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Peripheral Inflammation, Apolipoprotein E4,
and Amyloid-b Interact to Induce Cognitive
and Cerebrovascular Dysfunction
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Abstract

Cerebrovascular dysfunction is rapidly reemerging as a major process of Alzheimer’s disease (AD). It is, therefore, crucial to

delineate the roles of AD risk factors in cerebrovascular dysfunction. While apolipoprotein E4 (APOE4), Amyloid-b (Ab), and

peripheral inflammation independently induce cerebrovascular damage, their collective effects remain to be elucidated. The

goal of this study was to determine the interactive effect of APOE4, Ab, and chronic repeated peripheral inflammation on

cerebrovascular and cognitive dysfunction in vivo. EFAD mice are a well-characterized mouse model that express human

APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce human Ab42 via expression of 5 Familial Alzheimer’s disease (5xFAD)

mutations. Here, we utilized EFAD carriers [5xFADþ/�/APOEþ/þ (EFADþ)] and noncarriers [5xFAD�/�/APOEþ/þ (EFAD�)]

to compare the effects of peripheral inflammation in the presence or absence of human Ab overproduction. Low-level,

chronic repeated peripheral inflammation was induced in EFAD mice via systemic administration of lipopolysaccharide (LPS;

0.5 mg/kg/wk i.p.) from 4 to 6 months of age. In E4FADþ mice, peripheral inflammation caused cognitive deficits and lowered

post-synaptic protein levels. Importantly, cerebrovascular deficits were observed in LPS-challenged E4FADþ mice, including

cerebrovascular leakiness, lower vessel coverage, and cerebral amyloid angiopathy-like Ab deposition. Thus, APOE4, Ab, and

peripheral inflammation interact to induce cerebrovascular damage and cognitive deficits.
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Introduction

Cerebrovascular dysfunction is resurfacing as a critical
pathological component of the onset and progression
of cognitive decline in Alzheimer’s disease (AD; Love
and Miners, 2016). Indeed, vascular risk factors that
are linked to cerebrovascular dysfunction increase
AD risk and progression (Farkas and Luiten, 2001;
Iadecola, 2004; Henry-Feugeas, 2008; de la Torre, 2010;
Zlokovic, 2011; Stanimirovic and Friedman, 2012; van de
Haar et al., 2015). Further, increased cerebrovascular
leakiness, reduced cerebral blood flow, and altered cere-
brovascular coverage have all been demonstrated both
in AD patients and mouse models of AD-like pathology
(Ujiie et al., 2003; Dickstein et al., 2006; Paul et al., 2007).
Known AD risk factors and processes (which we

collectively term AD hits) may contribute to AD by dis-
rupting the cerebrovasculature (Tai et al., 2016). As the
homeostatic interface between the blood and the brain,
the cerebrovasculature is susceptible to damage from
AD hit-modulated processes from both the brain and
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periphery. Therefore, dissecting the impact of AD hits on
cerebrovascular dysfunction in AD is crucial.

Amyloid-b (Ab), apolipoprotein E4 (APOE4), and per-
ipheral inflammation are key AD hits that are independ-
ently linked to AD progression and cerebrovascular
dysfunction. High soluble and extracellular Ab levels
are important features of AD. Furthermore, Ab disrupts
brain endothelial cells in vitro (Koster et al., 2016) and
mouse models that overproduce Ab via familial AD
mutations are associated with cerebrovascular dysfunc-
tion (Giannoni et al., 2016). APOE4 is the strongest gen-
etic risk factor for AD and carries a 12-fold increase
in risk compared to APOE3 (Corder et al., 1993; Farrer
et al., 1997; Bertram and Tanzi, 2004; Genin et al., 2011;
Leoni, 2011). APOE4 is also associated with increased
cerebrovascular leakiness and lower capillary coverage
in both aging and AD (reviewed in Tai et al., 2016).
Chronic peripheral inflammation is a common feature
of nongenetic peripheral AD risk factors. Type 2 dia-
betes, midlife hypercholesterolemia, midlife hypertension,
and atherosclerosis all have a peripheral inflammatory
component (Scalia et al., 1998; Duncan et al., 2003;
Hansson et al., 2006; Savoia and Schiffrin, 2006). Acute
peripheral inflammation also induces cerebrovascular
damage in vivo, and cytokines disrupt brain endothelial
cells in vitro (Aslam et al., 2012; Roberts et al., 2012;
Lopez-Ramirez et al., 2013; Duperray et al., 2015; Qin
et al., 2015). While Ab, APOE4, and peripheral inflam-
mation are independently associated with cerebrovascu-
lar dysfunction, increasing evidence for other AD-like
pathology supports that they interact. For example,
APOE4 and peripheral risk factors interact to increase
AD risk (Haan et al., 1999; Irie et al., 2008; Matsuzaki
et al., 2010), APOE4 is associated with higher Ab levels,
and peripheral inflammation induces more severe hyper-
thermia with APOE4 in humans (Gale et al., 2014). The
goal of this study was to determine whether in vivo,
APOE4 and Ab predispose the cerebrovasculature to
damage in response to chronic repeated peripheral
inflammation.

EFAD mice (Youmans et al., 2012a; Tai et al., 2017)
are a well-characterized mouse model that express
human APOE3 (E3FAD) or APOE4 (E4FAD) and over-
produce human Ab42 (EFADþ), whereas littermate
controls express APOE3 or APOE4 in the absence of
human Ab (EFAD�). Thus, EFAD mice are well-
suited to determine the APOE-modulated contribution
of AD relevant hits in the presence or absence of
human Ab. We therefore utilized EFAD mice in this
study. Chronic repeated peripheral challenge with lipo-
polysaccharide (LPS; 0.5mg/kg/wk, from 4 to 6 months
of age) induced cognitive and cerebrovascular deficits in
E4FADþ mice. These data support that cerebrovascular
dysfunction is a key mechanism that links AD hits
to pathogenesis.

Materials and Methods

Animals

Breeding and colony maintenance was conducted at the
University of Illinois at Chicago as previously described
(Youmans et al., 2012a; Thomas et al., 2016), and all
protocols adhere to the University of Illinois at Chicago
Institutional Animal Care and Use Committee protocols.

EFAD mice express human APOE3 or APOE4 and
overproduce human Ab via the expression of five
Familial Alzheimer’s disease (5xFAD) mutations
(Youmans et al., 2012a). EFAD mice were generated by
crossing APOE-targeted replacement (APOE-TR) mice
on a C57/BL6 background with female 5xFAD mice on
a C57BL6/B6xSJL background. The resulting male off-
spring were then backcrossed to female APOE-TR mice
to produce 5xFADþ/�/APOEþ/þ (EFAD) mice. EFAD
mice are maintained as an inbred strain, by crossing male
EFADþ with female EFAD� mice, or vice versa.
Therefore, the offspring produced express human apoE
as either carriers or noncarriers of the 5xFAD mutations
(Youmans et al., 2012a).

Male EFAD carrier [5xFADþ/�/APOEþ/þ (EFADþ)]
and noncarrier [5xFAD�/�/APOEþ/þ (EFAD�)] mice uti-
lized in this study were grouped into 10 cohorts (n� 8 per
cohort), and treatments were randomized by cage. Female
mice were excluded from this study as female sex is in itself
a risk factor for AD. We have previously demonstrated
cognitive and cerebrovascular deficits in female E4FADþ
mice (Thomas et al., 2016). Therefore, the focus here was
whether peripheral inflammation induces similar cerebro-
vascular and cognitive dysfunction in male E4FADþ
mice. EFAD mice used to begin the breeding colonies
were a generous gift of Dr. M. J. LaDu. All investigators
were blinded for LPS treatment.

