (1 + fCC), Σ12

CC =
ΣCC,ρ

i γCC, Σ21
CC =

ΣCC,ρ
i (1 + γCC), U12

αα =
Uαα,ρ

i γU,αα and U21
αα =

Uαα,ρ
i (1 + γU,αα)

with ΣCC,ρ ≡ i(Σ21
CC − Σ12

CC) and Uαα,ρ ≡ i(U21
αα −U12

αα), and by neglecting the 2nd order terms in the
gradient expansion [67–71], we can use

fCC ∼ γCC ∼ γU,αα. (85)

Then we arrive at

∂µsµ
matter,C = −

∫
p

(
Σ21

CC,nonlG
12
CC − Σ12

CC,nonlG
21
CC

)
ln

G12
CC

G21
CC

+∑
α

∫
p

(
U21

ααG12
CC −U12

ααG21
CC

)
ln

G12
CC

G21
CC

, (86)

with

sµ
matter,C = 2

[(
pµ − 1

2
∂Re(ΣCC,R −∑α Uαα,R)

∂pµ

)
ρCC

i

+
1
2

∂ReGCC,R

∂pµ

ΣCC,ρ −∑α Uαα,ρ

i

]
σ[ fCC], (87)

and

σ[ f ] = ((1 + f ) ln(1 + f )− f ln f ) . (88)

We subtract Equation (69) from Equation (68), to find

i
{

p2 −m2 − Σαα,loc, Gab
αα

}
α

= i [Σαα,nonlσz ◦α Gαα]
ab − i [Gαα ◦α σzΣαα,nonl]

ab

−i [Qαασz ◦α gαα]
ab + i [gαα ◦α σzQαα]

ab . (89)

By using the Kadanoff–Baym Ansatz G12
αα = ραα

i fαα, G21
αα = ραα

i (1 + fαα), Σ12
αα =

Σαα,ρ
i γαα, Σ21

αα =
Σαα,ρ

i (1 + γαα), Q12
αα =

Qαα,ρ
i γQ,αα and Q21

αα =
Qαα,ρ

i (1 + γQ,αα) with Σαα,ρ ≡ i(Σ21
αα − Σ12

αα) and Qαα,ρ ≡
i(Q21

αα −Q12
αα), and neglecting the 2nd order terms in the gradient expansion, we use

fαα ∼ γαα, γg,αα ∼ γQ,αα. (90)
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We can also use

γg,αα ∼ γαα, (91)

by neglecting the 2nd order terms in the gradient expansion in the difference of Equation (57) and
Equation (58) written by

i
{

p2 −m2 − Σαα,loc, gab
αα

}
α

= i [Σαα,nonlσz ◦α gαα]
ab − i [gαα ◦α σzΣαα,nonl]

ab (92)

Then, we obtain the following relation in a similar way as [66].

∂µsµ
matter,α = −

∫
p

(
Σ21

αα,nonlG
12
αα − Σ12

αα,nonlG
21
αα

)
ln

G12
αα

G21
αα

+
∫

p

(
Q21

ααg12
αα −Q12

ααg21
αα

)
ln

G12
αα

G21
αα

, (93)

with

sµ
matter,α = 2

[(
pµ − 1

2
∂ReΣαα,R

∂pµ

)
ραα

i
+

1
2

∂ReGαα,R

∂pµ

Σαα,ρ

i

+
1
2

(
∂ReQαα,R

∂pµ

gαα,ρ

i
− ∂Regαα,R

∂pµ

Qαα,ρ

i

)]
σ[ fαα]. (94)

We find that for sµ
matter = sµ

matter,C + ∑α sµ
matter,α

∂µsµ
matter = −

∫
p

(
Σ21

CC,nonlG
12
CC − Σ12

CC,nonlG
21
CC

)
ln

G12
CC

G21
CC

−∑
α

∫
p

(
Σ21

αα,nonlG
12
αα − Σ12

αα,nonlG
21
αα

)
ln

G12
αα

G21
αα

+∑
α

∫
p

(
U21

ααG12
CC −U12

ααG21
CC

)
ln

G12
CC

G21
CC

+∑
α

∫
p

(
Q21

ααg12
αα −Q12

ααg21
αα

)
ln

G12
αα

G21
αα

. (95)

We show that the 3rd and 4th term on the right-hand side in the above equation is positive
definite. Using the definitions Uαα(x, w) ≡ Vα(x, w)gαα(x, w) and Qαα(x, w) ≡ GCC(x, w)Vα(w, x),
we can re-express them after the Fourier transformation as

Uab
αα(X, p) =

∫
k

Vα(X, k)gab
αα(X, p− k), (96)

Qab
αα(X, p) =

∫
k

Vα(X, k)Gab
CC(X, p + k), (97)

with X = x+w
2 and the real function
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Vα(X, k) =
∫

x−w
eik·(x−w)v∗α(x)eiIC(x,w)−iIα(x,w)vα(w)

=
∫

z
eik·zv∗α

(
X +

z
2

)
eiIC(X+ z

2 ,X− z
2 )−iIα(X+ z

2 ,X− z
2 )vα

(
X− z

2

)
=

∫
z

eik·z
∣∣∣vα

(
X +

z
2

)∣∣∣ e−i(βC(X+ z
2 )−βα(X+ z

2 )+θα(X+ z
2 ))

×eiIC(X+ z
2 ,X− z

2 )−iIα(X+ z
2 ,X− z

2 )
∣∣∣vα

(
X− z

2

)∣∣∣ ei(βC(X− z
2 )−βα(X− z

2 )+θα(X− z
2 ))

∼
∫

z
eik·z|vα|2ei

(
e
(

AC−
∂βC

e

)
−e
(

Aα− ∂βα
e

)
−∂θα

)
·z
+ O

(
∂2

∂X2

)
= |vα|2(2π)d+1δd+1

(
k + e

(
AC −

∂βC
e

)
− e

(
Aα −

∂βα

e

)
− ∂θα

)
, (98)

where we have used the expansion vα = |vα|ei(βC−βα+θα) with ϕ̄C = |ϕ̄C|eiβC and ϕ̄α = |ϕ̄α|eiβα . Here,
the AC − ∂βC

e and the Aα− ∂βα
e are invariant under the Type I gauge transformation, and these physical

quantities are introduced in a similar way to [72]. We find that Vα(k) is a semi-positive definite in the
1st order in the gradient expansion. Then, we arrive at

+∑
α

∫
p

(
U21

ααG12
CC −U12

ααG21
CC

)
ln

G12
CC

G21
CC

+ ∑
α

∫
p

(
Q21

ααg12
αα −Q12

ααg21
αα

)
ln

G12
αα

G21
αα

∑
α

∫
p,k

Vα(k)
[

g21
αα(p)G12

CC(p + k)− g12
αα(p)G21

CC(p + k)
]

ln
g21

αα(p)G12
CC(p + k)

g12
αα(p)G21

CC(p + k)
≥ 0, (99)

where we have used ln G12
αα

G21
αα

= ln fαα

1+ fαα
∼ ln g12

αα

g21
αα

with Equations (90) and (91) and omitted X in the
Green functions. We find that the tunneling of charged bosons contributes to the entropy production.

