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Abstract

To explore the role of intestinal microbiota on the occurrence of depression-like

behavior. Twenty male adult Wistar rats were randomly divided into control and

experimental groups. Depression-like behavior of the rats was validated using

sucrose preference test (SPT) and forced swimming test (FST) after chronic

unpredictable mild stress (CUMS) for 3 weeks. Fecal microbiota was analyzed

through 16S rRNA sequence analysis. The levels of 5-HT and inflammatory factors in

the colon, brain and sera were measured using enzyme-linked immunosorbent assay

(ELISA), quantitative PCR (qPCR) and western blotting analyses. The percentage of

different types of immune cells in the peripheral blood was determined through flow

cytometry. CUMS caused depression-like symptoms, including anhedonia and des-

perate behavior. Significant differences were found in the structure and abundance

of intestinal microbiota. CUMS intervention significantly increased the levels of 5-HT

and Tph1 in the colon and decreased the level of Scl6a4. The concentrations of 5-HT

and Tph2 in the prefrontal and hippocampal tissues were lower, while IDO1 was

higher. Certain cytokines, such as IL-6, IL-1 and TNF-ɑ, were significantly elevated in

peripheral blood, while the percentage of CD3+ CD4+ double-positive cells and

CD4+/CD8+ ratio were downregulated in the CUMS group. Pearson correlation anal-

ysis showed that intestinal microbiota was significantly associated with not only the

metabolism of 5-HT in intestinal and brain tissues, but also with the proportion of

immune cells and certain cytokines. Stress can lead to disturbances in the intestinal

microbial structure, which may contribute to depression by interfering with 5-HT

metabolism and immune inflammatory responses.
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1 | BACKGROUND

Depression is a serious neuropsychiatric disorder characterized by a lack

of pleasure or interest in daily activities, and involves neurological, endo-

crine and immune dysfunction. At the molecular level, depression is asso-

ciated with a deficiency of the neurotransmitter, 5-hydroxytryptamine

(5-HT)1,2 and a significant increase in the levels of inflammatory cyto-

kines.3 Studies have increasingly shown the involvement of the gut

microbiota in the pathogenesis of various neurological and psychiatric

disorders, including depression. For instance, 95% of the mood regulat-

ing neurotransmitter, serotonin, is synthesized, storedand released from

the intestine. Although intestinal 5-HT cannot directly affect brain 5-HT

levels, intestinal tryptophan can cross the blood–brain barrier and par-

ticipate in brain 5-HT synthesis.4 An increase in the synthesis of 5-HT in

the gut may lead to a decrease in the amount of tryptophan entering

the brain, thus interfering with the synthesis of 5-HT in the brain.

Indoleamine 2,3-dioxygenase1 (IDO1) is the only rate-limiting enzyme

outside the liver that catalyzes the epoxidation of indoles in tryptophan

molecules, resulting in catabolism along the canine uric acid pathway.

The expression of IDO1 is only weakly expressed in normal healthy tis-

sues, but in some special or pathological conditions, the expression of

IDO1 is significantly enhanced, and participates in the mediation of local

immunosuppression.5 Therefore, intestinal microbes may also affect

depression directly or indirectly by regulating tryptophan metabolism.5

In addition, the gut microbiota plays a key role in the intestinal bar-

rier function and innate immunity as it modulates the expansion, matu-

ration and activity of immune cells.6 The interactions between the

intestinal bacteria and mucosal cells regulate the production of various

inflammatory cytokines,7–9 such as tumor necrosis factor (TNF-α) and

interleukin-1β (IL-1β),10 which can cross the blood–brain barrier and sig-

nificantly affect mood and behavior. Intestinal microbiota may be an

important regulatory mechanism of intestinal inflammatory response

and 5-HT metabolism, thereby remotely regulating mood changes and

depressive states in the brain. 16S rDNA gene sequencing is a com-

monly used research method to study the changes in intestinal micro-

bial structure and abundance. Studies have used 16S rDNA gene

sequencing to analyze the changes in the microbiota of depressed

patients and healthy people. There have also been studies to conduct

metagenomic and metabolomic analysis of depressed-like behavior

changes in rats by observation of microbiota transplantation.11,12 Intes-

tinal flora is inextricably linked with serotonin metabolism and immune

inflammatory response, which might be closely related to the occur-

rence of depression. This study focused on intestinal microbiota associ-

ated with 5-HT metabolism, intestinal immune cells and inflammatory

factors, to explore the pathogenesis of depression.