LPS Treatment

EFAD mice were administered phosphate-buffered saline
(PBS) or LPS (Escherichia coli O8:K27 [S-form],
Innaxon) via intraperitoneal (i.p.) injection (0.5mg/kg/
wk) from 4 to 6 months of age. A final LPS treatment
was administered the day before sacrifice for nine total
injections (Figure 1(a)). Body weights were measured
prior to each injection.

Behavioral Analysis

Behavioral tests to assess cognitive function were initiated 2
days after the eighth regular treatment injection of LPS or
PBS and concluded 2 days prior to the final injection
(Figure 1(a)). Mice were sequentially assessed (24 hr
between tests) by spontaneous alternation (Y-maze) and
novel object recognition tests as described in Thomas
et al. (2016) with slight modification. All behavioral analysis
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was conducted during the mouse dark cycle, recorded by an
overhead camera, and analyzed using ANY-Maze software.
A potential caveat is that sequential behavioral tests modi-
fies performance (i.e., any differences observed in novel
object recognition are related to LPS-driven performance
deficits over 3 days of testing). We have attempted to min-
imize such an effect by staggering the tests from least to
most complex or stressful (i.e., spontaneous alternation
then novel object recognition with a 24hr gap in-between)
to minimize multitesting effects.

Spontaneous Alternation (Y-maze)

Mice were placed in the entry arm of a Y-maze apparatus
(38.5� 8� 13 cm, spaced 120� apart) and allowed to
explore freely for 10min. The sequence of arm entries
was recorded and spontaneous alternation calculated:
number of alternations (three successive entries that
include one instance in each arm) divided by the total
possible alternations (number of arms entered minus 2)
multiplied by 100.

Novel Object Recognition

Briefly, mice were habituated in a white testing arena
(33� 25� 12.5 cm) for 10min, allowed to rest in their
home cage for 50min, and then returned to the same
testing arena for 10min. After 24 hr, mice were placed

in the same testing arena with two identical objects for
10min. After being returned to their home cage for
50min, they were placed back into the testing arena con-
taining a familiar and novel object for 10min. The dis-

crimination index (DI) was calculated as: DI ¼ ðTN�TFÞ

ðTNþTFÞ
,

where TN is the time spent exploring the novel object

and TF is the time spent exploring the familiar object.

Tissue Harvest

Twenty-four hours after the final injection of LPS, EFAD
mice were injected i.p. with 200 ml of 2% sodium fluores-
cein (NaFl, see below for quantification) in sterile ddH2O
and anesthetized 30min later with ketamine (100mg/kg)
and xylazine (10mg/kg). Following anesthetization,
blood was drawn from the right ventricle of the heart
using a heparin-coated needle and centrifuged at
1,500� g for 15min at 4�C to collect the plasma. The
plasma was analyzed immediately for NaFl extravasation
or snap frozen in liquid nitrogen and stored at �80�C.

Mice were then transcardially perfused with PBS contain-
ing protease inhibitors (Millipore, Darmstadt, Germany) at
a rate of 4ml/min for 5min. Dissected left hemi-brains
were frozen in Optimal Cutting Temperature (OCT)
and stored at �80�C until immunohistochemical (IHC)
analysis. Right hemi-brains were further dissected into
the cortex, hippocampus, and cerebellum, weighed,

Figure 1. (a) Study design. (b) Body weight is unaffected by LPS treatment. Body weight was tracked weekly over the course of LPS

treatment from 4 to 6 months of age. No differences were detected between genotypes or treatment groups. p> .05 using a mixed effects

model.
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homogenized in PBS, and processed immediately for
NaFl extravasation. A fraction of each PBS brain region
homogenate was reserved for biochemical analysis.

NaFl Extravasation Analysis

PBS homogenates were resuspended in equal volumes of
60% tricholoroacetic acid, vortexed, and centrifuged at
18,000� g for 10min at 4�C. The supernatant was col-
lected and fluorescence was read using a SpectraMax i3x
microplate reader (Molecular Devices). Cleared volume
of NaFl that passed from the plasma into the brain was
calculated as follows:

Cleared Volume ¼

Brain Fluorescence ðAUÞÞ

Plasma Fluorescence ðAU=�lÞ

Brain Weight ðmgÞ

Biochemical Analysis

Reserved aliquots of PBS extracts from homogenized brain
tissue (see NaFl analysis protocol) were further processed
using a modified version of the three-step extraction proto-
col described in Youmans et al. (2012a) in order to separate
soluble, detergent-soluble, and extracellular proteins. This
protocol was developed to assess soluble Ab levels (con-
sidered particularly AD-relevant) and to fully extract total
Ab (which is primarily driven by formic acid levels). In
addition, the collection of a detergent soluble fraction
enables subsequent analysis of neuronal proteins by
Western blot analysis. Briefly, the PBS extracts were cen-
trifuged (100,000� g for 1 hr at 4�C), and the PBS-soluble
supernatant was collected, snap frozen in liquid nitrogen,
and stored at �80�C until use. The pellet was washed in
Tris-buffered saline (TBS) and resuspended in TBS with
1% Triton X-100 (TBS-X), incubated at 4�C for 30min
with gentle rotation, and centrifuged (100,000� g for 1hr
at 4�C). The TBS-X-soluble fraction was collected and
frozen as described for the PBS extract. The remaining
pellet was washed with TBS-X and resuspended in 70%
formic acid (FA), incubated with gentle rotation at room
temperature for 2hr with occasional vortexing, and centri-
fuged (100,000� g for 1 hr at 4�C). The FA-soluble super-
natant was neutralized with 20 volumes of 1M Tris base,
aliquoted, and snap frozen in liquid nitrogen. Total protein
in the PBS and TBS-X extracts was quantified using the
PierceTM BCA Protein Assay Kit (Thermo Fisher). The
ready-to-use Bradford reagent (Bio-Rad) was used to
quantify total protein in the neutralized FA extract.

Western Blotting

Samples were loaded onto gels to allow comparison of
LPS-treated groups against their appropriate PBS vehicle

controls (e.g., E4FADþLPS vs. E4FADþPBS) with an
n� 6 of each group per gel. All samples were normalized
to actin. Given the larger volume of cortical samples, we
were able to run all of the PBS-treated vehicle controls
together on four separate gels (n¼ 6 per group), in order
to compare protein levels as a ratio of the E3FAD� PBS
group. The limited volume of the hippocampal samples
prevented us from running samples on the multiple gels
required to plot the data as a ratio of the E3FAD� PBS
group, as was conducted for cortex samples (i.e., there
were only sufficient sample volumes to run a gel compar-
ing PBS- to LPS-treated mice within a genotype, e.g.,
E4FAD� mice, but not to run separate gel(s) with all
the PBS samples across genotypes, i.e., comparing samples
from E3FAD�, E3FADþ, E4FAD�, E4FADþ mice).
TBS-X fractions from the three-step extraction were ana-
lyzed for neuronal proteins and actin by western blot as
described previously (Thomas et al., 2016). Briefly, protein
(15mg for cortex, 10mg for hippocampus) was separated
on 4% to 12% Bis-Tris gels (Invitrogen), transferred onto
low-fluorescence PVDF, blocked with 5% milk in 0.1%
Tween-20 in TBS (TBS-T), and probed with primary anti-
body in 5% bovine serum albumin (BSA): overnight at
4�C for postsynaptic density-95 (PSD-95, 1:1000, Cell
Signaling) and synaptophysin (1:1000, Cell Signaling);
1 hr at room temperature for actin (1:20000, Cell
Signaling). After washing (3� 5min, TBS-T), membranes
were incubated for 1 hr in the appropriate secondary anti-
body (Jackson Immunoresearch). Proteins were imaged
and quantified using the Odyssey � Fc Imaging System
and normalized to actin. Actin-normalized LPS-treated
groups are expressed as either a ratio of the E3FAD�
PBS-treated group (cortex) or as a ratio of their own
PBS-treated vehicle controls (hippocampus).