In a similar way, we can derive a kinetic entropy current for photons. Let us use the following
relations for Fourier-transformed Green functions and self-energy for photons

Dab
ij (X, p) =

(
δij −

pi pj

p2

)
Dab

T (X, p) +
pi pj

p2 Dab
L (X, p), (100)

Πab
ij (X, p) =

(
δij −

pi pj

p2

)
Πab

T (X, p) +
pi pj

p2 Πab
L (X, p), (101)

where iΠ = δΓ2
δD . Using the Kadanoff–Baym Ansatz D12

CC,T = −iρCC,T fCC,T , D21
CC,T = −iρCC,T(1 +

fCC,T), D12
CC,L = −iρCC,L fCC,L, D21

CC,L = −iρCC,L(1 + fCC,L), D12
αα,T = −iραα,T fαα,T , D21

αα,T = −iραα,T(1 +
fαα,T), D12

αα,L = −iραα,L fαα,L, and D21
αα,L = −iραα,L(1 + fαα,L) with ρCC,T ≡ i(D21

CC,T − D12
CC,T),

ρCC,L ≡ i(D21
CC,L−D12

CC,L), ραα,T ≡ i(D21
αα,T −D12

αα,T), ραα,L ≡ i(D21
αα,L−D12

αα,L), dαα,ρ,T ≡ i(d21
αα,T − d12

αα,T),
dαα,ρ,L ≡ i(d21

αα,L − d12
αα,L), ΠCC,ρ,T ≡ i(Π21

CC,T − Π12
CC,T), ΠCC,ρ,L ≡ i(Π21

CC,L − Π12
CC,L), Παα,ρ,T ≡

i(Π21
αα,T −Π12

αα,T), Παα,ρ,L ≡ i(Π21
αα,L −Π12

αα,L), and neglecting the 2nd order in the gradient expansion,
we arrive at

∂µsµ
photon =

1
2
(d− 1)

∫
p

(
Π12

CC,T D21
CC,T −Π21

CC,T D12
CC,T

)
ln

D12
CC,T

D21
CC,T

+
1
2

∫
p

(
Π12

CC,LD21
CC,L −Π21

CC,LD12
CC,L

)
ln

D12
CC,L

D21
CC,L

+∑
α

(CC → αα)

+(tunneling of photons), (102)



Entropy 2020, 22, 43 17 of 32

with

(tunneling of photons) =
1
2 ∑

α
v2

a,α

[
(d− 1)

∫
p

(
d21

αα,T D12
CC,T − d12

αα,T D21
CC,T

)
ln

d21
αα,T D12

CC,T

d12
αα,T D21

CC,T

+
∫

p

(
d21

αα,LD12
CC,L − d12

αα,LD21
CC,L

)
ln

d21
αα,LD12

CC,L

d12
αα,LD21

CC,L

]
≥ 0, (103)

where sµ
photon = sµ

photon,C + ∑α sµ
photon,α with

sµ
photon,C =

∫
p

[
(d− 1)

[(
pµ − 1

2
∂Re

(
ΠCC,R,T −∑α v2

a,αdαα,R,T
)

∂pµ

)
ρCC,T

i

+
1
2

∂ReDCC,R,T

∂pµ

ΠCC,ρ,T −∑α v2
a,αdαα,ρ,T

i

]
σ[ fCC,T ]

+

[(
pµ − 1

2
∂Re

(
ΠCC,R,L −∑α v2

a,αdαα,R,L
)

∂pµ

)
ρCC,L

i

+
1
2

∂ReDCC,R,L

∂pµ

ΠCC,ρ,L −∑α v2
a,αdαα,ρ,L

i

]
σ[ fCC,L]

]
,

sµ
photon,α =

∫
p

[
(d− 1)

[(
pµ − 1

2
∂ReΠαα,R,T

∂pµ

)
ραα,T

i
+

1
2

∂ReDαα,R,T

∂pµ

Παα,ρ,T

i

(104)

+
1
2

v2
a,α

(
∂ReDCC,R,T

∂pµ

dαα,ρ,T

i
− ∂Redαα,R,T

∂pµ

ρCC,T

i

)]
σ[ fαα,T ]

+

[(
pµ − 1

2
∂ReΠαα,R,L

∂pµ

)
ραα,L

i
+

1
2

∂ReDαα,R,L

∂pµ

Παα,ρ,L

i

(105)

+
1
2

v2
a,α

(
∂ReDCC,R,L

∂pµ

dαα,ρ,L

i
− ∂Redαα,R,L

∂pµ

ρCC,L

i

)]
σ[ fαα,L]

]
. (106)

We now show that the sum of the 1st term on the right-hand side in Equation (95) and the 1st
and the 2nd term on the right-hand side in Equation (102) is semi-positive definite for O(e2) and
O(e4|ϕ̄|2) self-energy (the Hartree–Fock approximation). We also show that the sum of the 2nd term
on the right-hand side in Equation (95) and the 3rd term on the right-hand-side in Equation (102) is
semi-positive definite for the O(e2) and O(e4|ϕ̄|2) self-energy. The proof is the same as that in the
isolated system in [58].

Hence, we find that

∂µsµ ≥ 0, (107)

for sµ = sµ
matter + sµ

photon in the LO of the tunneling variable and coupling expansion in the
Hartree–Fock approximation in the 1st order in the gradient expansion. For the equilibrium state,
we arrive at
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fCC,TorL(p) = fαα,TorL(p) =
1

exp
(

p0

T

)
− 1

,

fCC(p) =
1

exp
(

p0−µC
T

)
− 1

, fαα(p) =
1

exp
(

p0−µα
T

)
− 1

,

µC = −e
(

A0
C −

∂0βC
e

)
, µα = −e

(
A0

α −
∂0βα

e

)
,

µC = µα, (108)

where T is absolute temperature, µC and µα are the chemical potentials for C and α = L, R, respectively.
Chemical potentials are negative signs of gauge invariant parts of scalar potentials. This is derived
in the proof of the H-theorem for the O(e4|ϕ̄|2) self-energy in the Appendix A. Due to the tunneling
processes in Equation (99), temperature and the chemical potential in C and α = L, R are the same
values in the equilibrium state.

5. Time Evolution Equations in Spatially-Homogeneous Systems in Open Systems

In this section we derive the Klein–Gordon (KG) equations for coherent fields and the
Kadanoff–Baym (KB) equations for quantum fluctuations in the spatially-homogeneous system. In this
section, we use the α = L, R to represent the two reservoirs; the R represents the ’retarded’ and L
represents the ’longitudinal’ reservoir of photons.