2 | MATERIALS AND METHODS

2.1 | Experimental animals

Twenty adult male specific-pathogen-free (SPF) Wistar rats weighing

200–220 g, 7 weeks old, were raised at the Animal Experimental

Research Center of the Medical Department of Qingdao University.

The rats were housed five per cage inside polycarbonate cages, mea-

suring 545 � 395 � 200 mm3 (FENGSHI Group, China) under stan-

dard laboratory conditions with constant temperature (22 ± 2�C),

humidity (55 ± 5%), and standard ventilation system. The rats were

maintained in 12:12 light/dark (LD) cycles with lights on from 7 a.m.

to 7 p.m. if not otherwise stated, clean drinking water and food pellets

(Jiangsu Medicience Biological Medicine Co. Ltd., China) were pro-

vided ad libitum. Drinking water and food were added daily. Rat pad-

ding (Jiangsu Medicience Biological Medicine) were replaced

according to the pollution level, usually every 2 to 3 days. This study

protocol was approved by the Ethics Committee of Qingdao Univer-

sity Affiliated Hospital (Qingdao, China).

2.2 | Experimental scheme

All rats were normally fed for 1 week under the above standard labora-

tory conditions to adapt the environment and no abnormality were

observed. Then the rats were weighed and randomly distributed into

control group (n = 10) and experimental group (n = 10) and their tails

were marked. The rats were housed five per cage in the above polycar-

bonate cages. The rats in the experimental group were subjected to

chronic unpredictable mild stress (CUMS)13 intervention for 3 weeks, as

previously described.14,15 In brief, the stimuli included 45� cage tilt for

12 h (hard to get food and water, 7 a.m. to 7 p.m.), tail pinching for

3 min with a clip (just whine without skin damage), cage shaking for

5 min, swimming in 4 �C cold water or 45 �C hot water for 5 min (using

50 cm high plastic drum, 20 cm in diameter, the water depth was deter-

mined by the rats' toes reaching the bottom of the container), reversed

light/dark cycle for 24 h (lights on from 7 p.m. to 7 a.m.), maintained in

an empty squirrel cage with no padding for 15 h (7 a.m. to 10 p.m.),

damp bedding for 15 h (7 a.m. to 10 p.m.) and lack of food or water for

24 h (7 a.m. to 7 a.m. the next day). Normally, the rats of both groups

were fed in the same room, but the experimental group was placed in

another laboratory with the above standard temperature and humidity

during the diurnal reversal intervention. The specific interventions used

are listed in Table 1. CUMS is an effective and reliable strategy used to

stimulate depression-like behavior in animal models.13,16 The resulting

depression can be evaluated in terms of anhedonia determined through

sucrose preference,17,18 or prolonged periods of relatively restless

behavior using the forced swimming test.19

2.2.1 | Forced swim test (FST)

An altered type of the FST defined earlier by Cryan et al20 was

implemented here. Concisely, rats were kept into a Perspex cylinder

comprising 30 cm of water heated at 25 �C for a 15 min before the

test on day one. The next day, test periods lasting 5 min were noted.

The immovability time was recorded when the animals were floating

in the water with no struggle at all and they only moved to maintain

their heads above the water level.
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2.2.2 | Sucrose Preference Test (SPT)

SPT was carried out as explained with slight alterations after the

CUMS.21 All rats were taught to acclimate to the 1% (w/v) sucrose

solution: First they were exposed for 24 h to two bottles of

sucrose solution. Next, they were exposed to one bottle of

sucrose solution plus one bottle of water for another 24 h. Then

the rats were not given food and water for 12 h. SPT was carried

out for 12 h, in this course of duration, the rats were kept in sepa-

rate cages with easy access to two bottles (1% sucrose solution

and water bottle). The locations of the bottles in the cage were

interchanged after 6 h to evade probable side-preference impacts.