Enzyme-Linked Immunosorbent Assay

ApoE and Ab42 were measured by enzyme-linked
immunosorbent assay (ELISA) in the PBS, TBS-X, and
FA extracts. The apoE ELISA was performed as described
in Tai et al. (2014) using anti-apoE (1:2000, Millipore)
and biotinylated anti-apoE (1:5000, Meridian) for capture
and detection antibodies, respectively. Ab42 was measured
by a commercially available ELISA kit following the
manufacturer instructions (Life Technologies).

Fluorescent IHC

Laminin and Ab IHC analysis was conducted as previ-
ously described in Thomas et al. (2016). Succinctly, sagit-
tal sections were taken beginning at the stereotaxic
coordinate of ML 3.72mm through 0mm in order to
encompass the cortex and the entire hippocampal forma-
tion. Nine nonadjacent, 12 mm frozen sections (192mm
apart) per animal were fixed with 10% neutral buffered
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formalin (Sigma). Incubation in FA is a frequently uti-
lized method for antigen retrieval of Ab and, therefore,
was performed here (Kitamoto et al., 1987; Cummings
et al., 2002; Christensen et al., 2009; Youmans et al.,
2012a; Youmans et al., 2012b; Thomas et al., 2016).
Following antigen retrieval (52.8% FA, 8min, room tem-
perature), sections were permeabilized with 0.25% Triton
X-100 in TBS (dilution media), blocked in 5% BSA in
dilution media, and incubated in primary antibody over-
night at 4�C in a humidified chamber. Anti-Ab (MOAB-
2, mouse IgG2b, 1:250, Biosensis) and anti-laminin
(rabbit, 1:200, Abcam) primary antibodies were diluted
in 2% BSA and 0.1% Triton X-100 in TBS. Next, sec-
tions were washed 3� 5min in dilution media and incu-
bated in the appropriate Alexa fluorophore-conjugated
secondary antibodies (1:200, AlexaFluor 350 anti-mouse
IgG2b, AlexaFluor 750 anti-rabbit, Invitrogen) in 2%
BSA and 0.1% Triton X-100 in TBS, followed by 3� 5min
washes in dilution media, and 1� 5min in TBS. Mosaic1

and single images were obtained at 20�magnification on a
Zeiss Axio Imager M1 under identical exposure settings
and equally thresholded on ImageJ software (NIH,
ImageJ). Laminin and Ab levels were quantified in the
full cortex, deep layer cortex, and subiculum using the
‘‘Analyze Particles’’ feature. Brain regions of interest were
standardized with reference to the Allen Mouse Brain
Atlas. Specifically (see Supplementary Figure 1(a)), the
cortex included all six layers of the isocortex, whereas the
deep layer cortex included only layers 2/3 through 6a of
the isocortex. The subiculum was traced for each section
excluding other regions of the retrohippocampal region
(i.e., the entorhinal area, the parasubiculum, the postsubi-
culum, and the presubiculum).

Cerebral amyloid angiopathy (CAA)-like deposition
was quantified as described in (Tai et al., 2017). Briefly,
mosaic images costained for Ab (MOAB-2) and laminin
were captured using identical settings at 20�magnifica-
tion as described for vessel coverage. Converted images
were thresholded equally and quantified using the
‘‘Colocalization Threshold’’ feature in NIH ImageJ
software.

Tissue sections for confocal microscopy and 3D vessel
reconstruction were sectioned as described earlier. Tissue
was probed with anti-Ab (MOAB-2, mouse IgG2b, 1:250,
Biosensis) and anti-laminin (rabbit, 1:200, Abcam) or
anti-CD31 (rat, 1:10, BD Bioscience) followed by the
appropriate secondary (1:200, AlexaFluor 350 anti-
mouse IgG2b, AlexaFluor 555 anti-rabbit, AlexaFluor
594 anti-rat, Invitrogen). Representative Z-stack
images of cortical vessels with overlapping fluorescence
for Ab and laminin or CD31 were taken at 63� magni-
fication on a Zeiss LSM 710 Confocal Microscope.
Imaris 7.7.2 software was used to produce 3D vessel
reconstructions and visualize CAA in the cortical
cerebrovasculature.

Multiplex Analysis of Peripheral Cytokines

Plasma cytokine levels were measured using a Bio-Plex
ProTM Mouse Cytokine 23-plex Assay (Bio-Rad) accord-
ing to the manufacturer protocol. For quantification,
standard curves were generated using standards for
each cytokine (included in the kit) and analyzed using a
five-parameter logistic equation. Sample concentrations
were calculated based on parameters obtained using the
standard curve. Hierarchical cluster analysis was per-
formed using Cluster 3.0 (de Hoon et al., 2004) and visua-
lized using Java Treeview (Saldanha, 2004) software.

Statistical Analysis

Sample sizes were as follows: E3FAD�PBS (n¼ 9),
E3FAD�LPS (n¼ 7), E3FADþPBS (n¼ 7), E3FADþ
LPS (n¼ 7), E4FAD�PBS (n¼ 10), E4FAD�LPS
(n¼ 11), E4FADþPBS (n¼ 9), and E4FADþLPS
(n¼ 12). All samples were utilized for analysis unless
stated in the results. For IHC analysis n¼ 6 for all groups.

A mixed model was used to analyze changes in body-
weight over time and between treatments. The random
intercepts and slopes model included linear time, treat-
ment, and their interaction as fixed effects. Overall effects
were analyzed by inverse-variance-weighted three-way
analysis of variance (ANOVA), testing initially for
mean differences using the omnibus F test with a satu-
rated model. Post hoc mean comparisons driven by visual
inspection of the results were conducted using the appro-
priate orthogonal contrasts with Bonferroni’s correction.
Three-way ANOVA and post hoc analysis were
carried out with R version 3.3.0 (R Core Team, 2014).
Weighted two-way ANOVA with Bonferroni’s correction
and Student’s t-test analyses were conducted using
GraphPad Prism Version 6. All data are represented as
the mean� standard error (SEM).

