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Rubidium chloride modulated the fecal
microbiota community in mice
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Abstract

Background: The microbiota plays an important role in host health. Although rubidium (Rb) has been used to
study its effects on depression and cancers, the interaction between microbial commensals and Rb is still
unexplored. To gain the knowledge of the relationship between Rb and microbes, 51 mice receiving RbCl-based
treatment and 13 untreated mice were evaluated for their characteristics and bacterial microbiome changes.

Results: The 16S ribosomal RNA gene sequencing of fecal microbiota showed that RbCl generally maintained fecal
microbial community diversity, while the shifts in fecal microbial composition were apparent after RbCl exposure.
RbCl significantly enhanced the abundances of Rikenellaceae, Alistipes, Clostridium XlVa and sulfate-reducing bacteria
including Deltaproteobacteria, Desulfovibrionales, Desulfovibrionaceae and Desulfovibrio, but significantly inhibited the
abundances of Tenericutes, Mollicutes, Anaeroplasmatales, Anaeroplasmataceae and Anaeroplasma lineages. With
regarding to the archaea, we only observed two less richness archaea Sulfolobus and Acidiplasma at the genus level.

Conclusions: Changes of fecal microbes may in part contribute to the anticancer or anti-depressant effects of RbCl.
These findings further validate that the microbiome could be a target for therapeutic intervention.
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Background
Rubdium (Rb) is found in air, soil, water and organisms,
and is a less studied alkali metal element and can efficiently
transfer to the human body through the food chain (soil-
plant-human) [1]. Since the first report on its correlation
with phenylketonuria and maple-syrup-urine disease [2],
some studies have suggested its effects on tumor [3, 4],
depression [5–7] and cardiovascular system [8].
Researchers found that many cancers were caused by

the changes of Rb+ levels in the body [3, 9]. Some other
studies have shown that Rb was easily taken up by
cancer cells and might affect the proliferation of cancer
cells [4, 10]. There are several studies reporting that Rb
could be used to treat depression [11, 12]. Later studies
confirmed that Rb decreased the depression-like behavior

via nitric oxide (NO) pathway [7]. Although there are
some hypotheses about the mechanisms of anticancer or
anti-depressant of Rb, none of them provided sufficiently
reliable evidence.
The microbiome is a dynamic ecological community

which mainly includes bacteria, archaea, fungi and
viruses [13]. There is growing evidence proving that the
microbiome plays key roles in the cancer and neuro-
logical disease [14–17]. During recent years, the poten-
tial role of the microbiome in various human diseases
has attracted the attention of researchers [13, 18]. Many
diseases, including cancer and depression, are related to
the imbalance of the microbial community. Recent stud-
ies reported that the microbial community of colorectal
cancer (CRC) patients was significantly different from
that of healthy individuals [19]. These specific species of
the microbiota, such as Fusobacterium nucleatum, En-
terococcus faecalis, Bacteroides fragilis, and Escherichia
coli, etc., were enriched in the stool of CRC patients and
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promoted the development of CRC [20]. Some researchers
reported that specific microorganisms, including Firmicutes
and Bacteroidetes, might be involved in the occurrence and
the development of depression [21]. Meanwhile, Lactobacil-
lus and Bifdobacterium were reported to be beneficial to
the treatment of depression [22, 23].
However, to our best knowledge, no work has been re-

ported on the effect of chemical element Rb on the
microbiome, and whether Rb inhibits tumor and depres-
sion thorough changing the community composition of
microbiome is still not clarified. Therefore, the present
study was to investigate the relationship between the
addition of rubidium chloride (RbCl) and composition of
fecal microbiome in order to further understand the
mechanism of Rb against cancer and neurological dis-
ease from the perspective of fecal microbial community.

Results
Effect of RbCl on animal characteristics
To better understand the effects of RbCl on mice, we
conducted a follow-up study of 64 mice and recorded
body weights and multiple organ weights of each mouse.
Changes of the body weights in all the groups were
shown in Fig. 1a. The weights of mice in the drug groups
decreased when compared with mice in control group
and were negatively correlated with dosage whereas
these differences were not statistically significant.
Additionally, multiple organ coefficients were observed
(Fig. 1b). Interestingly, as RbCl concentration was
increased, the organ coefficient of stomach gradually
decreased. However, there was an increase in organ co-
efficients among other organs such as pancreatic, spleen,
kidneys, lungs and heart. Changes of gastric organ

coefficient during drug administration could be ex-
plained by route of administration. These data indicated
that RbCl had little effect on animal characteristics.