The intakes of the sucrose solution, water as well as total con-

sumption of liquids were assessed by weighing the bottles. The

inclination for sucrose was noted as a fraction of the ingested

sucrose liquid comparative to the entire volume of liquid consump-

tion. Following equation was used to calculate the sucrose prefer-

ence value: Preference value (%) = sucrose intake/ (sucrose intake

+ water intake) � 100%.

Once depression was established, the animals were anesthetized

through the intraperitoneal injection of 3% pentobarbital sodium at

20 mg/kg body weight, and blood samples were collected from the

inferior vena cava into coagulation and anticoagulation tubes. The

blood samples were centrifuged and the supernatants were put in

storage at �20�C for consequent serum serotonin (5-HT), dopamine

(DA), IL-6, IL-1 and TNF-α by enzyme-linked immunosorbent assay

(ELISA) kit (MultiSciences Biotech, PRC). The former were centrifuged,

and the serum supernatant was aspirated and subjected to ELISA

assay to measure levels of the blood samples collected into anti-

coagulation tubes were treated with a red blood cell lysis buffer and

centrifuged, and the resulting pellets were fixed using formalin at

4 �C. The number of CD3+, CD4+ and CD8+ cells and the CD4+/

CD8+ ratio were determined using routine immunostaining and flow

cytometry analyses. Beckman FC500 was used, CD3-PC5, CD4-FITC

and CD8-PE mAb (Thermo Fisher Scientific, China) were added for

fluorescent antibody staining.

After the drawing of blood, the rats were quickly decapitated,

and the medulla were cut at the foramen magnum. The skulls were

then removed to completely expose the brain tissue, and the

hippocampal and prefrontal tissues were isolated on pre-chilled dis-

hes, and snap frozen in liquid nitrogen. Total RNA and protein were

extracted from the frozen tissues, and the expression levels of Tph1

and TH at both mRNA and protein levels were analyzed using fluo-

rescence quantitative PCR (qPCR) and western blotting analysis,

respectively. Total RNA (1 μg) was reverse transcribed into cDNA

by TIANScript RT KIT (TIANGEN, Cat# KR104-02) as per the sup-

plier's protocol. List of primers is mentioned in Table 2 (TaKaRa Bio-

technology Co., Ltd., China). IDO1 protein expression in

hippocampus and forebrain was measured by Western blot using

rabbit anti-IDO1 monoclonal antibody purchased from Zymed Labo-

ratories, Shanghai YUBO Biotechnology Co., Ltd agent, PRC. The

content of 5-HT in the hippocampus and prefrontal lobe were mea-

sured using HPLC-MS.

The colon tissues were dissected, and feces contained were col-

lected for 16S rRNA gene sequencing. Total genome DNA from the

samples was extracted using the CTAB/SDS method. 16S rRNA genes

were amplified using specific primers with the barcode, 16S V4:

515F-806R. The colon tissues were then cut along the mesangial mar-

gin, washed using ice-cold saline, and the 5-HT content in the super-

natant of the homogenate was determined by ELISA assay as per the

supplier's protocol (Cloud Clone Corp., Hubei, PRC). The experimental

scheme followed is shown in Figure 1.

TABLE 1 CUMS intervention
schedule

First week Second week Third week

Monday Clip tail for 3 min Shake cage for 5 min Shake cage for 5 min

Tuesday Shake cage for 5 min Empty cage for 15 h Deprive water for 24 h

Wednesday Tilt cage 45� for 12 h Cold water bath for 5 min Hot water bath for 5 min

Thursday Wet cage for 15 h Clip tail for 3 min Clip tail for 3 min

Friday Cold water bath for 5 min Reverse day and night Reverse day and night

Saturday Reverse day and night Tilt cage 45� for 12 h Tilt cage 45� for 12 h

Sunday Deprive water for 24 h Deprive diet for 24 h Deprive diet for 24 h

Note: Sucrose preference test (SPT) and forced swimming test (FST)19–22 were used to evaluate the

occurrence of depression-like behavior after CUMS intervention during the daytime without affecting

circadian rhythm.