Results

Systemic LPS Administration Induces Cognitive
Dysfunction in E4FADþ Mice

The overarching goal of this study was to determine the
interactive effects of chronic repeated peripheral inflam-
mation, APOE, and Ab on cerebrovascular and AD-like
pathology in vivo. Wild-type mice were excluded from this
study as mouse apoE is structurally distinct from each of
the human apoE isoforms. Human apoE isoforms differ
by a single amino acid change at residues 112 and 158
(apoE3Cys,Arg, apoE4Arg,Arg), whereas mouse apoE is
expressed as a single isoform and differs from all
human apoE isoforms by approximately one third of its
nearly 300 amino acids (Tai et al., 2017). The structural
differences result in unique functional effects of mouse
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apoE compared to the human apoE isoforms. Therefore,
mouse models were developed to enable a comparison of
human APOE3 to human APOE4 and to mimic more
closely APOE4-induced AD risk in humans. To incorp-
orate APOE and Ab, EFAD mice were employed, which
express human APOE3 (E3FAD mice) or APOE4
(E4FAD mice) and overproduce Ab42 via the 5xFAD
mutations (Youmans et al., 2012a). Male EFAD carrier
[5xFADþ/�/APOEþ/þ (EFADþ)] and noncarrier
[5xFAD�/�/APOEþ/þ (EFAD�)] mice expressing
APOE3 or APOE4 were utilized in order to dissect the
effects of peripheral inflammation in the presence and
absence of high levels of human Ab. For peripheral
inflammation, EFAD mice were treated with LPS, a bac-
terial endotoxin, and toll-like receptor 4 agonist com-
monly utilized to induce an inflammatory response. We
selected a low dose (0.5mg/kg i.p.) reported to be the
threshold of physiological changes (Vaure and Liu,
2014) and only treated mice once a week to achieve a
repeated low-level peripheral inflammatory response.
Thus, male EFADþ and EFAD� mice were treated
from 4 to 6 months of age (Figure 1(a), LPS, 0.5mg/
kg/wk i.p.) to start at an age of initial Ab deposition
and prior to cognitive deficits (Youmans et al., 2012a;
Thomas et al., 2016).

There were no changes in bodyweight after LPS treat-
ment regardless of APOE genotype (Figure 1(b), F(1,
67)¼ 1.97, p> .05). Further, we monitored EFADþ and
EFAD� mice continually over the treatment course and
there were no overt signs of toxicity, i.e., death rates
(none), fur loss, or wounds. Therefore, no characteristics
of sickness behavior were observed, which are frequently
associated with higher LPS doses and indicates acute,
rather than chronic low-level inflammation.

Initially, the effect of LPS on cognition was assessed.
As described in the ‘‘Materials and Methods’’ section,
statistical analysis was conducted using a three-way
ANOVA F test, to determine whether there were signifi-
cant differences between any groups. Subsequent post hoc
analysis was based on hypotheses derived from the scien-
tific interpretation of the graphs, which for behavior and
PSD-95 (see below) was focused on comparisons for LPS-
and PBS-treated mice within each group. A similar
approach was conducted for all three-way ANOVA com-
parisons throughout the study. LPS treatment had no
effect on spatial memory as assessed by spontaneous
alternation (Figure 2(a), p> .05). However, the novel
object recognition test illuminated dysfunction in recog-
nition memory in LPS-treated E4FADþ mice compared
to PBS-treated E4FADþ mice (Figure 2(b), F(7,
64)¼ 4.7, *p< .05, followed by Bonferroni post hoc ana-
lysis comparing PBS- with LPS-treated mice within each
group). Furthermore, no other groups demonstrated a
deficit in recognition memory when challenged with
LPS- compared to their own PBS-treated vehicle control.

Thus, repeated peripheral LPS challenge resulted in a
substantial cognitive deficit in E4FADþ mice.

Next, levels of PSD-95 were assessed by western blot
analysis. The extraction procedure utilized in this study
resulted in higher cortical volumes for western blot ana-
lysis. Thus, as described in the ‘‘Materials and Methods’’
section, we were able to plot expression levels (normal-
ized to actin) as a ratio of the PBS-treated E3FAD�
group. There were higher levels of PSD-95 in the cortex
of LPS- compared to PBS-treated E3FADþ (Figure 2(c),
F(7, 62)¼ 7.6, *p< .05, followed by Bonferroni post hoc
analysis comparing PBS- with LPS-treated mice within
each group). These data indicate an adaptive, potentially
protective response. Consistent with the behavioral def-
icits, there was a nonsignificant trend in which, compared
to PBS, LPS treatment resulted in lower levels of the
postsynaptic protein PSD-95 in the cortex of E4FADþ
mice (Figure 2(c); p¼ .088). Due to volume restrictions in
the hippocampal samples, we could only compare the
LPS- and PBS-treated groups (Student’s t-test). LPS
treatment resulted in lower PSD-95 levels only in
E4FADþ mice, with �25% lower levels compared to
PBS-treated E4FADþ mice. There were no significant
differences in the levels of the presynaptic protein synap-
tophysin for any of the groups (data not shown).
Collectively, these data support that LPS treatment
from 4 to 6 months of age induces cognitive deficits and
lowers PSD-95 levels in E4FADþ mice.

Higher Cerebrovascular Leakiness and Lower Vessel
Coverage in LPS-Challenged E4FADþ Mice

To determine the roles of peripheral inflammation
and APOE in cerebrovascular integrity, we first
measured NaFl levels in the brain following i.p. injection
(Figure 3). Cortical NaFl levels were significantly higher
in LPS-treated, compared to PBS-treated, E4FADþ mice
(Figure 3(a); F(7, 55)¼ 4.2, *p< .05 followed by
Bonferroni post hoc analysis comparing PBS- with
LPS-treated mice within each group; insufficient plasma
volumes due to imperfect blood draws resulted in the
prioritization of samples for later multiplex analysis and
exclusion from NaFl analysis: E3FAD� PBS (n¼ 6),
E3FAD� LPS (n¼ 6), E3FADþ PBS (n¼ 7), E3FADþ
LPS (n¼ 6), E4FAD� PBS (n¼ 10), E4FAD� LPS
(n¼ 7), E4FADþ PBS (n¼ 9), and E4FADþ LPS
(n¼ 12)). Indeed, cortical NaFl levels were �300%
higher in E4FADþ mice treated with LPS. There were
no other differences when comparing PBS- to LPS-trea-
ted mice within any other group. In the hippocampus,
LPS treatment did not significantly increase NaFl
levels compared to the PBS-treated mice in any group
(Figure 3(b); p¼ .07). Lack of an effect for LPS in
E4FADþ mice in the hippocampus may be related to
the lower signal-to-noise ratio of the hippocampus.
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Figure 2. Cognitive dysfunction in LPS-treated E4FADþ mice. (a) Spatial memory was unaffected by LPS treatment when assessed by

spontaneous alternation (Y-maze). (b) LPS-induced recognition memory deficits in LPS-treated E4FADþ mice compared to PBS-treated

E4FADþ mice. (c) In the cortex, post-synaptic density-95 (PSD-95) protein levels (normalized to actin) were higher in E3FADþ mice

treated with LPS compared to PBS, indicating a potential adaptive response. In the cortex, there was a nonsignificant trend where,

compared to PBS, LPS treatment resulted in lower levels of PSD-95 of E4FADþ mice. In the hippocampus, E4FADþ mice treated with LPS

had lower PSD-95 levels compared to PBS-treated mice. Solid black boxes indicate samples were run on the same gel; bands on the same

gel in nonadjacent positions are separated by a dashed line. Data are expressed as the mean� SEM. *p< .05 by three-way ANOVA

followed by Bonferroni post hoc analysis comparing PBS- with LPS-treated mice within each group. The exception is for PSD-95 levels in

the hippocampus for (c) where *p< .05 by t-test.