We introduce the statistical functions FCC ≡ G21
CC+G12

CC
2 , Fαα ≡ G21

αα+G12
αα

2 , gαα,F ≡ g21
αα+g12

αα
2 ,

FCC,T ≡
D21

CC,T+D12
CC,T

2 , FCC,L ≡
D21

CC,L+D12
CC,L

2 , Fαα,T ≡
D21

αα,T+D12
αα,T

2 , Fαα,L ≡
D21

αα,L+D12
αα,L

2 , dαα,F,T ≡
d21

αα,T+d12
αα,T

2 ,

dαα,F,L ≡
d21

αα,L+d12
αα,L

2 , in addition to the spectral functions ρCC ≡ i(G21
CC − G12

CC), ραα ≡ i(G21
αα − G12

αα),
gαα,ρ ≡ i(g21

αα − g12
αα), ρCC,T ≡ i(D21

CC,T − D12
CC,T), ρCC,L ≡ i(D21

CC,L − D12
CC,L), ραα,T ≡ i(D21

αα,T −
D12

αα,T), ραα,L ≡ i(D21
αα,L − D12

αα,L). dαα,ρ,T ≡ i(d21
αα,T − d12

αα,T), We also introduce the following

two types of self-energy, ΣCC,F ≡ Σ21
CC+Σ12

CC
2 , Σαα,F ≡ Σ21

αα+Σ12
αα

2 , ΠCC,F,T ≡
Π21

CC,T+Π12
CC,T

2 , ΠCC,F,L ≡
Π21

CC,L+Π12
CC,L

2 , Παα,F,T ≡
Π21

αα,T+Π12
αα,T

2 , Παα,F,L ≡
Π21

αα,L+Π12
αα,L

2 , ΣCC,ρ ≡ i(Σ21
CC − Σ12

CC), Σαα,ρ ≡ i(Σ21
αα − Σ12

αα),
ΠCC,ρ,T ≡ i(Π21

CC,T −Π12
CC,T), ΠCC,ρ,L ≡ i(Π21

CC,L −Π12
CC,L), Παα,ρ,L ≡ i(Π21

αα,T −Π12
αα,T), and Παα,ρ,L ≡

i(Π21
αα,L −Π12

αα,L). We then derive the following Kadanoff–Baym equations from Equations (48) and (53):{
p2 −m2 − ΣCC,loc − ReΣCC,R + ∑

α

ReUαα,R, FCC

}
C

+

{
ReGCC,R, ΣCC,F −∑

α

Uαα,F

}
C

=
1
i
(

FCCΣCC,ρ − ρCCΣCC,F
)
− 1

i ∑
α

(
FCCUαα,ρ − ρCCUαα,F

)
, (109)

{
p2 −m2 − ΣCC,loc − ReΣCC,R + ∑

α
ReUαα,R, ρCC

}
C

+

{
ReGCC,R, ΣCC,ρ −∑

α
Uαα,ρ

}
C

= 0, (110)

where Uαα,F ≡ U21
αα+U12

αα
2 and Uαα,ρ ≡ i(U21

αα −U12
αα) with U12 or 21

αα (X, p) =
∫

k Vα(X, k)g12 or 21
αα (X, p− k)

and Vα(X, k) = |vα|2(2π)d+1δd+1
(

k + e
(

AC − ∂βC
e

)
− e

(
Aα − ∂βα

e

)
− ∂θα

)
as given in Equation (98).

We derive the following equations from Equations (57) and (58):{
p2 −m2 − Σαα,loc − ReΣαα,R, gαα,F

}
α
+ {Regαα,R, Σαα,F}α = 1

i
(

gαα,FΣαα,ρ − gαα,ρΣαα,F
)

, (111){
p2 −m2 − Σαα,loc − ReΣαα,R, gαα,ρ

}
α
+
{

Regαα,R, Σαα,ρ
}

α
= 0. (112)

We obtain the following equations from Equations (68) and (69):
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{
p2 −m2 − Σαα,loc − ReΣαα,R, Fαα

}
α
+ {ReGαα,R, Σαα,F}α

+ {ReQαα,R, gαα,F}α − {Regαα,R, Qαα,F}α

=
1
i
(

FααΣαα,ρ − ρααΣαα,F
)
− 1

i
(

gαα,FQαα,ρ − gαα,ρQαα,F
)

, (113)

{
p2 −m2 − Σαα,loc − ReΣαα,R, ραα

}
α
+
{

ReGαα,R, Σαα,ρ
}

α

+
{

ReQαα,R, gαα,ρ
}

α
−
{

Regαα,R, Qαα,ρ
}

α
= 0, (114)

where Qαα,F ≡ Q21
αα+Q12

αα
2 and Qαα,ρ ≡ i(Q21

αα−Q12
αα) with Q12 or 21

αα (X, p) =
∫

k Vα(X, k)G12 or 21
CC (X, p + k).

Similarly, we derive the Kadanoff–Baym equations for photons as{
p2 − 2e2|ϕ̄C|2 −ΠCC,loc,T − ReΠCC,R,T + Re ∑

α

v2
a,αdαα,R, FCC,T

}

+

{
ReDCC,R,T , ΠCC,F,T −∑

α

v2
a,αdαα,F

}

=
1
i
(FCC,TΠCC,ρ,T − ρCC,TΠCC,F,T)−

1
i ∑

α

v2
a,α(FCC,Tdαα,ρ,T − ρCC,Tdαα,F,T), (115){

p2 − 2e2|ϕ̄C|2 −ΠCC,loc,T − ReΠCC,R,T + Re ∑
α

v2
a,αdαα,R, ρCC,T

}

+

{
ReDCC,R,T , ΠCC,ρ,T −∑

α

v2
a,αdαα,ρ

}
= 0, (116)

{
p2 − 2e2|ϕ̄α|2 −Παα,loc,T − ReΠαα,R,T , dαα,F,T

}
+ {Redαα,R,T , Παα,F,T}

=
1
i
(dαα,F,TΠαα,ρ,T − dαα,ρ,TΠαα,F,T), (117){

p2 − 2e2|ϕ̄α|2 −Παα,loc,T − ReΠαα,R,T , dαα,ρ,T

}
+
{

Redαα,R,T , Παα,ρ,T
}
= 0, (118)

{
p2 − 2e2|ϕ̄α|2 −Παα,loc,T − ReΠαα,R,T , Fαα,T

}
+ {ReDαα,R,T , Παα,F,T}

+
{

v2
a,αReDCC,R,T , dαα,F,T

}
−
{

Redαα,R,T , v2
a,αFCC,T

}
=

1
i
(Fαα,TΠαα,ρ,T − ραα,TΠαα,F,T)−

1
i

v2
a,α(dαα,F,TρCC,T − dαα,ρ,T FCC,T), (119){

p2 − 2e2|ϕ̄α|2 −Παα,loc,T − ReΠαα,R,T , ραα,T

}
+
{

ReDαα,R,T , Παα,ρ,T
}

+
{

v2
a,αReDCC,R,T , dαα,ρ,T

}
−
{

Redαα,R,T , v2
a,αρCC,T

}
= 0. (120)

The Kadanoff–Baym equations for longitudinal modes are given by changing the label T to L in
the above equations.