Effect of RbCl on the fecal microbial communities
From the results of 16S rRNA gene sequencing, we ob-
tained a total of 1,481,388 high-quality reads for 64 fecal
samples of four groups, which could be clustered into
486 OTUs. Figure 3a indicates the rarefaction curves of
all samples. The curves tended to be flat as the number
of extracted sequences increased, indicating that the
sequencing depths included most of the microbes in
samples. As shown in Fig. 2, the indices reflecting
community richness include Sobs, Chao and Ace. The
indices reflecting community diversity are Shannon and
Simpson. The richness and diversity indexes demon-
strated no statistical differences in control, low-dose
(Chao, P = 0.9401; Sobs, P = 0.5239; Ace, P = 0.7497;
Shannon, P = 0.5082; Simpson, P = 0.5401), middle-dose
(Chao, P = 0.6578; Sobs, P = 0.7346; Ace, P = 0.7640;
Shannon, P = 0.8858; Simpson, P = 0.5176) and high-
dose groups (Chao, P = 0.7105; Sobs, P = 0.3809; Ace,
P = 0.7243; Shannon, P = 0.8954; Simpson, P = 0.4176).
In addition, to assess the effect of the different treat-
ments on the assembly of bacterial communities, we
compared the β-diversity (between-samples diversity)
using Bray Curtis distances and performed constrained
principal coordinate analysis (CPCoA). This analysis re-
vealed a clear differentiation of samples belonging to the
control, low-dose, middle-dose, and high-dose groups
that explained as much as 6.62% of the overall variance
of the data (Fig. 3b; P < 0.001). Thus, the above results
showed that RbCl did not affect the diversity and

Fig. 1 Effects of rubidium chloride on the mice characteristics in control, low-dose (20 mg/L), middle-dose (50 mg/L) and high-dose groups (100
mg/L). a Body weight. b Organ coefficients. Values are means ± SD; Control, n = 13; Low, n = 17; Medium, n = 17; High, n = 17. *P < 0.05, **P <
0.01, ***P < 0.001 when compared with control
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richness of the fecal microbial community in general.
However, it altered the structure of the fecal bacterial
community, reflected in changes in fecal microbial
composition.

Effect of RbCl on fecal bacterial composition
All OTUs were clustered into 12 phyla, 19 classes, 27 or-
ders, 44 families, 92 genera. The venn diagram (Fig. S1)
showed 352 shared OTUs among all the fecal samples,
and samples in control, low-dose, middle-dose and high-
dose groups had 7, 14, 8 and 10 unique OTUs,

respectively. Results indicated that although the propor-
tion of shared microbial communities was very high, dis-
tinct microbial communities still existed in different
treatment groups. Compositions of fecal bacteria in all
samples were determined using 16S rRNA gene sequen-
cing. The fecal microbial compositions of phylum with
relative abundance above 5% were seen in Fig. 4. Other
microorganisms with relative abundance less than 5%
were shown in Table. S1. In all samples, Firmicutes was
the dominant phylum with average abundances of 51.03,
50.18, 47.15 and 43.73% in control, low-dose, middle-dose

Fig. 2 The diversity and richness of samples collected from 64 mice; a Sob’s richness; b Ace’s richness; c Chao’s richness; d Shannon’s diversity;
e Simpson’s diversity
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and high-dose groups, respectively (Fig. 5a). The relative
abundances of Bacteroidetes, the second dominant
phylum, were not significantly different among the four
groups (Fig. 5b). Moreover, less richness Tenericutes (the
average abundances were 0.86, 0.23, 0.05 and 0.08%) and
Actinobacteria (the average abundances were 0.03, 0.03,
0.04 and 0.07%) were observed in control, low-dose,

middle-dose and high-dose groups, respectively (Table. S1).
As shown in Fig. 5c and d, enrichment of Actinobacteria
and depletion of Tenericutes (P < 0.01) were correlated with
high doses of RbCl.
The fecal microorganisms from four groups were

separated into 3 dominant classes including Bacteroidia,
Clostridia and Epsilonproteobacteria (Fig. 6). Other classes

Fig. 3 Variations of microbial communities in four groups. a Rarefaction curves of the samples; b Constrained PCoA plots of Bray-Curtis distances
among the four groups

Fig. 4 Relative abundance of fecal microorganisms at the phylum level, different colors represent different microbe. “Others” represents the
microbes with relative abundance less than 5%
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with relative abundance less than 5% were shown in Table
S2. Statistically significant differences between the experi-
mental groups and the control group were also performed
in our study. The abundances of Deltaproteobacteria were
significantly higher in three experimental groups (P < 0.05)
than those of the control (Fig. 7a). In addition, differences
in the relative abundances of Mollicutes were significant in
control, low-dose (P = 0.0175), middle-dose (P = 0.0014)
and high-dose groups (P = 0.0022) (Fig. 7b).
The fecal microbes with relative abundance above 5%

at the level of order were shown in Fig. 8. A total of 27
orders were observed in all samples (Table. S3). The
relative proportion of Anaeroplasmatales was signifi-
cantly increased in control group (P < 0.05) (Fig. 9a),
while the abundance of Desulfovibrionales was signifi-
cantly higher in low-dose (P = 0.0176), middle-dose (P =
0.0219) and high-dose groups (P = 0.0033) than control
group (Fig. 9b).