Figure 3. Higher cerebrovascular leakiness in LPS-treated E4FADþ mice. (a) When assessed by sodium fluorescein (NaFl) extravasation,

peripheral administration of LPS resulted in 300% higher cortical NaFl levels in E4FADþ mice compared to PBS. (b) In the hippocampus, no

differences were observed between LPS and PBS groups. Data are expressed as the mean� SEM. *p< .05 by three-way ANOVA followed

by Bonferroni post hoc analysis comparing PBS- with LPS-treated mice within each group.
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Total vessel coverage is an indication of a disrupted
cerebrovasculature, and at 8 months of age, we have
observed lower vessel coverage in the subiculum and
deep layer cortex of female E4FADþ mice compared to
age-matched males (Thomas et al., 2016). The region-
specific lowering of vessel coverage is likely driven by
the accumulation of Ab in those regions of EFADþ
mice and increased susceptibility of vessels to damage
(see ‘‘Discussion’’ section). Therefore, the effects of LPS
on cerebrovascular coverage were assessed using a
staining for laminin, a basement membrane protein, in
the full cortex, deep layer cortex, and subiculum (see
Supplementary Figure 1(a) for a representative image of
brain regions used for quantification), to match our previ-
ous study in female EFAD mice. Laminin coverage in the
deep layer cortex and subiculum qualitatively appeared
lower in E4FADþ mice that had been treated with
LPS compared to PBS (Figure 4(a, b)). Quantification
revealed that, in E4FADþ mice treated with LPS
compared to PBS, vessel coverage was 25% lower in full
and deep layer cortex and �35% lower in the subiculum
(F(7, 40)¼ 3.30, 9.78, 13.35 for each brain region, respect-
ively, *p< .05, followed by Bonferroni post hoc analysis
comparing PBS- with LPS-treated mice within each
group). The only other group that exhibited significantly
lower vessel coverage in the subiculum with LPS versus
PBS treatment was E4FAD� mice. These data indicate
subtle cerebrovascular deficits in E4FAD� mice after
repeated peripheral inflammation that may manifest as
cognitive decline with longer treatment. Thus, LPS induces
cerebrovascular deficits, including lower cerebrovascular
coverage, in male E4FADþ mice.

Higher Extracellular A� in the Cortex of LPS-Treated
E4FADþ Mice

EFADþ mice serve as a model of APOE-modulated Ab
levels and induced dysfunction, with Ab pathology pri-
marily in the subiculum of the hippocampal formation
and in the deep layers of the frontal cortex. Therefore,
we assessed whether repeated peripheral challenge with
LPS had an effect on brain Ab42 levels biochemically
and by IHC (Figure 5(a) to (c)). As EFAD� mice were
not assessed for Ab, statistical analysis was conducted by
two-way ANOVA followed by Bonferroni post hoc ana-
lysis. In the cortex, there were no changes in soluble
or total Ab42 levels when assessed biochemically
(Figure 5(a), F(1, 33), p> .05, see Supplementary Figure
1(b) for full extraction profile). Since total Ab consists
primarily of extracellular Ab, quantitative IHC analysis
was conducted. There was a genotype effect (F(1, 20)¼
21.2, *p< .05), and post hoc analysis revealed higher
levels of Ab in the cortex of LPS-treated E4FADþ
mice compared to LPS- and PBS-treated E3FADþ
(Figure 5(c), Bonferroni post hoc comparisons comparing

all groups). We are careful not to over interpret, due to
the difficulty in distinguishing plaque size and number,
but the higher percentage area covered by extracellular
Ab in the cortex of LPS-treated E4FADþ mice was pri-
marily driven by large size (Supplementary Figure 1(d),
(F(1, 20)¼ 17.8 for genotype and treatment interaction,
*p< .05, Bonferroni post hoc comparisons comparing
all groups). As there were no differences by APOE geno-
type in the PBS group by IHC, these data indicate
that LPS increased insoluble Ab levels in the cortex of
E4FADþ mice. The partial differences between the IHC
and biochemical data may be related to the relatively
high variation of Ab levels in the E4FADþ PBS group;
however, visually, the graphs followed the same trend.
In the hippocampus, there was both a genotype
(F(1, 33)¼ 16.64, *p< .05) and a treatment interaction
(F(1, 33)¼ 8.190, *p< .05), with higher levels of soluble
Ab (PBS extraction) in the hippocampus of LPS-
treated E4FADþ mice compared to all other groups
(Figure 5(b), Bonferroni post hoc comparisons compar-
ing all groups, see Supplementary Figure 1(c) for full
extraction profile). Although no differences were
observed for total Ab42, extracellular Ab primarily
deposits in the subiculum of EFADþ mice, which
may have partially confounded biochemical analysis of
the entire hippocampus. We therefore quantified extracel-
lular Ab in the subiculum by IHC. Similar to the cor-
tex, there was a genotype effect in the subiculum
(F(1, 20)¼ 13.06, *p< .05)) with higher levels of Ab for
LPS-treated E4FADþ mice compared to E3FADþ
mice treated with LPS (Figure 5(c), Bonferroni post hoc
comparisons comparing all groups). However, there were
no differences for any treatments or genotypes in extra-
cellular Ab deposit size or count (Supplementary
Figure 1(e)).

ApoE was also measured by ELISA in both the
cortex and the hippocampus to determine if LPS
modulated apoE levels.2 When each fraction was
assessed separately, significance in the F test was only
reached for the soluble (PBS) fraction in the cortex
(F(7, 58)¼ 5.0, *p< .05) and the hippocampus (F(7,
54)¼ 5.5, *p< .05). To dissect the changes, we conducted
post hoc analysis comparing the different genotypes
within the PBS or LPS treatments and PBS versus LPS
treatments within groups (with simultaneous analysis
using Bonferroni correction). Post hoc analysis demon-
strated that there are lower apoE levels in E4FAD� mice
treated with PBS compared to E3FAD� mice treated
with PBS. However, there were no effects of LPS treat-
ment on apoE levels compared to PBS controls for any of
the groups.

Therefore, LPS induced mixed effects on Ab levels for
E4FADþmice: higher soluble Ab levels in the hippocam-
pus biochemically, and, by IHC, higher extracellular Ab
in the cortex and subiculum.
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Figure 4. Lower vessel coverage in LPS-treated E4FADþ mice. (a) Composite mosaic images stitched together from images taken at

20� magnification. (b) 20� representative images of 12 mm brain sections costained for laminin (green, a basement membrane protein) and

extracellular Ab (blue, IHC using antibody MOAB2). Vessel coverage is visually lower in LPS-challenged E4FADþ mice. (c) When quantified

laminin coverage was significantly lower in E4FADþ mice treated with LPS in both the deep layer of the cortex and the subiculum

compared to PBS treatment. In addition, in the subiculum of E4FAD� mice, there is lower vessel coverage in LPS- compared to PBS-

treated mice. Data are expressed as the mean� SEM. *p< .05 by three-way ANOVA followed by Bonferroni post hoc analysis comparing

PBS- with LPS-treated mice within each group.
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Figure 5. LPS increases Ab42 levels in E4FADþ mice. (a) In the cortex, there were no changes in soluble (left panel) or total Ab42 levels

(center panel) when assessed biochemically. Total Ab is the sum of the amount of Ab in every fraction divided by the protein content in
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Higher CAA-Like A� Deposition in E4FADþ Mice