TABLE 2 Primers used for RT-PCR

Gene Sequence (sense, antisense: 50–30) Size (bp)

Tph2 CTTGGGGTGTTGTGTTTCG

TACTTGGTCAGCAGGGGGA

91

IDO1 GGAGCUACCAUCUGCAAAUTT

AUUUGCAGAUGGUAGCUCCTT

568

β-Actin CTTGCATCCCTCAGCACCTT

TCCTGTGGACAATGGATGGA

140

Tph1 GGCGCGATCAGGATCACTG

ACTTTTTTCAAACATACGT

263

SLC6A4 GGGTACAGGAGAGAGGATTG

GTGCAATTTAAACCTTATAC

108

GAPDH GGGGCTGGGAAGGAACCACG

CGGTAAGGACTATATAATGT

72
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2.3 | Microbiota analysis

Intestinal fecal specimens were entrusted to Beijing Nuohe Zhiyuan

Technology Co. Ltd. PRC, for 16S V4 region amplicon sequencing anal-

ysis. A TruSeq® DNA PCR-Free Sample Preparation Kit was used to

construct the library, which was then subjected to Qubit quantification.

Hi-Seq was used for online sequencing to perform a series of analyses,

including cluster analysis, principal component analysis (PCA), LEfSe

(LDA effect size) analysis and other statistical comparative analyses to

compare the species composition of the different samples.

2.4 | Statistical analysis

Statistical analysis was performed using SPSS v.22.0 software. Counted

data are expressed as rates and percentages, while measurement data

are expressed as x ± SD. The means of two groups were compared using

the independent sample t-test and a p value of <0.05 was considered to

indicate statistical significance. The level of IL-6, TNF-α, DA and IL-1

Beta ELISA values were converted from OD to concentration using a

standard curve. p Values were adjusted using a Benjamini–Hochberg

correction. Pearson correlation analysis was conducted on data con-

formed to a normal distribution as determined using the normality test,

otherwise the Spearman correlation test was used. The levels of intesti-

nal microbiota, associated neurotransmitters and inflammatory factors

were calculated and plotted in R Studio (R-4.0.2, package corrplot_0.84).

Correlations with an absolute coefficient value of >0.6 and an adjusted

p value of <0.05 were considered to be statistically significant.

3 | RESULTS

During the experiment, one rat in the control group developed diar-

rhea, and one in the CUMS intervention group died due to unknown

causes. Thus, only nine animals were finally included in the analyses

carried out on each group.

3.1 | Behavioral tests

Based on the results of the SPT, the sucrose preference value of the

control group was significantly higher compared with that of the

CUMS group (t = 16.39, p <0.05). In addition, healthy control rats

were immobile during the FST for a shorter period compared with

the CUMS intervention group rats, which showed an obvious strug-

gle during the initial period (t = 16.07, p <0.05). Specific important

data are summarized in Figure 2, and clearly indicate that

depression-like symptoms were observed after the CUMS

intervention.

3.2 | Effect of CUMS intervention on peripheral
blood DA, 5-HT, colon 5-HT and metabolic factors

As shown in Figure 3, the levels of serum DA (t = 0.42, p = 0.79) and

5-HT (t = 0.29, p = 0.29) were not significantly different between the

groups. However, the 5-HT content in the colon homogenate was sig-

nificantly higher than that of the CUMS group (t = 6.36; p < 0.05), as

shown in Figure 3.

To determine the source of colonic 5-HT variability, we compared

the expression levels of Tph1 mRNA/GAPDH mRNA and Scl6a4

mRNA/GAPDH mRNA. The relative expression level of Tph1 mRNA

was significantly higher (t = 9.18, p < 0.01) in the colon tissue of the

CUMS group compared with that of healthy controls (t = 6.90, p <

0.01), as shown in Figure 3.

3.3 | Effect of CUMS intervention on the content
of 5-HT, Tph2 and IDO1 in the brain

To investigate the effect of 5-HT in the brain, we obtained brain tis-

sue from rats in both groups and isolated the prefrontal cortex and

hippocampus. The 5-HT content was significantly lower in the frontal

lobes (t = 8.05, p < 0.01) and hippocampus (t = 7.57, p < 0.01) of the

F IGURE 1 Flowchart of the experimental scheme
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stressed rats compared with the controls. Furthermore, the prefrontal

and hippocampal TH (t = 7.57, p < 0.01; t = 7.44, p < 0.01) and Tph2

(t = 7.79, p < 0.01; t = 4.87, p < 0.01) levels were also lower in the

CUMS, compared with the control group. In contrast, the prefrontal

and hippocampal IDO1 levels were significantly higher in the CUMS

group (t = 3.93, p < 0.01; t = 5.71, p < 0.01). The results are shown in

Figure 4.