Next, we write the Klein–Gordon equations for coherent fields. We use ϕ̄C = |ϕ̄C|eiβC , ϕ̄α =

|ϕ̄α|eiβα with α = L, R, and vα = |vα|ei(βC−βα+θα). Multiplying e−iβC(X) in Equation (25) and taking the
real part, we arrive at
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∂2
0|ϕ̄C | = e2

(
A0

C −
∂0βC

e

)2

|ϕ̄C | − e2
(

Ai
C −

∂i βC

e

)2

|ϕ̄C |

−
[

m2 + (d− 1)e2
∫

p
FCC,T(X, p) + e2

∫
p

FCC,L(X, p)− (counter terms)
]
|ϕ̄C |

+2e4|ϕ̄C |
∫

p

[
ReGCC,R (X, p− e(AC − ∂βC/e)) PCC,F(X, p)

+FCC(X, p− e(AC − ∂βC/e))RePCC,R(X, p)
]

+∑
α

|vα||ϕ̄α| cos θα(X), (121)

(counter terms) = de2
∫ dd p

(2π)d
1

2
√

p2 + 2e2|ϕ̄C |2
, (122)

where PCC,F(X, p) and PCC,R(X, p) are the Fourier transformations of PCC,F(x, y) ≡ P21(x,y)+P12(x,y)
2

and PCC,R(x, y) ≡ i(P11
CC(x, y)− P12

CC(x, y)) with Pab
CC(x, y) = Dab

CC,ij(x, y)Dab
CC,ij(x, y). Here, we have

left the 0th order terms in the gradient expansion on the right-hand side. We then write the following
equations by using Equation (27):

∂2
0|ϕ̄α| = e2

(
A0

α −
∂0βα

e

)2

|ϕ̄α| − e2
(

Ai
α −

∂i βα

e

)2

|ϕ̄α|

−
[

m2 + (d− 1)e2
∫

p
Fαα,T(X, p) + e2

∫
p

Fαα,L(X, p)− (counter terms)
]
|ϕ̄α|

+2e4|ϕ̄α|
∫

p

[
ReGαα,R (X, p− e(Aα − ∂βα/e)) Pαα,F(X, p)

+Gαα,F(X, p− e(Aα − ∂βα/e))RePαα,R(X, p)
]

+|vα||ϕ̄C | cos θα(X), (123)

(counter terms) = de2
∫ dd p

(2π)d
1

2
√

p2 + 2e2|ϕ̄α|2
, (124)

where Pab
αα(X, p) is the Fourier transformation of Pab

αα(x, y) = Dab
αα,ij(x, y)Dab

αα,ij(x, y).
Let us multiply iϕ̄∗C in Equation (25) and iϕ̄C in Equation (26), and take the difference, then we

arrive at

∂0i [−ϕ̄∗C (∂0 − ieAC,0) ϕ̄C + ((∂0 + ieAC,0) ϕ̄∗C) ϕ̄C]

+i ∑
α

(vα ϕ̄∗C ϕ̄α − v∗α ϕ̄C ϕ̄∗α) +
i
2

[
ϕ̄∗C

δΓ2

δϕ̄∗C
− ϕ̄C

δΓ2

δϕ̄C

]
= 0. (125)

For the O(e2) and O(e4|ϕ̄|2) diagrams (the Hartree–Fock approximation), we can use

i
2

[
ϕ̄∗C

δΓ2

δϕ̄∗C
− ϕ̄C

δΓ2

δϕ̄C

]
= −∂0

∫
p

[
ReΣCC,R

∂FCC
∂p0 + ΣCC,F

∂ReGCC,R

∂p0

]
+

1
i

∫
p

(
FCCΣCC,ρ − ρCCΣCC,F

)
= ∂0

∫
p

2p0FCC − ∂0 ∑
α

∫
p

[
ReUαα,R

∂FCC
∂p0 + Uαα,F

∂ReGCC,R

∂p0

]
+

1
i

∫
p

(
FCCUαα,ρ − ρCCUαα,F

)
, (126)

where we have used the relation in the Appendix A and the integration (
∫

p) of the KB equation (109).
Then we can write Equation (125) as
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−∂0

[
2|ϕ̄C|2e

(
A0

C −
∂0βC

e

)]
+ ∂0

∫
p

2p0FCC

= +2 ∑
α

|vα||ϕ̄C||ϕ̄α| sin θα +∂0 ∑α

∫
p

[
ReUαα,R

∂FCC
∂p0 + Uαα,F

∂ReGCC,R
∂p0

]
− 1

i ∑α

∫
p
(

FCCUαα,ρ − ρCCUαα,F
)

. (127)

The left-hand side represents the time derivative of the charge in the C. This is equivalent to
the tunneling of charged bosons between the C and the α = L, R reservoirs on the right-hand side.
The first term on the right-hand side represents the Josephson current. We interpret the above equation

as representing the time evolution equation for A0
C −

∂0βC
e . Similarly, we derive

−∂0

[
2|ϕ̄α|2e

(
A0

α −
∂0βα

e

)]
+ ∂0

∫
p

2p0Fαα

= −2|vα||ϕ̄C||ϕ̄α| sin θα +∂0
∫

p

[
ReQαα,R

∂gαα,F
∂p0 + Qαα,F

∂Regαα,R
∂p0

]
− 1

i
∫

p
(

gαα,FQαα,ρ − gαα,ρQαα,F
)

, (128)

where we have used the integration of Equation (113). We now show the total charge conservation as

−∂0

[
2|ϕ̄C|2e

(
A0

C −
∂0βC

e

)]
+ ∂0

∫
p

2p0FCC

−∂0 ∑
α

[
2|ϕ̄α|2e

(
A0

α −
∂0βα

e

)]
+ ∑

α

∂0

∫
p

2p0Fαα = 0, (129)

by using the definitions Uαα(X, p) =
∫

k Vα(X, k)gαα(X, p− k) and Qαα(X, p) =
∫

k Vα(X, k)GCC(X, p +

k). We set the total charge to be zero in the spatially-homogeneous system. Using Equations (21) and
(22), the Klein–Gordon equations for Ai

C and Ai
α are written as

∂2
0

(
Ai

C −
∂iβC

e

)
= −2e2|ϕ̄C|2

(
Ai

C −
∂iβC

e

)
+ 2e

∫
p

piFCC −
1
2

δΓ2

δAC,i
, (130)

∂2
0

(
Ai

α −
∂iβα

e

)
= −2e2|ϕ̄α|2

(
Ai

α −
∂iβα

e

)
+ 2e

∫
p

piFαα −
1
2

δΓ2

δAα,i
, (131)