Given that extracellular Ab42 levels appeared higher in
LPS-challenged E4FADþ mice and the fact that Ab can
deposit in the vasculature, CAA-like deposition was
assessed (laminin-Ab costain). Despite the abundance
of Ab plaques in the subiculum, CAA-like deposition
was only evident in the cortex (Figure 6(a)). CAA
was higher in LPS-treated E4FADþ mice compared
to PBS- and LPS-treated E3FADþ mice (Figure 6(b),
two-way ANOVA, F(1, 20)¼ 23.91, *p< .05, followed
by Bonferroni post hoc comparisons comparing all
groups). These data support that CAA is highest in
LPS-treated E4FADþ mice. Next, we assessed the local-
ization of deposited Ab using confocal microscopy fol-
lowed by 3D reconstruction of the basement membrane
(laminin), vessels (CD31), and Ab (Figure 6(c) to (e)).
In E4FADþ LPS-treated mice, Ab was localized within
the laminin basement membrane in both larger vessels
(Figure 6(c)) and capillary-like vessels (Figure 6(d)).
Costaining of CD31-labeled vessels and Ab confirmed
that the amyloid deposition was not within the endothe-
lial cells (Figure 6(e)). We therefore determined that
CAA-like deposition of Ab was outside of the brain
endothelial cells within the basement membranes sur-
rounding vessels of various diameters and is potentially
higher in LPS-treated E4FADþ mice.

Plasma Cytokine Levels Are Modulated by APOE
Genotype and LPS Treatment

To dissect whether LPS induced a differential response in
peripheral inflammation for the different groups, plasma
levels of 23 cytokines/chemokines were assessed by multi-
plex analysis. Our focus was on cytokines/chemokines
whose levels remained changed over a longer time
period after each LPS treatment, rather than acute differ-
ences. Therefore, we waited 24 hr after the last LPS injec-
tion to assess cytokine/chemokine levels. In general,
cytokine levels were varied within each group, likely
due to the time point selected for analysis, as typically
cytokines are assessed within an hour of LPS injection
(i.e., high levels). However, hierarchical cluster analysis

of the complete data set (i.e., significant and nonsignifi-
cant differences) revealed that LPS induced a number of
potentially interesting changes (Figure 7(a)). Overall,
there was a cluster (C1) of chemokines (macrophage
inflammatory protein [MIP]-1) and pro-inflammatory
cytokines (interleukin [IL]-6, IL-5, and tumor necrosis
factor [TNF]-a) whose levels were similar for all
PBS-treated groups, but were increased by LPS.
A second cluster (C2) increased in levels with LPS in
E4FADþ and E4FAD� mice and included chemokines
(regulator on activation, normal T cell expressed and
secreted (RANTES), granulocyte-colony stimulating
factor (G-CSF)) and cytokines whose function can be
pro- or anti-inflammatory depending on context (IL-1a,
IL-10). In addition, cytokines/chemokines in a third
larger cluster (C3) were higher in E3FADþ or
E3FAD� compared to E4FADþ or E4FAD� in the
PBS group and remained high, or were lower in
the LPS-treated mice. C3 included both pro- and anti-
inflammatory cytokines.

We further dissected the data based on significantly
different changes, which reduced the overall number
of cytokines. Although there were changes in some cyto-
kines/chemokines regardless of APOE or FAD status
(e.g., IL-6, MIP-1a in C1), we have focused on differences
between APOE3 and APOE4, due to the cognitive and
cerebrovascular dysfunction in E4FADþ mice treated
with LPS. In C2, there was significance by F test for
IL-10 (F(7, 59)¼ 2.5, *p< .05) and RANTES (F(7,
64)¼ 6.8, p< .05). Visually, the differences appeared
driven by increased plasma levels of IL-10 and
RANTES in mice that express APOE4 (i.e., E4FADþ
and E4FAD�) treated with LPS compared to PBS
(Figure 7(b)). These changes were significant using
Bonferroni post hoc analysis that compared PBS to
LPS treatments for the grouped averages of APOE4
(i.e., E4FADþ and E4FAD�) or APOE3 (i.e.,
E3FAD� and E3FADþ). In addition, although not sig-
nificant by F test, a post hoc analysis revealed the same
effect for G-CSF (i.e., LPS increased plasma levels in
mice that express APOE4 [E4FAD� and E4FADþ aver-
aged] but not APOE3). For cytokines in C3, there
was also a genotype effect, but in the PBS groups.

Figure 5. Continued

every fraction. As total Ab primarily consists of extracellular Ab, quantitative IHC analysis was conducted (right panel and images). There

were higher levels of Ab in the cortex of LPS-treated E4FADþ mice compared to LPS- and PBS-treated E3FADþ mice. (b) In the

hippocampus, there were higher levels of soluble Ab (PBS extraction) in the hippocampus of LPS-treated E4FADþ mice compared to all

other groups. Although no differences were observed for total Ab42, when extracellular Ab in the subiculum was quantified by IHC, there

were higher levels in LPS-treated E4FADþ mice compared to E3FADþ mice treated with LPS. (c) For apoE, the only significant differences

were in the soluble (PBS) extracts with lower apoE levels in E4FAD� mice treated with PBS compared to E3FAD� mice treated with PBS.

However, there were no effects of LPS treatment on apoE levels compared to PBS controls for any groups. Data are expressed as the

mean� SEM. (a, b) *p< .05 by two-way ANOVA followed by Bonferroni post hoc analysis (c, d) *p< .05 by three-way ANOVA followed by

Bonferroni post hoc analysis comparing all groups.
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Our analysis for the cytokines in C3 was based on the
representation of the data that indicated a genotype effect
in the PBS group (Figure 7(c)). In the PBS group, IL-17
and IL-12(p70) levels were higher when the average value
for mice that express APOE3 (E3FAD� and E3FADþ)
was compared to the average of mice that express APOE4
(E4FAD� and E4FADþ) (with Bonferroni correction).
In the LPS group, there were no APOE genotype differ-
ences (for IL-17 or IL-12(p70)). For CXCL1 (KC), there

was a genotype effect in the LPS group but not in the PBS
group using a similar comparison, which suggests higher
KC levels with APOE3. Therefore, in general for group
C3, the cytokine/chemokine levels are lower with APOE4
in the PBS group. As there were no specific differences in
E4FADþ mice treated with LPS compared to E4FAD�
mice, the observed cytokine changes may contribute to,
but not drive, the cerebrovascular impairments observed
in E4FADþ mice treated with LPS.