3.4 | Effect of CUMS intervention on inflammatory
factors and immune cells

The serum levels of inflammatory factors, including IL-6 (t = 7.55, p <

0.01), IL-1β (t = 2.76, p < 0.05) and TNF-α (t = 3.50, p < 0.01) were

significantly higher in the CUMS group compared with the control

group (Figure 5).

Furthermore, the percentage of CD3
+ cells were similar between

the groups (t = 1.58, p > 0.05). The proportion of CD3
+CD4

+ double

positive cells (t = 24.52, p < 0.01) and the CD4
+/CD8

+ ratio

(t = 55.31, p < 0.01) were lower in the CUMS group, while that of the

CD3
+CD8

+ double positive cells was significantly higher in the

CUMS-treated group, compared with the control group (t = 15.81,

p < 0.01).

3.5 | Analysis of intestinal microbiota

Based on species annotation, the top 10 abundant phyla, classes, orders,

families and genera were determined, and their relative proportions were

calculated (Figure 6A–E). PCA analysis based on OTU levels (Figure 6F)

indicated significant differences between the intestinal microbiota of con-

trol and CUMS-treated rats at each level of classification. In addition, the

LDA value obtained from the LEfSe (Figure 6G) showed that each group

showed a distinct composition of dominant species.

The histogram of LDA distribution showed that the dominant species

in the control group were Bacteroidetes, Bacteroidia, Bacteroidales,

Prevotellaceae and Prevotellaceae_NK3B31_group. The dominant species in

the CUMS group were Firmicutes, Clostridia, Clostridiales, Enterobacteriales,

Enterobacteriaceae, Escherichia shigella and Escherichia coli.

3.6 | Correlation analysis between significant
taxonomical differences in the intestinal microbiota
and the levels of 5-HT and other biomarkers between
the groups

We analyzed the correlation between the different types of micro-

biota and related biomarkers between the control group and the

F IGURE 2 Results of the sucrose preference test and forced swimming test in the two groups

F IGURE 3 Comparison of serum DA, 5-HT, colonic 5-HT levels and the expression of Tph1 and Scl6a4 in both groups
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CUMS group. The significantly more abundant groups of intestinal

microbiota in the CUMS group, such as Firmicutes, Clostridia,

Clostridiales, Enterobacteriales and Escherichia Shigella, were negatively

correlated with 5-HT, Tph2 and TH levels in the prefrontal lobe and

hippocampus, colonic Scl6a4/GAPDH mRNA, peripheral CD3+CD4+

double positive cells and CD4+/CD8+ ratio, but were positively corre-

lated with IDO1 levels in the prefrontal lobe, colonic 5-HT and Tph1/

GAPDH mRNA levels, and blood inflammatory factors, IL-6, IL-1β and

TNF-α (p < 0.05; Figure 7). On the other hand, the dominant micro-

biota in the control group showed an opposite trend. At the genus

level, the dominant microbiota in the control group,

PrevotellaceaeNK3B31_group, was negatively correlated with 5-HT

and Tph2 levels in the prefrontal lobe, Tph2 level in hippocampus and

colonic Scl6a4/GAPDH mRNA, and was positively correlated with

colonic 5-HT, Tph1/GAPDH mRNA, peripheral CD3+CD4+ double

positive cells and CD4+/CD8+ ratio (p < 0.05; Figure 7).