When FCC and Fαα is symmetric under pi → −pi at the initial time, we find the solutions

Ai
C −

∂i βC
e = Ai

α − ∂i βα
e = 0 at any point in time, which are derived in the same way as the isolated

system [58].
We find that Equation (99) represents the entropy production in tunneling processes between C

and α reservoirs. Here, we discuss only the tunneling phenomena which never change the frequency.
Then, we just impose the following constraint on parameters θα:

∂0θα = e
(

A0
C −

∂0βC
e

)
− e

(
A0

α −
∂0βα

e

)
. (132)

Finally, we write the total conserved energy. Using the KB equations and the KG equations and
assuming the |vα|’s are constants, we derive the total energy as

Etot = Ecoh + Eqf + Epot,loc + Epot,nonl, (133)
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Ecoh = (∂0|ϕ̄C|)2 +
1
2

(
∂0

(
Ai

C −
∂iβC

e

))2

+m2|ϕ̄C|2 + e2
(

A0
C −

∂0βC
e

)2

|ϕ̄C|2 + e2
(

Ai
C −

∂iβC
e

)2

|ϕ̄C|2

+∑
α

(C → α)

−∑
α

2|vα||ϕ̄C||ϕ̄α| cos θα, (134)

Eqf =
∫

p
2
(

p0
)2

FCC(X, p) +
1
2

∫
p

2
(

p0
)2

((d− 1)FCC,T(X, p) + FCC,L(X, p))

+∑
α

(CC → αα) , (135)

Epot,loc = −e2
∫

k
[(d− 1)FCC,T(X, k) + FCC,L(X, k)]

∫
l
FCC(X, l)

+((d− 1)δm2
C,T + δm2

C,L)
∫

l
FCC(X, l)

+
1
2

δm2
cb

∫
k
[(d− 1)FCC,T(X, k) + FCC,L(X, k)]

+∑
α

(CC → αα) , (136)

Epot,nonl = −1
3

∫
p
(ReΣCC,R(X, p)FCC(X, p) + ΣCC,F(X, p)ReGCC,R(X, p))

−d− 1
6

∫
p
(ReΠCC,R,T(X, p)FCC,T(X, p) + ΠCC,F,T(X, p)ReDCC,R,T(X, p))

−1
6

∫
p
(ReΠCC,R,L(X, p)FCC,L(X, p) + ΠCC,F,L(X, p)ReDCC,R,L(X, p))

+∑
α

(CC → αα) , (137)

where δm2
cb = 2e2

∫
p

1
2
√

p2+m2
, δm2

C,TorL = e2
∫

p
1

2
√

p2+2e2|ϕ̄C |2
, and δm2

α,TorL = e2
∫

p
1

2
√

p2+2e2|ϕ̄α |2
.

The notations (C → α) and (CC → αα) represent the terms changing the labeling C to α for coherent
fields and the labeling CC to αα in the Green functions and the self-energy in the previous
terms, respectively.

6. Discussion

In this paper, we have derived the Klein–Gordon (KG) equations and the Kadanoff–Baym (KB)
equations to describe non-equilibrium phenomena in quantum electrodynamics (QED) with charged
bosons in open systems. We have found that time evolution equations of diagonal elements in
KB equations are written by gauge-invariant Green functions and self-energy for the Type I gauge
transformation to the 1st order in the gradient expansion. We have introduced a kinetic entropy
current in QED for open systems to the 1st order approximation in the gradient expansion, and shown
the H-theorem in the Hartree–Fock approximation and in LO of the tunneling variable expansion.
We have shown that the tunneling processes also contribute to entropy production. We have
written the KG equations and the KB equations only with real and pure imaginary functions in
the spatially-homogeneous system, namely real statistical functions, pure imaginary spectral functions,
and absolute values of coherent fields of charged bosons. It is possible to show the charge-energy
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conservation in the total system, and no memory integral terms appear in the conserved energy in the
Hartree–Fock approximation, in 1st order approximation in the gradient expansion.

It is important to discuss equilibrium states. In an equilibrium state, the central region C and the
α = L, R reservoirs have the same temperature and chemical potentials due to the tunneling processes
as shown in the proof of the H-theorem. The chemical potentials are negative signs of gauge-invariant
parts of scalar potentials as shown in the Appendix A. When scalar potentials have the same constant
values, the ∂0θα in the time derivative of phase factors in the tunneling variables in Equation (132) is
zero, namely θα = constant. Since the tunneling processes are balanced in the central region C and the
α = L, R reservoirs and charge flow between systems stops, we find θα = 0 or π due to Equations (127)
and (128). The ratios of the coherent fields of charged bosons |ϕ̄C| and |ϕ̄α| are determined by setting
the left-hand side in Equations (121) and (123) to zero with the same scalar potentials. Since the proof
of the H-theorem restricts the distribution functions but does not restrict the dispersion relations for
equilibrium states, the |ϕ̄C| and the |ϕ̄α| (the mass of evanescent photons) might have different values.
When the 2nd derivatives on the left-hand side in Equations (121) and (123) remains, the coherent fields
of charged bosons |ϕ̄C| and |ϕ̄α| might oscillate around the minimum value of the potential energy

Φ(|ϕ̄|) = m2|ϕ̄|2 + e2
(

A0 − ∂0β
e

)2
|ϕ̄|2 = m2|ϕ̄|2 + c1

|ϕ̄|2 in the 3rd and the 4th terms in Equation (134)

in
(

A0 − ∂0β
e

)
= c1

e|ϕ̄|2 with c1 proportional to the total charge of incoherent particles in the system as
in the case of the isolated system [58]. Since the mass of evanescent photons oscillates due to the 2nd
order contributions in the gradient expansion, Green functions still oscillate at later times near the
equilibrium state.

We have considered three regions as a practical example of an open system. They are rewritten
by energy supply (L), water battery (C), and microtubule (R) shown in Figure 3. The energy
supply provides incoherent photons to achieve coherent output of water dipoles and photons inside
microtubules. The source of photons, which might be mitochondria or reactive-oxygen species (ROS)
in living cells [73], is still largely unknown. The water battery plays the role of maintaining coherent
states inside microtubules. It will be interesting to investigate the relevant time scales required to
maintain coherent states only by the use of the water battery in case no external energy being supplied.
We might be able to describe the formation of coherent states in these systems.

Microtubule (R)

Battery (C)

Energy Supply (L)

Figure 3. Open systems rewritten by energy supply (L), battery (C), and microtubule laser (R).