Figure 6. CAA-like deposition is higher in E4FADþ mice. (a) Mosaic images of 12mm sections costained for laminin (green) and Ab
(blue) stitched together from individual 20� images. (b) Quantification of Ab-laminin costaining. (c to e) 3D reconstruction from 63�

confocal image of a cortical (c) larger vessels or (d, e) capillary stained for Ab (blue) and (c, d) laminin (green) or (e) CD31 (red) indicating

that CAA-like deposition is outside of the blood vessel within the basement membrane. (b) *p< .05 by two-Way ANOVA followed by

Bonferroni post hoc comparisons comparing all groups.
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Figure 7. LPS induced various changes in peripheral cytokine levels. (a) Heatmap of peripheral cytokines indicating three hierarchical

clusters. In C1, cytokine levels were generally increased by LPS. In C2, cytokine levels were generally lower following LPS treatment. C3

contained cytokines/chemokines that were higher in E3FADþ or E3FAD� compared to E4FADþ or E4FAD� in the PBS group and

remained high, or were lower in the LPS-treated mice. (b) Cytokines that were similar in the VC group, but levels increased with APOE4

following LPS treatment. (c) Cytokines whose levels were higher with APOE3 compared to APOE4 in PBS or LPS treatment groups. In (b),

*p< .05 by three-way ANOVA followed by Bonferroni post hoc analysis comparing PBS to LPS treatments for the grouped averages of

APOE4 (i.e., E4FADþ and E4FAD�) or APOE3 (i.e., E3FAD� and E3FADþ). In (c), *p< .05 by three-way ANOVA followed by Bonferroni

post hoc analysis comparing within PBS or LPS groups the values for mice that express APOE3 (E3FAD� and E3FADþ) to mice that

express APOE4 (E4FAD� and E4FADþ).
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Discussion

Increasing evidence supports that cerebrovascular dys-
function is a key component of AD; however, the role
of known AD hits in cerebrovascular dysfunction is
unclear. Here we demonstrate that peripheral inflamma-
tion, APOE4, and Ab interact to induce cognitive and
cerebrovascular dysfunction. Our ongoing studies are
focused on validating and further dissecting the contrasts
identified in this study.

The first important finding is that repeated peripheral
challenge with LPS induces cognitive impairment in
male E4FADþ mice. Our data are partially consistent
with previous studies where acute or extended, daily (3–7
days) LPS treatment induced cognitive deficits in mice and
rats (Pugh et al., 1998; Shaw et al., 2001; Sparkman et al.,
2005; Thomson and Sutherland, 2005) and exacerbated
cognitive deficits in models of aging (Chen et al., 2008)
and neurodegeneration (Cunningham et al., 2009; Joshi
and Pratico, 2014). Further, human data suggest periph-
eral inflammation is linked to AD risk (Michaud et al.,
2013) and cognitive function in aging (Marsland et al.,
2015). However, our paradigm enabled us to delineate
that repeated peripheral challenge with LPS, APOE4,
and Ab interact to induce cognitive deficits. For acute
peripheral inflammation, there is evidence of worse
functional (noncognitive) outcomes with APOE4. Acute
LPS-induced hypothermia is greater with APOE4 com-
pared to APOE3 in APOE-targeted replacement mice
(that do not overproduce Ab), and LPS-induced hyper-
thermia is greater with APOE4 compared to APOE3 in
humans (Gale et al., 2014). Thus, there is a growing body
of evidence supporting that APOE4 and peripheral inflam-
mation interact to induce detrimental functional responses.
Future studies aimed at fully dissecting the temporal
sequence of cognitive deficits in EFADþ and EFAD�
mice may reveal whether the peripheral inflammation-
induced cognitive decline is specific for, or accelerated
by, APOE4 and Ab.

As the interface between the blood and the brain,
the cerebrovasculature is particularly susceptible to
the detrimental effects of APOE4, Ab, and peripheral
inflammation. Thus, our second important finding is
that peripheral inflammation induced cerebrovascular
dysfunction in E4FADþ mice. These data are consistent
with in vitro, in vivo, and human data that peripheral
inflammation (Candeias et al., 2012; Meredith et al.,
2015), APOE4, and Ab are individually associate with
cerebrovascular dysfunction. Further, APOE4 synergis-
tically interacts with vascular (including cardiovascular)
risk factors, which induce cerebrovascular dysfunction, to
increase AD risk (reviewed in Tai et al., 2016). The spe-
cific changes with peripheral inflammation in E4FADþ
mice were higher cerebrovascular leakiness and lower
vessel coverage. The lower vessel coverage in the subicu-
lum and deep layer cortex of E4FADþ mice treated with

LPS may be related to the accumulation of Ab in those
brain regions in EFADþ mice. Indeed, the accumulation
of Ab in the deep layer cortex and subiculum of E4FADþ
mice likely induces a number of pathways (see below) that
predispose the brain endothelial cells to damage in
response to peripheral inflammation. Alternatively/in add-
ition, the brain region-specific increased susceptibility of
the cerebrovasculature to damage in E4FADþ mice in
response to LPS may be related to: (a) vessels in the
deep layer cortex and subiculum being more sensitive to
damage due to the greater distance from the larger blood
vessels; (b) the nature of the vessels in those regions (e.g.,
capillary vessels may be in higher density in those brain
regions); and (c) there is a differential gene expression pro-
file in brain endothelial cells by brain region. Our ongoing
studies are focused on developing the complex techniques
required to assess this issue.

Although data from human patients support that
APOE4 and AD are associated with higher cerebrovas-
cular permeability, data on vessel coverage are unclear.
Lower vessel coverage/degenerated microvasculature is
observed in AD patients (Bush et al., 1990; Hashimura
et al., 1991; Bouras et al., 2006; Kitaguchi et al., 2007;
Miyakawa, 2010) and in FAD-mice (Ujiie et al., 2003;
Meyer et al., 2008; Lee et al., 2012; Giannoni et al.,
2016). Contrastingly, higher vessel coverage (potentially
angiogenesis) is also observed by other studies in AD
patients and in vivo (Boscolo et al., 2007; Biron et al.,
2011; Cameron et al., 2012). Therefore, there is currently
a debate on the significance of changes in cerebrovascular
length in AD. One proposal is that AD pathways induce
hypersprouting and tight junction disruption, which
increase cerebrovascular permeability (Boscolo et al.,
2007; Biron et al., 2011; Cameron et al., 2012). A counter
argument is that lower cerebrovascular coverage contrib-
utes to AD progression by disrupting the complex trans-
port and metabolic systems of the cerebrovasculature
(Paris et al., 2004; Kitaguchi et al., 2007; Donnini et al.,
2010; Jantaratnotai et al., 2011). Our data may be more
consistent with pathological angiogenesis (Ambrose,
2016): AD hits disrupt brain endothelial cell signaling
cascades that are considered angiogenic; however,
rather than promoting angiogenesis, brain endothelial
cells become disrupted resulting in vessel degeneration.
The temporal sequence of this disruption leads to pro-
gressive brain endothelial cell degeneration and increased
leakiness of the cerebrovasculature. Our ongoing studies
are focused on defining the temporal sequence of brain
endothelial cell dysfunction induced by AD hits.

A potential consequence of cerebrovascular damage
is higher Ab levels. Indeed, E4FADþ mice appeared
to have higher total levels of Ab42 when challenged
repeatedly with systemic LPS. Higher permeability of
the cerebrovasculature may lead to the extravasation of
peripheral factors, including LPS, into the brain. LPS has
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been demonstrated to alter amyloid precursor protein
expression (Brugg et al., 1995; Hauss-Wegrzyniak et al.,
1998), increase Ab production (Lee et al., 2008; Kahn
et al., 2012), and decrease Ab clearance (Jaeger et al.,
2009; Erickson et al., 2012). Higher Ab levels may deposit
in the vasculature as CAA. Indeed, LPS-treated
E4FADþ mice had higher Ab accumulation in the base-
ment membrane of both larger vessels and capillaries.
In humans, CAA is observed in approximately 90% of
AD brains (reviewed in Vinters, 1987) and is higher with
APOE4 (Shinohara et al., 2016), consistent with our
in vivo findings. Here, our low sample number and
volume did not permit assessments of amyloid precursor
protein levels/processing or a detailed analysis of CAA
localization. However, our ongoing studies are focused
on the role of LPS in Ab production, clearance, and
CAA-like deposition.