4 | DISCUSSION

4.1 | CUMS intervention can lead to changes in
the structure and abundance of the intestinal
microbiota and are associated with serotonin
metabolism in the intestines and brain

In our study, the structure and abundance of the intestinal microbiota

were analyzed using 16S rRNA amplification sequencing. PCA showed

that CUMS intervention significantly changed the microbial

F IGURE 4 5-HT, TH, Tph2 and IDO1 levels in the prefrontal cortex and hippocampus of rats in both groups

F IGURE 5 Levels of inflammatory factors and immune cells in the two groups
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composition of the colon, compared with the control group. The

abundance of Firmicutes increased significantly, and the number of

Bacteroidetes decreased significantly, leading to an increase in the F/B

ratio. Consistent with the results of this study, Zu et al. showed that

the relative abundance of Firmicutes was higher in a depressed rat

model and depressed patients, while the relative abundance of Bacte-

roidetes was lower.23–25 Tomova et al. also reported a significant

increase in the intestinal F/B ratio in autistic children.26 In addition, F/

B ratios have also been reported to be elevated in patients with meta-

bolic diseases, inflammatory bowel disease.27 In addition, the F/B ratio

at phylum level is closely associated with the occurrence of depres-

sion, and this study further analyzed the same at the class, order, fam-

ily and genus levels. LEfSe analysis showed that the dominant bacteria

in the control group were Bacteroidetes, Bacteroidia, Bacteroidales,

Prevotellaceae and Prevotellaceae_NK3B31_group, and that the domi-

nant bacteria in the CUMS group were Firmicutes, Clostridia,

Clostridiales, Enterobacteriales, Enterobacteriaceae, Escherichia shigella

and Escherichia coli. Consistent with the results of this study, Braun

et al. found that an increase in the abundance of Clostridium in the

intestinal tract of patients with mental diseases.28–31 Although Clos-

tridium forms part of the normal intestinal microbiota in humans and

animals, most bacteria are opportunistic pathogens that can cause

intestinal or neuro toxicity. Yano et al. showed that Clostridium has a

direct regulatory effect on colon 5-HT synthesis.32 Lin et al. showed

that Clostridium increased deoxycholic acid levels through

7-dehydroxy activity, promoting 5-HT synthesis in colonic epithelial

F IGURE 7 Pearson correlation analysis between the differential fecal metabolites, neurotransmitters in the prefrontal cortex and
hippocampus, inflammatory factors and immune cells: F indicates the prefrontal cortex, H indicates hippocampus and S indicates serum. The
numbers on the lower right panel show the correlation coefficient, while the symbols on the upper left panel show the results of the significance
test. *, adjusted p <0.05; **, adjusted p <0.01
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cells.24,33 Our study showed that Clostridiales was positively corre-

lated with the colon 5-HT level, positively correlated with IDO1

expression in the prefrontal lobe and hippocampus, and negatively

correlated with Tph2 expression, TH and hippocampal 5-HT levels in

the prefrontal lobe and hippocampus. Dominant bacteria in the

CUMS intervention group, such as Enterbacteriaceae (Order),

Escherichia_shigella (Family) and Escherichia coli (Genus) also showed

similar relevance. The dominant bacteria in the healthy control group,

including Prevotellaceae (Family) and Prevotellaceae_NK3B31_group

(Genus) were not only negatively correlated with intestinal 5-HT

expression, but were also positively correlated with TH expression in

the prefrontal lobe and hippocampus. This suggests that intestinal

microbiota may have follow a feedback regulation mechanism

between 5-HT and DA metabolism in brain tissue.

The neurotransmitter, 5-HT, regulates immune responses and

intestinal-brain communication,5,34,35 and a decrease in cerebral

5-HT expression can lead to behavioral changes, including persis-

tent grief and loss of interest.36 In our study, CUMS intervention

significantly decreased levels of 5-HT in the colon and brain tis-

sues. The role of circulating 5-HT in depression is ambiguous.

Some studies have reported of no change in the levels of 5-HT in

the peripheral blood of CUMS-treated rats,37–39 while other stud-

ies indicate that a lower blood 5-HT level is a potential biomarker

for depression.40–42 We did not detect any significant differences

in the serum 5-HT level between the control and CUMS groups,

suggesting that circulating 5-HT may not directly reflect the state

of depression. This may be attributed to the blood–brain barrier

(BBB), which consists of tightly connected transmembrane pro-

teins, such as claudins and tricellulin, which limit the diffusion of

water-soluble substances, such as 5-HT, from the blood to the

brain.43 The elevation of 5-HT expression in the colon tissues of

CUMS-exposed animals is indicative of the gut–brain axis.