At the family level, fecal microbes with relative abun-
dance above 5% were shown in Fig. 10. Others families
with relative abundance less than 5% were observed in
Table. S4. Among these families, the abundance of
Anaeroplasmataceae was found significantly higher in
control group (P < 0.05) than three experimental groups
(Fig. 11a), while the abundances of Desulfovibrionaceae
were significantly increased in three experimental groups
(P < 0.05) (Fig. 11b). Besides, compared with the control
group, the abundances of Rikenellaceae significantly
increased in low-dose (P < 0.0006), middle-dose (P < 0.0054)
and high-dose groups (P < 0.0033) (Fig. 11c).
Figure 12 showed the microbial compositions with

relative abundance above 5% at the genus level. The
microbial community compositions were similar but
relative abundances of genera varied. OTUs unclassified
at the genus level were the most abundant and there
were no statistical significant differences among all fecal

Fig. 5 Statistical analysis of relative abundance of fecal bacteria at the phylum level. a The abundances of Firmicutes were not significantly altered
among four groups. b The abundances of Bacteroidetes showed no statistical differences among four groups. c The abundances of Actinobacteria
showed no statistical differences among four groups. d The abundances of Tenericutes were significantly lower in RbCl groups (P < 0.05) than the
control group. Data are shown as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001
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samples. The following genera were Bacteroides and Heli-
cobacter (the average abundances were 13.96–20.80% and
6.87–13.46%, respectively) (Table. S5). Figure 13a showed
that the proportions of Bacteroides were no statistical dif-
ferences among the four groups. Helicobacter showed an
increasing trend in relative abundances while there were
no statistical differences (Fig. 13b). We could also get this
information from heat map (Fig. S2). The relative abun-
dances of Anaeroplasma (Fig. 13c; P < 0.001) and Desulfo-
vibrio (Fig. 13d; P < 0.001) were significantly different in
various treatment groups. We observed an increase in the

proportion of Desulfovibrio in RbCl treatment mice. The
abundances of Alistipes (Fig. 13e; P < 0.01) and Clostrid-
ium XlVa (Fig. 13f; P < 0.05) were significantly higher in
all the treatments than those of the control.
The LEfSe with default parameters was used to identify

significant differences in relative abundances of fecal micro-
biota between the RbCl groups and control group. LEfSe
analysis further confirmed enrichment microbes in different
groups (Fig. 14a and b). The RbCl groups were significantly
enriched for Deltaproteobacteria, Desulfovibrionales, Desul-
fovibrionaceae, Desulfovibrio, Rikenellaceae, Alistipes and

Fig. 7 Statistical analysis of relative abundance of fecal bacteria at the class level. a The abundances of Deltaproteobacteria were significantly
increased in RbCl groups compared with the control group (P < 0.05). b The abundances of Mollicutes were significantly decreased in RbCl groups
compared with the control group (P < 0.05). Data are shown as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001

Fig. 6 Relative abundance of fecal microorganisms at the class level, different colors represent different microbe. “Others” represents the
microbes with relative abundance less than 5%
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Clostridium XlVa. The control group was enriched for
Tenericutes, Mollicutes, Anaeroplasmatales, Anaeroplasma-
taceae and Anaeroplasma.

Effect of RbCl on fecal archaea composition
We also analyzed the abundance of various archaea in
fecal samples from each treatment group. At the phylum
level, the fecal archaea from 4 groups were separated
into Crenarchaeota and Euryarchaeota (Table. S1). The
abundance of Crenarchaeota was higher in middle-dose
group than control group (Fig. 15a), while the abundances

of Euryarchaeota were not significantly different among
the four groups (Fig. 15b).
The fecal archaea were separated into Thermoprotei

and Thermoplasmata at the class level (Table. S2). The
abundance of Thermoprotei increased in middle-dose
group compared with the control group (Fig. S3a). The
abundances of Thermoplasmata were not significantly
different among the four groups (Fig. S3b).
The relative abundances of fecal archaea in control,

low-dose, middle-dose and high-dose groups at the
order level were shown in Table. S3. We observed an

Fig. 8 Relative abundance of fecal microorganisms at the order level, different colors represent different microbe. “Others” represents the
microbes with relative abundance less than 5%

Fig. 9 Statistical analysis of relative abundance of fecal bacteria at the order level. a The abundances of Anaeroplasmatales were significantly
decreased in RbCl groups compared with the control group (P < 0.05). b The abundances of Desulfovibrionales were significantly increased in RbCl
groups compared with the control group (P < 0.05). Data are shown as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001
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increase in the proportion of Sulfolobales in middle-dose
group (Fig. S4a). The relative abundances of archaea
Thermoplasmatales were not significantly different
among four groups (Fig. S4b).
At the family level, Sulfolobaceae (the average abun-

dances were 0–0.01%) and Ferroplasmaceae (the average
abundances were 0–0.01%) were observed (Table. S4).
The relative abundance of Sulfolobaceae increased in
middle-dose group compared with the control group
(Fig. S5a), while the abundances of Ferroplasmaceae
demonstrated no statistical differences in control, low-
dose, middle-dose and high-dose groups (Fig. S5b).
At the genus level, we observed two archaea Sulfolobus

and Acidiplasma (Table. S5). Compared with the control
group, the abundance of Sulfolobus increased in middle-
dose group (Fig. S6a). The abundances of Acidiplasma were
not significantly different among four groups (Fig. S6b).
Overall, the relative abundance of archaea in stool

samples was very low. At the genus level, we only ob-
served archaea Sulfolobus and Acidiplasma. Middle-dose
RbCl could increase the relative abundance of Sulfolobus.