An important question raised by this current study is
what temporal changes in cytokines/chemokines were
induced by repeated (weekly) low-dose LPS treatment?
Potential outcomes include: (a) LPS induced weekly tran-
sient (likely over 24 hr) changes in plasma cytokines that
were similar after every injection and were sufficient to
induce cerebrovascular dysfunction; (b) Initial LPS treat-
ments preconditioned the mice to a greater transient cyto-
kine/chemokine response with subsequent injections; (c)
There was a cumulative (i.e., chronic and sustained) detri-
mental cytokine/chemokine profile in the plasma during
the course of the LPS treatment, in addition to acute
transient changes; (d) A tolerance to LPS developed with
multiple injections; (e) Cytokine/chemokine levels in
the brain were altered which mirrored or were distinct
from the plasma; and (f) APOE modulated one or all
of the above responses. A limitation of this current study
is that cytokine levels were not assessed at different time
points in the plasma during treatment and, due to sample
limitation, brain cytokine levels were not measured; both
concerns are the focus of our ongoing studies. For exam-
ple, for neuroinflammation, interesting questions include
whether (a) direct or indirect (via cytokines/chemokines)
LPS-induced activation of brain endothelial cells transmits
cytokine into the brain (via transcytosis or cytokine pro-
duction by brain endothelial cells); (b) cerebrovascular
leakiness leads to LPS extravasation into the brain, glial
activation and a modulated neuroinflammatory cytokine/
chemokine profile that contributes to cognitive impair-
ment; and (c.) the temporal relationship between neuroin-
flammation, cerebrovascular dysfunction, and cognitive
impairment. Here, plasma cytokines/chemokines were
measured 24hr after the last injection. Twenty-four
hours was selected as a time point to mimic slightly
longer term cytokine/chemokine changes with LPS after
repeated past stimulation intervals, rather than acute
changes immediately after treatment. Our justification
was that sustained cytokine changes may contribute to

cerebrovascular dysfunction over the 2-month period of
LPS treatment. However, due to the time point selected,
there was a mixed and varied response within groups.

We have focused the discussion on cytokines that sig-
nificantly differed between APOE3 and APOE4 and
therefore may contribute to the cerebrovascular deficits
described earlier. We are careful not to over-interpret
these results as immediate changes in cytokine levels
may have eluded detection at 24 hr, and all the cytokines
measured exert multiple cellular functional responses
(e.g., T-cell response and macrophage activation). Two
APOE-modulated cytokine clusters were identified. The
first (C2; G-CSF, IL-10, and RANTES) included cyto-
kines that were higher in LPS-treated mice that express
APOE4 (E4FADþ and E4FAD� mice) compared to the
PBS group. RANTES promotes angiogenesis (Wang et al.,
2006; Matsuo et al., 2009; Suffee et al., 2012; Liu et al.,
2015a), while G-CSF and IL-10 have been demonstrated
to both protect/maintain and disrupt the vasculature
(Kohno et al., 2003; Dace et al., 2008; Tura et al., 2010;
Kawabe et al., 2011; Alexandrakis et al., 2015; Cates et al.,
2015; Liu et al., 2015a, 2015b; Wei et al., 2017). Therefore,
it is possible that the C2 cytokines initiated angiogenic
signaling in E4FADþ and E4FAD� mice, without matur-
ing into stable vessels, or induced direct brain endothelial
cell disruption in a chronic setting. In the second cluster
(C3; IL-12(p70), IL-17, and KC), cytokine levels were
higher with APOE3 compared to APOE4 in the PBS
group, except for KC, which was higher in the APOE3
LPS treatment groups. IL-17 and KC have both been
reported to have pro-angiogenic effects (Pickens et al.,
2010; Liu et al., 2011; Miyake et al., 2013; Wang et al.,
2015). In contrast, IL-12 results in disruption of angiogen-
esis (Strasly et al., 2001; Zhou et al., 2016). Although we
did not track peripheral cytokine differences longitudin-
ally, it is possible that higher levels of IL-17 and KC in
E3FADþ and E3FAD� mice prior to an inflammatory
insult confer a protective effect on the cerebrovasculature,
which is absent in E4FADþ and E4FAD� mice. It is
important to note that no cytokine differences were
observed between E4FADþ and E4FAD� mice.

Mechanistically, APOE4, Ab and peripheral inflamma-
tion modulate multiple processes that may interact to
induce cognitive decline. The proximal mechanism(s) of
how each AD hit individually impacts disease progression
is complex. As an example, apoE4 may induce detrimental
changes in apoE-containing lipoprotein structure, lipida-
tion, stability, toxic apoE fragment production, apoE
levels, apoE receptor recycling, and receptor activity in a
number of cell types (reviewed in Tai et al., 2014). As a
consequence of one or more of these proximal events, inter-
linked processes in the periphery (cholesterol metabolism
and inflammation) and brain (lipid homeostasis, neuronal
function, glucose metabolism, neurogenesis, tau phosphor-
ylation, neuroinflammation, Ab levels) are modified.
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Thus, apoE4 may directly induce brain endothelial cell dys-
function via signaling (Nishitsuji et al., 2011), or indirectly
through peripheral and central processes (Bell et al., 2012;
Casey et al., 2015; Halliday et al., 2015). The interaction
among the AD hits is equally as complex for two AD hits,
which is amplified by the addition of a third. ApoE4 modu-
lates Ab levels, Ab-dependent signaling, and the response to
peripheral inflammation. Our ongoing studies are focused
on delineating the potential CNS- and peripherally-
relevant changes that may underlie these effects.

Through collective analysis of our data, we hypothe-
size that LPS-induced cerebrovascular and cognitive
damage in E4FADþ mice in response to repeated LPS
challenge is mediated by complex processes within the
central nervous system and the plasma in the paradigm
utilized (i.e., LPS treatment from 4 to 6 months of age).
In the central nervous system, the combination of
APOE4- and Ab-modulated processes (described earlier)
converge, to predispose brain endothelial cells of the cer-
ebrovasculature to damage. In the periphery, APOE4
modulates the inflammatory response to LPS, resulting
in a detrimental peripheral cytokine/chemokine profile
that is characterized by higher detrimental and lower
protective factors for brain endothelial cell function.
The collective result is brain endothelial cell disruption,
cerebrovascular leakiness, and cognitive impairment only
in E4FADþ mice. An important future direction is to
determine whether E3FADþ mice or E4FAD� mice
are the next group to exhibit cerebrovasculature and cog-
nitive impairments after longer LPS treatment.

In summary, peripheral inflammation interacts with
APOE4 and Ab to induce and accelerate cerebrovascular
and cognitive deficits. Thus, cerebrovascular dysfunction
is a key mechanistic process linking AD hits to pathology.

Summary

Peripheral inflammation interacts with APOE4 and Ab to
induce cerebrovascular and cognitive deficits.
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Notes

1. For all representative mosaic images the following was con-

ducted using the Zeiss Axio Imager M1 software and a motor-

ized stage at 20� magnification: the boundaries of each

individual brain section were set that included the hippocampus

and cortex using the mosaic function, sequential images were

obtained that encompassed the entire area of the tissue boundary

(between �50 and 150 images per section), and all the individ-

ual images were then stitched together to produce a single com-

posite image.

2. As apoE levels were assessed in EFADþ and EFAD� mice, a

three-way ANOVA F test was conducted.
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