Although intestinal 5-HT cannot directly affect the level of 5-HT in

the brain, tryptophan can cross the blood–brain barrier and pro-

mote 5-HT synthesis in the brain.4 Therefore, the increased syn-

thesis of 5-HT in the intestine may decrease the amount of

tryptophan entering the brain, and eventually interfere with 5-HT

synthesis.

The rate-limiting step of 5-HT biosynthesis in intestinal chromaf-

fin cells (ECs) is catalyzed by Tph1.44 In addition, the rapid uptake of

5-HT depends on SLC6A4, a transmembrane serotonin transporter

(SERT) with a high affinity for 5-HT that is mainly expressed on intes-

tinal mucosal epithelial cells and chromaffin cells.45 Colonic Tph1

expression was upregulated whereas SLC6A4 expression was down-

regulated after CUMS intervention. Decreased intestinal SLC6A4

levels can lead to intestinal 5-HT accumulation, which in turn can

increase intestinal mucosal stimuli, eventually leading to diarrhea.46

Gastrointestinal diseases often occur in patients with depression,

which may also be closely associated with the increase in the content

of free 5-HT in the intestines.47 Further studies are needed to deter-

mine whether changes in intestinal microbiota and brain 5-HT metab-

olism involve the vagus nerve and the overall mechanisms of action

involved.

4.2 | The structural and abundance changes of the
intestinal microbiota are closely associated with the
imbalance of immune cells and certain inflammatory
factors

During an inflammatory state, immune cells produce high levels of

pro-inflammatory cytokines and metabolites, which enter systemic

blood circulation10 and can cross the blood–brain barrier, leading to

severe behavioral changes. CUMS intervention significantly increased

IL-6, IL-1β and TNF-α levels, and decreased the CD4+/CD8+ ratio.

The non-neuronal cells in the brain, such as microglia and astrocytes,

express TNF-α and IL-1β receptors.48–50 Circulating IL-1β and TNF-α

bind to these receptors after crossing the blood–brain barrier and

induce the production of secondary cytokines that promote the devel-

opment of depression. CD4+ T cells play a key role in the induction of

T lymphocyte proliferation, while CD8+ T cells perform an immuno-

suppressive function.51,52 A significant decrease in the CD4+/CD8+

ratio is suggestive of impaired immune surveillance and inflammation.

Zdanowicz et al. conducted a study on 549 patients with severe

depression and showed that depression and immunity are associated

with each other.53 In our study, the correlation analysis showed that

the abundance of E. coli increased significantly in the CUMS interven-

tion group. Porter et al. proved that the presence of E. coil was associ-

ated with intestinal inflammation in a mouse colitis model.54 The

correlation analysis showed that Enterbacteriales (Order),

Enterbacteriaceae (Family), Escherichia_shigella (Genus) were signifi-

cantly and positively correlated with TNF-α and IL-1 expression, and

that Escherichia_shigella (Genus) was positively correlated with

CD3+CD8+ expression. These results indicate that CUMS interven-

tion could indeed lead to the proliferation of certain pathogenic bac-

teria in the intestinal tract, and which may then lead to the increase of

inflammatory factors and immune cell disorders.

Kim et al. reported that intestinal microbiota can affect the matu-

ration of immune cell subsets and innate immune response.11,12

Prevotellaceae was found to be more abundant in individuals on a

plant-rich diet.55,56 Simpson et al. showed that

Prevotellaceae_NK3B31_group produces short-chain fatty acids

(SCFAs) through the fermentation of dietary fiber, which not only pro-

vides energy for the growth and metabolism of colon epithelial cells,

but also improves intestinal barrier function and regulates the endo-

crine system.57 Our study showed that Prevotellaceae and

Prevotellaceae_NK3B31_group were significantly and positively corre-

lated with the number of CD3+CD8+ cells and the CD4+/CD8+ ratio,

indicating their roles in regulating immune monitoring and repairing

inflammation damage.

5 | CONCLUSIONS

Stress can lead to disturbances in the intestinal microbiota. Intestinal

microbiota may indirectly regulate emotional and behavioral changes

associated with depression by regulating 5-HT metabolism and the

expressions of immune cells and inflammatory cytokines. Therefore,
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regulation of the intestinal microbiota may be a promising interven-

tion for depression that warrants further investigation.
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