We also discuss the equilibration processes in the central region and multiple reservoirs α =

1, 2, . . . , Nres, that is, the network. In QBD, there are at least two types of quantum mechanisms for
information transfer between systems. The first one is to use self-induced transparency in microtubules
which connect two coherent regions [30]. Pulse propagation appears from one side of a microtubule
to the opposite end, then the information transfer between coherent regions takes place. The second
one is to use quantum tunneling phenomena [31]. In case several coherent regions are surrounded by
non-coherent regions and the distances between two coherent regions are smaller than the inverse of
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mass of evanescent photons, the coherent field transfer and the incoherent particle transfer between
systems can occur. We now describe the information transfer with quantum tunneling phenomena in
this case. The second one is the same as the Josephson effect, which suggests the tunneling current
between two superconducting regions separated by the normal metal regions. We have also shown
that the Josephson current appears in Equations (127) and (128) in QED with charged bosons. It is
possible to extend our theory to the case of the network by changing ∑α=L,R to ∑Nres

α=1 in all the time
evolution equations. If we trace time evolution in the network, we might be able to describe not only
the equilibration but also the information transfer among regions in the brain.

In this paper, although we have discussed time evolution equations with relativistic charged
bosons, our analysis is applied to a non-relativistic case. In the non-relativistic case, we need to change

from iG−1
0 (p) = p2 −m2 to iG−1

0 (p) = p0 − p2

2m in the KB equations for charged bosons, and multiply
by the factor 1

4m2 in all of the nonlocal self-energy in the relativistic case in this paper.
We also need to extend our theory (QED with charged boson fields) to electric dipole fields in order

to describe water electric dipoles in open systems. Since we have derived time evolution equations for
charged boson fields with the gauge invariant functions in open systems, we only need the theory for
dipole fields to perform multi-energy-mode analysis with the KG and the KB equations. Although we
can check whether coherent states in QED with charged bosons are robust or not qualitatively, we need
to describe time evolution for dipole fields in 3 + 1 dimensions to estimate quantitative behaviors of
water electric dipole fields and photon fields in the memory formation in the brain.

7. Conclusions

In this paper we have derived the Klein–Gordon equations and the Kadanoff–Baym equations
in QED with charged singlet bosons in open systems. These equations are expressed only by gauge
invariant quantities in the 1st order in the gradient expansion. They describe non-equilibrium,
charge-energy conserving, and entropy-producing dynamics in the Hartree–Fock approximation with
the LO approximation of tunneling variable and coupling expansion in the 1st order in the gradient
expansion. This work paves the way for a concrete implementation of this approach to the modeling
of quantum brain dynamics, which until now has not incorporated open system characteristics of the
brain. Both metabolic energy supply and thermal dissipation need to be accounted for in addition
to the nonlinear interactions between the quantum fields (Figure 3). The remaining challenge is
to represent realistic dynamical degrees of freedom that correspond to information storage and
information processing capabilities in neurons and neuronal assemblies. This will not only require a
sufficiently long decoherence time for these quantum fields (on the order of 1 ms or more) but also
the formulation of testable predictions for such a model. While we are not yet prepared to propose
a specific implementation of such a representation, the current model is sufficiently generalised that
it covers the essential features expected of a properly formulated quantum brain dynamics theory.
At present, the most likely candidate structures for a biophysical representation of the presented model
appear to be neuronal microtubules, especially in dendrites. However, we still need to identify specific
microscopic degrees of freedom which can be involved in quantum coherence through nonlinear
interactions similar to those taking place in laser action. This also requires inclusion of incoherent
energy pumping. As is the case with lasers, due to these nonlinear interactions between dynamic
degrees of freedom, the pumped energy is transformed into quantum condensed modes, which can
overcome the decoherence effects of thermal motion at physiological temperature. This biophysical
model development can, for example, involve the interactions between tryptophan residues in tubulin
dimers as recently argued by Craddock et al. [74]. While quantum coherence simulated in this work
only survives about 1 ps in a single dimer, this can be extended to much longer decoherence times
using the nonequilibrium quantum field theory formalism for an entire microtubule including energy
pumping which the Craddock et al., paper did not consider.
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Appendix A. The O(e4|ϕ̄|2) Diagram

In this section, we shall derive several relations with respect to the O(e4|ϕ̄|2) diagram in the
isolated system. We omit the subscript CC or αα with α = L, R.

The iΓ′2
2 in Figure A1 is

iΓ′2
2

= −2e4
∫
C

dd+1udd+1w
[
ϕ̄∗(u)ϕ̄(w)Dµν(u, w)Dνµ(w, u)∆(w, u)

]
. (A1)

ϕ̄ ϕ̄∗

Figure A1. The O(e4|ϕ̄|2) diagram in Γ2
2 .

The functional derivative by ϕ̄∗(x) is written as

δ

δϕ̄∗(x)
Γ′2
2

=
−2e4

i

∫
dd+1wϕ̄(w)

[
D11

ij (x, w)D11
ji (w, x)∆11(w, x)

−D12
ij (x, w)D21

ji (w, x)∆21(w, x)
]

= 2e4
∫

dd+1w [PR(x, w)∆F(w, x) + PF(x, w)∆A(w, x)] ϕ̄(w), (A2)

with Pab(x, w) ≡ Dab
ij (x, w)Dba

ji (w, x) =
(

Dab
ij (x, w)

)2
(a, b = 1, 2), PR ≡ i

(
P11 − P12), PF ≡ P12+P21

2 ,

∆R ≡ i
(
∆11 − ∆12), ∆F ≡ ∆12+∆21

2 , and ∆A = i
(
∆11 − ∆21). By multiplying e−iβ(x) and taking the real

part in 0th order in the gradient expansion, we can derive:

Re e−iβ(x) δ

δϕ̄∗(x)
Γ′2
2

= Re 2e4
∫

w
e−iβ(x)+iβ(w)|ϕ̄(w)|

× [PR(x, w)∆F(w, x) + PF(x, w)∆A(w, x)] eie
∫ w

x Aµdzµ+ie
∫ x

w Aµdzµ

∼ 2e4|ϕ̄(x)|
∫

p

[
RePR(X, p)F(X, p− e(A− ∂β/e))

+PF(X, p)ReGR (X, p− e(A− ∂β/e))
]
, (A3)

with G(w, x) ≡ eie
∫ w

x Aµdzµ ∆(w, x) and F = G21+G12

2 . This term appears in KG Equations (121) and (123)
for |ϕ̄|.

We can also derive the following relations:
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Re
(

iϕ̄∗(x)
δ

δϕ̄∗(x)
Γ′2
2

)
= −1

2
∂

∂x

∫
p

(
ReΣ′R(x, p)

∂F(x, p)
∂p

+ Σ′F(x, p)
∂ReGR(x, p)

∂p

)
+

1
2

∫
p

(
Σ′ρ(x, p)

i
F(x, p)− Σ′F(x, p)

ρ(x, p)
i

)
+ O

(
∂2

∂X2

)
, (A4)

with the O(e4|ϕ̄|2) self-energy Σ′ab (X, p− e(A− ∂β/e)) = −2e4|ϕ̄(X)|2Pab(X, p) in 1st order in the
gradient expansion. As a result, we can derive:

Re
(

iϕ̄∗(X) δ
δϕ̄∗(X)

Γ′2
2 − iϕ̄(X) δ

δϕ̄(X)
Γ′2
2

)
= − ∂

∂X

∫
p

(
ReΣ′R(X, p) ∂F(X,p)

∂p + Σ′F(X, p) ∂ReGR(X,p)
∂p

)
+
∫

p

(
Σ′ρ(X,p)

i F(X, p)− Σ′F(X, p) ρ(X,p)
i

)
+ O

(
∂2

∂X2

)
. (A5)

In the Hartree–Fock approximation with O(e2) and O(e4|ϕ̄|2) diagrams, since the O(e2)

interactions never change total charge density in a spatially homogeneous system, the self-energy Σ′

can be replaced by Σ which is written by the sum of O(e2) and O(e4|ϕ̄|2) self-energy. We have used
the above relation in Equation (126).