Discussion
This study found no differences in the alpha-richness
and diversity indexes, which were consistent with some
reports. Getachew et al. [24] reported no significant
differences in bacterial diversity and species richness be-
tween saline and antidepressant drug ketamine groups.
Furthermore, study by Zhang et al. [25] had compared
the gut microbiota of T2DM rats and rats treated with
metformin, with no significant differences reported in

alpha-richness and diversity indices. It should be noted
that the diversity of bacteria was affected by several fac-
tors, including health status, age, diet, medication and so
on [26]. No difference in the alpha-richness and diversity
may be explained in part by the consistency of age and
diet among all samples. Part of the reasons may be that
RbCl did not affect the diversity of the fecal microbial
communities. In addition, we found that RbCl altered
the structure of fecal bacterial communities, reflected in
changes in fecal microbial composition. Wei et al. [27]
observed that microbiota were significantly different be-
tween healthy rats and chronic diseased rats. Moreover,
Zhang et al. [28] revealed that the microbiota structure
changed significantly in response to high fat diet (HFD)
feeding and berberine administration. Shifts of micro-
biota structure were also thought to occur in Crohn’s
disease patients [29]. Thus, changes in fecal microbial
composition have played an important role in the
progression of human diseases.
In our study, we observed that RbCl maintained the

abundances of Firmicutes, Bacteroidetes, Actinobacteria,
Bacteroides and Helicobacter. Chen et al. [30] reported
that Firmicutes significantly reduced in intestinal lumen
of CRC patients. In Crohn’s disease, the abundance of
Firmicutes was also significantly decreased [31, 32]. In
addition, most works showed that Firmicutes was the
higher abundant phylum in breast tissue [33–35]. In de-
pression patients, it was also found that the relative
abundance of Firmicutes significantly changed [36, 37],
which was related to depression through inflammation
[38]. Therefore, these findings indicated that changes of

Fig. 10 Relative abundance of fecal microorganisms at the family level, different colors represent different microbe. “Others” represents the
microbes with relative abundance less than 5%
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Firmicutes were closely associated with diseases.
Anticancer and anti-depressant effects of RbCl might be
mediated by maintaining the abundance of Firmicutes in
the gut. Bacteroidetes was non-endospore-forming an-
aerobes with bile resistance, accounting for more than
25% of gastrointestinal microbiota [39–41]. Proportions
of Bacteroidetes were significantly lower in CRC rats
than in healthy rats [42, 43]. Although the exact physio-
logical implications of Bacteroidetes in CRC were not
fully understood, it was likely that inflammatory bowel
diseases were known risk factors for CRC, and a signifi-
cant reduction of the phylum Bacteroidetes occurred in
inflammatory bowel diseases [29, 44]. In addition, Jiang
et al. [37] reported that Bacteroidetes were significantly
more abundant in active-major depressive disorder sub-
jects. The increase in Bacteroidetes was mainly promoted
by Alistipes. Naseribafrouei et al. [45] reported increased
abundance of Alistipes in the depressed subjects. There-
fore, it can be inferred that changes of Bacteroidetes

were closely associated with diseases. The Actinobac-
teria, which is comprised of gram-positive bacteria, in-
cludes 5 subclasses and 14 suborders [46]. Major
depressive disorder (MDD) patients characterized by signifi-
cant increase in the relative abundance of Actinobacteria
[36]. Yang et al. [47] reported that the abundance of Actino-
bacteria was significantly higher in the depression mice. It
was possible that enrichment of Actinobacteria was closely
related to the development of depression. Exactly, RbCl did
not significantly increase the abundances of Actinobacteria.
Bacteroides is anaerobic, bile-resistant, non-spore-forming,
gram-negative rods [48]. Changes of Bacteroides were as-
sumed to be associated with metabolic diseases such as obes-
ity and diabetes [49, 50]. In Type I diabetes mellitus patients,
Bacteroides was significantly increased [51]. The Bacter-
oides, which was known to be associated with increased
gut permeability and inflammation, was positively asso-
ciated with β-cell autoimmunity. Moreover, Zhu et al.
[43] reported greater genera Bacteroides abundance in

Fig. 11 Statistical analysis of relative abundance of fecal bacteria at the family level. a The abundances of Anaeroplasmataceae were significantly
decreased in RbCl groups compared with the control group (P < 0.05). b The abundances of Desulfovibrionaceae were significantly increased in
RbCl groups compared with the control group (P < 0.05). c The abundances of Rikenellaceae were significantly increased in RbCl groups
compared with the control group (P < 0.05). Data are shown as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001
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colon cancer patients compared with controls. It was
likely that Bacteroides produced a metalloprotease
known as fragilysin, which might favor carcinogenesis.
Taken together, these findings indicated that variations
of Bacteroides were closely associated with diseases. It
should be noted that RbCl did not change the propor-
tion of Bacteroides. Lower abundance of Helicobacter
was observed in gut microbiota of overall gastric cancer
(GC) patients as compared to healthy controls [52]. It
was possible that low proportion of Helicobacter con-
tributed to the pathogenesis of GC. Exactly, RbCl did
not change proportion of Helicobacter.
We also found RbCl significantly inhibited the abun-

dances of Tenericutes, Mollicutes, Anaeroplasmatales,
Anaeroplasmataceae and Anaeroplasma lineages. Yang
et al. [47] reported that the abundance of Tenericutes
significantly decreased in the depression mice. RbCl did
not improve reduction of Tenericutes, which was
consistent with reports. A previous animal study demon-
strated that antidepressant drug (R)-ketamine and (S)-
ketamine also did not improve the reduced proportion
of Tenericutes [47]. Additionally, Ketamine, known to in-
duce antidepressant effects, also significantly reduced
abundances of Tenericutes [24]. Tully et al. [53] reported
that some species of Mollicutes were significant patho-
gens in human disease. A study also found that some
Mollicutes were associated with diseases [54]. It was
worth noting that the abundances of Mollicutes were
significantly lower after treatment with RbCl. The reduc-
tion of Mollicutes could decrease the pathogenesis of de-
pression and cancers. However, one study has reported a

significant reduction in the relative abundance of Molli-
cutes in MDD patients [47]. As the physiological mech-
anism of Mollicutes in depression was unclear, further
studies on the relationship between depression and Mol-
licutes are needed. Anaeroplasmatales is an order of
Mollicutes bacteria which do not have a cell wall [55].
Song et al. [56] found Anaeroplasmatales significantly
increased in depression group. In addition, ketamine,
known to induce antidepressant effects, significantly
reduced the abundance of Anaeroplasmatales [24].
Exactly, the abundances of Anaeroplasmatales were sig-
nificantly lower in RbCl groups. Anaeroplasmataceae,
which belongs to Class Mollicutes and Order Anaero-
plasmatales, is strictly anaerobic wall-less bacteria [57].
The abundance of Anaeroplasmataceae significantly in-
creased in depression group [56]. Moreover, Anaeroplas-
mataceae significantly increased in patients with Crohn’s
disease localized in the colon (CCD), but significantly
decreased in patients with ulcerative colitis (UC) [58].
Interestingly, we observed that RbCl inhibited the
proportion of Anaeroplasmataceae. The reduction of
Anaeroplasmataceae could decrease the pathogenesis of
depression. In the study of colon cancer, Zeng et al. [59]
found that the abundance of Anaeroplasma increased in
the HFD-azoxymethane (AOM) group. The Anaero-
plasma is a gram-negative bacterium, which belongs to
Mollicutes class, Tenericutes phylum. Anaeroplasma was
opportunistic pathogens which elicited various host im-
mune responses in numerous human diseases including
colon cancer [60, 61]. Interestingly, the results of RbCl
inhibited the proportion of the bacteria.

Fig. 12 Relative abundance of fecal microorganisms at the genus level, different colors represent different microbe. “Others” represents the
microbes with relative abundance less than 5%
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Expressions of sulfate-reducing bacteria (SRB) includ-
ing Deltaproteobacteria, Desulfovibrionales, Desulfovi-
brionaceae and Desulfovibrio were significantly higher in
RbCl groups than control group. Deltaproteobacteria
belonging to Proteobacteria is sulfate-reducing bacteria
[62]. Hydrogen sulfide (H2S) produced by SRB was a
product of sulfate reduction [63]. H2S could lead to
chronic inflammation and imbalance between cellular
proliferation, apoptosis and differentiation by damaging
the intestinal epithelium [64]. Reports showed that

Deltaproteobacteria was possibly associated with CRC
[65, 66]. Jin et al. [67] reported that Deltaproteobacteria
was commonly pathogenic bacteria in the intestine.
Desulfovibrionales, belonging to Deltaproteobacteria, is
also a sulfate-reducing bacteria that can reduce sulfur to
produce hydrogen sulfide (H2S) [62]. Desulfovibriona-
ceae, which was the main biological source of hydrogen
sulfate (H2S), involved in a wide range of physiological
processes by influencing cellular signaling pathways and
sulfhydration of target proteins [68, 69]. Zhang et al.