Next we shall write the O(e4|ϕ̄|2) self-energy (Σ′ and Π′) in the Kadanoff–Baym equations. We can
write the self-energy as

Σ′ab(X, k− e(A− ∂β/e)) = −2e4|ϕ̄(X)|2
∫

l
Dab

ij (X, k− l)Dab
ij (X, l)

= −2e4|ϕ̄(X)|2Pab(X, k), (A6)

Π′ab
ij (X, k) = −4e4|ϕ̄(X)|2

∫
l

Dab
ij (X, k− l)

×
(

Gab(X, l − e(A− ∂β/e)) + Gba(X,−l − e(A− ∂β/e))
)

. (A7)

It is possible to prove the H-theorem for the above self-energy in the same way as [58]. Then we
find the following term as

e4|ϕ̄(X)|2
∫

l,p,k
δl+p−k

[
D12

T (l)D12
T (p)G21(k− e(A− ∂β/e))− D21

T (l)D21
T (p)G12(k− e(A− ∂β/e))

]
× ln

D12
T (l)D12

T (p)G21(k− e(A− ∂β/e))
D21

T (l)D21
T (p)G12(k− e(A− ∂β/e))

≥ 0. (A8)

At the equilibrium state, we find

fT(p) = fL(p) =
1

exp
(

p0

T

)
− 1

, f (p) = 1

exp
(

p0−µ
T

)
−1

,

µ = −e
(

A0 − ∂0β

e

)
, (A9)

where T is the temperature, µ is the chemical potential, f is the distribution function of charged bosons
in the Kadanoff–Baym Ansatz, and fT,L is the distribution function of photons in the transverse and
longitudinal parts.

Finally let us derive the potential energy Epot,nonl for O(e4|ϕ̄|2) self-energy. We can write the
Kadanoff–Baym equations with only O(e4|ϕ̄|2) self-energy in the spatially homogeneous isolated
system in Ai − ∂iβ/e = 0 as
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{
p2 −m2 − ReΣ′R, F

}
+
{

ReGR, Σ′F
}
− 1

i

(
FΣ′ρ − ρΣ′F

)
= 0,{

p2 − 2e2|ϕ̄|2 − ReΠ′R,T , FT

}
+
{

ReDR,T , Π′F,T
}
− 1

i

(
FTΠ′ρ,T − ρTΠ′F,T

)
= 0,{

p2 − 2e2|ϕ̄|2 − ReΠ′R,L, FL

}
+
{

ReDR,L, Π′F,L
}
− 1

i

(
FLΠ′ρ,L − ρLΠ′F,L

)
= 0. (A10)

As in [75,76], after multiplying p0 in this relation and taking the sum, we need to calculate the
following integration by

∫
p:

− ∂

∂X0

∫
p

(
ReΣ′RF + ReGRΣ′F

)
− ∂

∂X0

∫
p

(
p0 ∂ReΣ′R

∂p0 F + p0ReGR
∂Σ′F
∂p0

)
+
∫

p

(
ReΣ′R

∂F
∂X0 +

∂ReGR

∂X0 Σ′F

)
− ∂

∂X0
1
2

∫
p

(
ReΠ′ijR Dij

F + ReDij
RΠ′ijF

)
−1

2
∂

∂X0

∫
p

(
p0 ∂ReΠ′ijR

∂p0 Dij
F + p0ReDij

R
∂Π′ijF
∂p0

)
+

1
2

∫
p

(
ReΠ′ijR

∂Dij
F

∂X0 +
∂ReDij

R
∂X0 Π′ijF

)

−1
i

∫
p

p0
(

FΣ′ρ − ρΣ′F
)
− 1

2i

∫
p

p0
(

FijΠ′ρ,ij − ρijΠ′F,ij

)
+

∂

∂X0

[
2
∫

p

(
p0
)2

F +
∫

p

(
p0
)2

Dii
F

]
= 0. (A11)

The sum of the 1st and the 4th term on the left-hand side in Equation (A11) is

(1st + 4th) = − i
2

∂0

∫
p

(
Σ′11G11 − Σ′22G22

)
− i

4
∂0

∫
p

(
Π′11

ij D11
ij −Π′22

ij D22
ij

)
=

i
2

∂0

[
3e4|ϕ̄|2

∫
k,l,p

δp+k+l

(
D11

ij (p)D11
ij (k)

×
(

G11(l − e(A− ∂β/e)) + G11(−l − e(A− ∂β/e))
)
− (11→ 22)

)]
, (A12)

where we have used ReGR = i
2
(
G11 − G22), ReDR,ij = i

2

(
D11

ij − G22
ij

)
, ReΣ′R = i

2
(
Σ′11 − Σ′22),

and ReΠ′R,ij = i
2

(
Π′11

ij −Π′22
ij

)
with Σ′aa(k − e(A − ∂β/e)) = −2e4|ϕ̄|2

∫
q Daa

ij (k − q)Daa
ij (q) and

Π′aa
ij (k) = −4e4|ϕ̄|2

∫
l Daa

ij (k − l) (Gaa(l − e(A− ∂β/e)) + Gaa(−l − e(A− ∂β/e))). The sum of the
2nd and the 5th term on the left-hand side in Equation (A11) is

(2nd + 5th) =
i
2

∂0

[
− e4|ϕ̄|2

∫
k,l,p

δp+k+l

(
D11

ij (p)D11
ij (k)

×
(

G11(l − e(A− ∂β/e)) + G11(−l − e(A− ∂β/e))
)
− (11→ 22)

)]

+
i
2

∂0

[
− e4|ϕ̄|2

∫
k,l,p

δp+k+l e
(

A0 − ∂0β

e

)( ∂D11
ij (p)

∂p0 D11
ij (k)

×
(

G11(−l − e(A− ∂β/e))− G11(l − e(A− ∂β/e))
)
− (11→ 22)

)]
, (A13)

where we have used Daa
ij (p) = Daa

ij (−p) with a = 1, 2. We can write the sum of the 3rd and the 6th
term on the left-hand side in Equation (A11) as
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(3rd + 6th) =
i
2