Fig. 13 Statistical analysis of relative abundance of fecal bacteria at the genus level. a The abundances of Bacteroides were not significantly
altered among four groups. b The abundances of Helicobacter showed no statistical differences among four groups. c The abundances of
Anaeroplasma were significantly decreased in RbCl groups compared with the control group. d The abundances of Desulfovibrio showed
statistical differences in RbCl groups compared with the control group. e The abundances of Alistipes significantly increased in RbCl groups
compared with the control group. f The abundances of Clostridium XlVa were significantly higher in RbCl groups than those of the control. Data
are shown as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001
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[70] reported that the proportion of Desulfovibrionaceae
increased in animal models of metabolic syndrome.
Desulfovibrio could also produce H2S by reducing sulfate
[71]. H2S derived from Desulfovibrio was associated with
gastrointestinal disorders, such as UC, Crohn’s disease,
and irritable bowel syndrome [68]. Besides, Hale et al.
[72] also reported that Desulfovibrio produced metabo-
lites such as secondary bile acids, which may catalyze
the formation of colorectal cancer. However, it should
be noted that the proportions of sulfate-reducing bac-
teria were promoted by RbCl. RbCl led to the enrich-
ment of sulfate-reducing bacteria which could cause
inflammation directly or indirectly in mice. It was likely

that RbCl used as antigen in healthy mice which could
elicit immune responses.
In addition, RbCl significantly increased the abun-

dances of Rikenellaceae, Alistipes and Clostridium XlVa.
Wu et al. [73] found that the abundance Rikenellaceae
decreased in the colitis-associated colorectal cancer
(CAC) group compared with control group. Alkadhi et al.
[74] also reported that the proportion of Rikenellaceae re-
duced in CAC mice. In addition, the report found that
Rikenellaceae was overrepresented in healthy control sub-
jects [36]. Following RbCl treatment, the abundance of
Rikenellaceae increased in the present study. Therefore,
the increase in Rikenellaceae abundance could accelerate

Fig. 15 Statistical analysis of relative abundance of fecal archaea at the phylum level. a The abundances of Crenarchaeota increased in medium-
dose group. b The abundances of Euryarchaeota showed no statistical differences among four groups. Data are shown as mean ± SD. *P < 0.05,
**P < 0.01, ***P < 0.001

Fig. 14 LEfSe analysis of enriched bacterial taxa in fecal microbiota between RbCl groups and the control group. a Taxonomic representation of
statistically and biologically consistent differences between RbCl and control mice. Significant differences were represented by different colors
(red and green represented the enriched microbes in the RbCl and Saline treatment groups, respectively). b Histogram of the LDA scores for
differentially abundant genera between the two treatment groups
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the antitumor efficacy of RbCl. Alistipes, which belongs to
Bacteroidetes, is present in the human intestinal tract [75].
Alistipes was indole-positive and may thus influence tryp-
tophan availability [76]. In our results, RbCl promoted the
abundance of Alistipes. As tryptophan was also the pre-
cursor of serotonin, enrichment of Alistipes might affect
serotonergic system by interfering with tryptophan metab-
olism. Clostridium XlVa, belonging to Firmicutes phylum,
produces short-chain fatty acids (SCFAs) [77]. The SCFAs
produced in the gut are mainly acetate, butyrate and pro-
pionate [78]. SCFAs could modulate cell functions either
by inhibiting histone deacetylase activity, or through the
activation of ‘metabolite-sensing’ G-protein coupled
receptors (GPCRs) such as GPR43 and protect the in-
tegrity of epithelial barrier [79–81]. RbCl promoted the
abundance of Clostridium XlVa. The increase in abun-
dance Clostridium XlVa could alleviate the pathogen-
esis of depression and cancers. Clostridium XlVa was
significantly lower in CRC patients than healthy sub-
jects [77]. Clostridium XIVa was overrepresented in
healthy control subjects [36, 82].
Regarding the composition of archaea, the abundances

of Crenarchaeota, Thermoprotei, Sulfolobales, Sulfoloba-
ceae and Sulfolobus lineages increased in middle-dose
RbCl groups. Crenarchaeota was originally considered to
grow in habitats characterized by high temperature, high
salinity, or an extreme pH. Later studies found that Cre-
narchaeota also seem to occur ubiquitously in temperate
or cold aquatic [83] and terrestrial environments [84].
The presence of Crenarchaeota in intestinal tracts was
reported by Friedrich et al. [85]. In addition, Rieu-Lesme
et al. [86] suggested that Crenarchaeota was present in
the microbiota of the human digestive ecosystem.
Thermoprotei, the crenarchaeal class, consists solely of
obligate thermophiles. Thermophiles were well-known
for participating in rampant lateral gene transfer (LGT)
[87, 88]. It was likely that the nature of their extreme en-
vironments encouraged the exchange of genetic material.
Thermoprotei mostly occurred in the marine environ-
ment [89]. However, report showed that Thermoprotei
was observed to have an appreciably higher representa-
tion in healthy child [90]. Interestingly, the proportion
of Thermoprotei was promoted by middle-dose RbCl in
this study. Sulfolobales, a monophyletic group within the
Crenarchaeota, is thermophilic sulfur-metabolizing
archaea [91]. The report found that Sulfolobales was
present in human feces sample [86]. The family Sulfolo-
baceae is composed of extreme thermoacidophiles that
are found in terrestrial environments [92]. The Sulfolo-
baceae could produce bacteriocin, which played an
important role in microbial interaction or microbe-
environment interactions, and therefore improved their
adaptation in extreme environments [93]. Enrichment of
Sulfolobaceae promoted by middle-dose RbCl may be

beneficial in combating disease-related adverse environ-
ments. The genera Sulfolobus, which belongs to Sulfolo-
gaceae, grows at low pH (2–3) and high temperature
(70–85 °C) [94, 95]. The acidophilic and thermophilic
properties of Sulfolobus offered many obvious advan-
tages for industrial applications [96, 97]. In addition,
Sulfolobus was able to reduce ferric iron when growing
on elemental sulfur as an energy source [98].
Furthermore, RbCl maintained the abundances of archaea

Euryarchaeota, Thermoplasmata, Thermoplasmatales, Fer-
roplasmaceae, Acidiplasma lineages. Euryarchaeota, one of
the four major divisions of archaea, contributed substantially
to global energy cycling [99]. Euryarchaeota was detected in
marine picoplankton [100, 101] and in coastal salt marsh
and continental shelf sediments [102]. Methanobrevibacter
smithii, which belonged to Euryarchaeota phylum, was a
major archaeal player in human gut system [103]. A few
studies confirmed that M. smithii was probably involved in
inflammatory bowel disease (or Crohn’s disease), irritable
bowel syndrome, colorectal cancer, and obesity [104, 105].
Methanobrevibacter oralis, belonging to Euryarchaeota
phylum, was the predominating methanogenic species in
the oral cavity [103]. M. oralis was identified in apical
periodontitis [106]. Therefore, these findings proved that
Euryarchaeota might play key roles for human health and
disease. However, the proportions of Euryarchaeota did not
significantly change after RbCl treatment. Thermoplasmata
was affiliated with Euryarchaeota phylum. Auguet et al.
[107] showed that Thermoplasmata represented important
component of soil microbial communities. In the human
body, Li et al. [108] found that Thermoplasmata was not the
predominant archaeons in the subgingival dental plaque and
Thermoplasmata was closely correlated with chronic
periodontitis. Following RbCl treatment, the abundance of
Thermoplasmata did not significantly change. Horz et al.
[109] found that Thermoplasmatales existed in the human
oral cavity. He et al. [110] reported that Thermoplasmatales
was also observed in healthy subjects, but the abundance of
Thermoplasmatales increased in individuals with periodon-
titis. It was possible that enrichment of Thermoplasmatales
contributed to the pathogenesis of periodontitis.
Exactly, RbCl did not improve the enrichment of Ther-
moplasmatales. The Ferroplasmaceae is represented by
cell wall-deficient, acidophilic, facultatively anaerobic
and iron-oxidizing archaea [111]. As iron oxidizers, the
family Ferroplasmaceae may contribute to the cycle of
iron and sulfur [112]. It was likely that Ferroplasmaceae
was involved in the pathogenesis of diseases through
oxidizing iron. Thus, further studies on the relationships
between diseases and Ferroplasmaceae are needed. Interest-
ingly, RbCl did not significantly change the abundance of
Ferroplasmaceae. Acidiplasma, which belongs to the family
Ferroplasmaceae, order Thermoplasmatales, phylum Eur-
yarchaeota, is a novel acidophilic, cell-wall-less archaeon
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[113]. The genera Acidiplasma included two species,
namely Acidiplasma aeolicum and Acidiplasma cupricu-
mulans [112]. Acidiplasma aeolicum and Acidiplasma
cupricumulans were isolated from the hydrothermal pool
located on Vulcano Island (Italy) and chalcocite/copper-
containing heaps (Myanmar), respectively [113]. It should
also be noted that there were no reports on the relation-
ships between Acidiplasma and diseases. In our results,
Acidiplasma was observed in stool samples and its abun-
dances were not significantly changed by RbCl.
Some reports found Rb could be used as anticancer

and anti-depressant drugs. The mechanisms of Rb
against cancer and neurological disease remain unclear.
Microbiota may participate in the pathogenesis of de-
pression through the brain-gut-microbiota axis [114].
Serotonin (5-HT) is a critical signaling molecule in the
brain-gut-microbiota axis [115]. The accumulation of 5-
HT and the rate of synthesis of 5-HT in the brain were
enhanced by intraperitoneal administration of RbCl
[116]. In the present study, Clostridium XlVa, SCFAs
producing bacteria, was significantly promoted by RbCl.
SCFAs could promote colonic 5-HT production [117,
118]. Enrichment of Alistipes promoted by RbCl might
disrupt the intestinal serotonergic system by affecting
tryptophan metabolism. Therefore, the microbes might
partly promote the anticancer and anti-depressant ef-
fects of RbCl via brain-gut-microbiota axis.