∫
k

(
Σ′11 ∂G11

∂X0 − Σ′22 ∂G22

∂X0

)
+

i
4

∫
k

(
Π′11

ij

∂D11
ij

∂X0 −Π′22
ij

∂D22
ij

∂X0

)

=
i
2
(−2e4|ϕ̄|2)

∫
k,l

[
D11

ij (k− l + e(A− ∂β/e))D11
ij (l)

∂G11(k)
∂X0

+D11
ij (k− l)

(
G11(l − e(A− ∂β/e)) + G11(−l − e(A− ∂β/e))

) ∂D11
ij (k)

∂X0

−(11→ 22)

]

=
i
2
(−2e4|ϕ̄|2)

∫
k,l,p

[
δk−l−p+e(A−∂β/e)D

11
ij (p)D11

ij (l)
∂G11(k)

∂X0

+δk−l−pD11
ij (p)

(
G11(l − e(A− ∂β/e)) + G11(−l − e(A− ∂β/e))

) ∂D11
ij (k)

∂X0

−(11→ 22)

]

=
i
2
(−2e4|ϕ̄|2)

∫
k,l,p

[
1
2

δk−l−p+e(A−∂β/e)D
11
ij (p)D11

ij (l)
∂G11(k)

∂X0

+
1
2

δk−l−p−e(A−∂β/e)D
11
ij (p)D11

ij (l)
∂G11(−k)

∂X0

+δl−k+p−e(A−∂β/e)D
11
ij (p)G11(k)

∂D11
ij (l)

∂X0

+δl−k+p+e(A−∂β/e)D
11
ij (p)G11(−k)

∂D11
ij (l)

∂X0 − (11→ 22)

]
, (A14)

and

(3rd + 6th) =
i
2

∂0

[
(−e4|ϕ̄|2)

∫
k,l,p

[
δk−l−p+e(A−∂β/e)D

11
ij (p)D11

ij (l)G
11(k)

+δk−l−p−e(A−∂β/e)D
11
ij (p)D11

ij (l)G
11(−k)− (11→ 22)

]]

+
i
2

e4 ∂|ϕ̄|2
∂X0

∫
k,l,p

[
δk−l−p+e(A−∂β/e)D

11
ij (p)D11

ij (l)G
11(k)

+δk−l−p−e(A−∂β/e)D
11
ij (p)D11

ij (l)G
11(−k)− (11→ 22)

]]

+
i
2

(
2e4|ϕ̄|2

)
e
(

∂0

(
A0 − ∂0β

e

))
1
2

∫
k,l,p

δk−l−p

[ ∂D11
ij (p)

∂p0 D11
ij (l)G

11(k− e(A− ∂β/e))

−
∂D11

ij (p)

∂p0 D11
ij (l)G

11(−k− e(A− ∂β/e))− (11→ 22)
]]

, (A15)

where we have used Daa
ij (p) = Daa

ij (−p) with a = 1, 2 and

∂

∂X0 δk−l−p+e(A−∂β/e) = −e
∂
(

A0 − ∂0β
e

)
∂X0

∂

∂p0 δk−l−p+e(A−∂β/e), (A16)

∂

∂X0 δk−l−p−e(A−∂β/e) = e
∂
(

A0 − ∂0β
e

)
∂X0

∂

∂p0 δk−l−p−e(A−∂β/e). (A17)

We find that the 1st term in Equation (A13) and the 1st term in Equation (A15) has the same form
as Equation (A12) except constant factors. As a result, Equation (A11) is rewritten as
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+
∂

∂X0

[
2
∫

p

(
p0
)2

F +
∫

p

(
p0
)2

Dii
F

]
−1

3
∂0

∫
p

[
ReΣ′RF + ReGRΣ′F

]
− 1

6
∂0

∫
p

[
ReΠ′ijR Dij

F + ReDij
RΠ′ijF

]
−1

i

∫
p

p0
(

FΣ′ρ − ρΣ′F
)
− 1

2i

∫
p

p0
(

FijΠ
′
ρ,ij − ρijΠ

′
F,ij

)
+

i
2

∂0

[
− e4|ϕ̄|2
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k,l,p

δp+k+l e
(

A0 − ∂0β

e

)( ∂D11
ij (p)

∂p0 D11
ij (k)

×
(

G11(−l − e(A− ∂β/e))− G11(l − e(A− ∂β/e))
)
− (11→ 22)

)]

+
i
2

e4 ∂|ϕ̄|2
∂X0

∫
k,l,p

[
δk−l−p+e(A−∂β/e)D

11
ij (p)D11

ij (l)G
11(k)

+δk−l−p−e(A−∂β/e)D
11
ij (p)D11

ij (l)G
11(−k)− (11→ 22)

]]

+
i
2

(
2e4|ϕ̄|2

)
e
(

∂0

(
A0 − ∂0β

e

))
1
2

∫
k,l,p

δk−l−p

[ ∂D11
ij (p)

∂p0 D11
ij (l)G

11(k− e(A− ∂β/e))

−
∂D11

ij (p)

∂p0 D11
ij (l)G

11(−k− e(A− ∂β/e))− (11→ 22)
]]

= 0. (A18)

We find that 4th, 5th, . . . , 8th terms cancel with energy terms from Klein–Gordon equations.
By multiplying the Klein–Gordon equations in Equation (121) by 2∂0|ϕ̄|, we find that the following
terms appear in both the isolated system and the open systems:

−2e4 ∂|ϕ̄|2
∂X0

∫
k
[RePR(k)F(k− e(A− ∂β/e)) + PF(k)ReGR(k− e(A− ∂β/e))]

+e
(

A0 − ∂0β

e

) [
∂

∂X0

∫
p

(
ReΣ′R

∂F
∂p0 + Σ′F

∂ReGR

∂p0

)]
− 1

i
e
(

A0 − ∂0β

e

) ∫
p

(
FΣ′ρ − ρΣ′F

)
, (A19)

where we have used the relations (127) and (128) with the integration of the KB equations of charged
bosons in Equations (109) and (113). The 1st term in Equation (A19) cancels with the 7th term in
Equation (A18). The 2nd term in Equation (A19) cancels with the 6th and the 8th term in Equation (A18).
For the 3rd term in Equation (A19), 4th and 5th terms in Equation (A18), we can also show that

−1
i

∫
p

p0
(

FΣ′ρ − ρΣ′F
)
− 1

2i

∫
p

p0
(

FijΠ′ρ,ij − ρijΠ′F,ij

)
−1

i
e
(

A0 − ∂0β

e

) ∫
p

(
FΣ′ρ − ρΣ′F

)
= 0, (A20)

for O(e4|ϕ̄|2) self-energy. Therefore we arrive at Equation (137). There is no memory integral term in the
total energy in QED in open systems in the Hartree–Fock approximation with the LO approximation in
the tunneling variable and coupling expansion in the 1st order in the gradient expansion. (The memory

integral term in the energy in [58] appears in neglecting NLO O(e4) contributions in Γ′2
2 .)
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