Conclusions
In summary, our results revealed RbCl significantly al-
tered fecal microbial composition. RbCl maintained the
abundances of dominant bacteria. However, RbCl signifi-
cantly altered the abundances of less richness microbes.
Changes in fecal microbes might in part contribute to
the anticancer or anti-depressant effects of RbCl. Clearly,
further functional analysis of the role of specific fecal
microorganisms and their interactions with brain-gut-
microbiota axis is expected.

Methods
Experimental animals and experimental design
Three-week old male Swiss mice used as experimental
animals (license number SCXK (Xiang) 2016–0002)
were purchased and raised in the Laboratory Animal
Science Department (LASD) of Central South University
with Specific Pathogen Free (SPF) level environment.
The living environment of the mice was of constant
temperature (20 ± 2 °C), constant humidity (50 ± 10%),
and free access to water and food. Mice were strictly
controlled in normal biological rhythms and the light
and dark environments were 12 h, respectively. All
animal experiments in this study were approved by the
Animal Breeding and Committee of the Department of
Laboratory Animal Science of Central South University

and were strictly evaluated in accordance with the
Regulations on Animal Management of Central South
University. The mice were kept in the LASD for a week
without any treatment to adapt to the environment.
Sixty-four mice were randomly assigned into four
groups: one was blank control group which was inter-
vened with normal saline (n = 13), and the other three
groups were divided into low-dose (n = 17), middle-dose
(n = 17), and high-dose group (n = 17) according to the
different RbCl dosage (20 mg/L (0.17 mmol/L), 50 mg/L
(0.41 mmol/L), 100 mg/L (0.83 mmol/L), respectively).
Five or four mice were randomly placed in each mouse
cage. The mice of the above experimental groups were
intragastrically administered of RbCl in 0.2 mL twice per
day for 6 consecutive weeks. During this period, the
mice were weighed weekly.

Fecal samples collection and properties analysis
After 6 weeks of drug treatments, the mice to be
sampled were placed on a clean ultra-clean bench with
sterile filter papers for taking stool samples. The fecal
samples were collected into the sterile tubes immediately
after defecation. The tubes were marked and snap frozen
in liquid nitrogen. All mice were sacrificed by pentobar-
bital overdose (60 mg/kg) in the ultra-clean workbench.
The kidneys, heart, lungs, pancreatic, spleen, stomach
and liver were rapidly excised from mouse and weighed.

Fecal DNA extraction and sequencing
Each fecal sample (approximately 0.2 g) was used for
total gut microbiome DNA extraction with QIAGEN
QIAamp kit. Extractions were performed according to
specific operating instructions. The extracted total gen-
omic DNA was detected by agarose gel electrophoresis
and qualified DNA samples were used in subsequent
experiments. PCR amplification and library preparation
were performed using 515 F (5′-GTGCCAGCMGCC
GCGGTAA-3′) and 806R (5′-GGACTACHVGGG
TWTCTAAT-3′) primers to target the V4 region of the
16S rRNA gene. The PCR products for each sample
were subjected to electrophoresis at a voltage of 100 V
for about 1 h using a 2% agarose gel. The target band
was recovered by tapping under UV light, and E.Z.N.A.TM
Gel Purification Kit (OMEGA Bio-Tek Inc., USA) was used
for product purification. The purified product was quanti-
fied using a Nanodrop spectrophotometer (ND-1000
spectrophotometer, Wilmington, USA). Illumina MiSeq
(Illumina, San Diego, CA) sequencing required the library
constructed from the mixture of 200 ng of each purified
product.

Data processing and sequence analysis
The MiSeq sequencing data were analyzed using the
Galaxy pipeline developed by Prof. Zhou’s lab (http://
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zhoulab5.rccc.ou.edu/) at University of Oklahoma. The
resulting sequences were further filtered based on qual-
ity score and sequence length. To merge the paired-end
reads into full-length amplicon sequence, the FLASH
software tool was used based on overlapping bases. The
sequences were clustered into operational taxonomic
units (OTU) at or above 97% identity. According to pre-
vious reports, OTUs reaching 97% similarity were used
to analyze alpha diversity (Shannon and Simpson), and
richness (Ace, Chao and Sobs) [119, 120].

Statistical analysis
IBM SPSS Statistics 19.0 software was used for statistical
analysis. Since comparison was performed between two
groups (saline and low, middle, high, respectively),
Student T-test was applied for detecting significant
differences in specific measured parameters. All values
were expressed as the mean ± standard deviation (SD).
Probability values of less than 0.05 were considered to
show a statistical significance. Microbiota community
diversity and richness were analyzed using vegan pack-
age and R software (version 3.5.1). LEFSe (Linear dis-
criminant analysis effect size), CPCoA (constrained
principal coordinate analysis) and Heatmap plot were
performed on ehbio BioPharm platform (http://www.
ehbio.com).
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