
© The Author(s) 2018. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society.
3

Mutagenesis, 2019, 34, 3–16
doi:10.1093/mutage/gey031

Original Manuscript

Original Manuscript

Improvement of quantitative structure–activity 
relationship (QSAR) tools for predicting Ames 
mutagenicity: outcomes of the Ames/QSAR 
International Challenge Project
Masamitsu Honma*, Airi Kitazawa, Alex Cayley1, Richard V.  Williams1, 
Chris Barber1, Thierry Hanser1, Roustem Saiakhov2, Suman Chakravarti2, 
Glenn J. Myatt3, Kevin P. Cross3, Emilio Benfenati4, Giuseppa Raitano4,  
Ovanes Mekenyan5, Petko Petkov5, Cecilia Bossa6, Romualdo Benigni6,7, 
Chiara Laura Battistelli6, Alessandro Giuliani6, Olga Tcheremenskaia6,  
Christine DeMeo8, Ulf Norinder9,10, Hiromi Koga11, Ciloy Jose11,  
Nina Jeliazkova12, Nikolay Kochev12,13, Vesselina Paskaleva13,  
Chihae Yang14, Pankaj R. Daga15, Robert D. Clark15 and James Rathman14,16

Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, 
Kanagawa 210-9501, Japan, 1Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK, 2MultiCASE 
Inc., 23811 Chagrin Blvd Ste 305, Beachwood, OH 44122, USA, 3Leadscope, Inc., 1393 Dublin Road, Columbus, OH 
43215, USA, 4Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via G. La Masa19 Milano, Italy, 5Laboratory of 
Mathematical Chemistry, As. Zlatarov University, Bourgas, Bulgaria, 6Istituto Superiore di Sanita’, Viale Regina Elena, 
299 00161 Rome, Italy, 7Alpha-Pretox, Via G. Pascoli 1, 00184 Rome, Italy, 8Prous Institute, Rambla de Catalunya, 135, 
3-2, Barcelona 08008, Spain, 9Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje 15136, Sweden, 
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Abstract

The International Conference on Harmonization (ICH) M7 guideline allows the use of in silico 
approaches for predicting Ames mutagenicity for the initial assessment of impurities in 
pharmaceuticals. This is the first international guideline that addresses the use of quantitative 
structure–activity relationship (QSAR) models in lieu of actual toxicological studies for human 
health assessment. Therefore, QSAR models for Ames mutagenicity now require higher predictive 
power for identifying mutagenic chemicals. To increase the predictive power of QSAR models, larger 
experimental datasets from reliable sources are required. The Division of Genetics and Mutagenesis, 
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National Institute of Health Sciences (DGM/NIHS) of Japan recently established a unique proprietary 
Ames mutagenicity database containing 12 140 new chemicals that have not been previously used 
for developing QSAR models. The DGM/NIHS provided this Ames database to QSAR vendors to 
validate and improve their QSAR tools. The Ames/QSAR International Challenge Project was initiated 
in 2014 with 12 QSAR vendors testing 17 QSAR tools against these compounds in three phases. We 
now present the final results. All tools were considerably improved by participation in this project. 
Most tools achieved >50% sensitivity (positive prediction among all Ames positives) and predictive 
power (accuracy) was as high as 80%, almost equivalent to the inter-laboratory reproducibility of 
Ames tests. To further increase the predictive power of QSAR tools, accumulation of additional 
Ames test data is required as well as re-evaluation of some previous Ames test results. Indeed, 
some Ames-positive or Ames-negative chemicals may have previously been incorrectly classified 
because of methodological weakness, resulting in false-positive or false-negative predictions by 
QSAR tools. These incorrect data hamper prediction and are a source of noise in the development 
of QSAR models. It is thus essential to establish a large benchmark database consisting only of well-
validated Ames test results to build more accurate QSAR models.

Introduction

Presently, more than 140 million chemical substances are listed in 
the CAS registry (https://www.cas.org/), and this number is increas-
ing at a rate of approximately 4000 chemical substances/day. Among 
these chemicals, approximately 100 000 are industrially produced 
and present in our living environments, and some of these may have 
adverse effects on human health. These toxic chemical substances 
are generally identified and evaluated by toxicological tests in ani-
mals and other organisms. For assessing the safety of all common 
chemical substances, however, individual toxicological testing is not 
feasible considering labour, time, cost and animal welfare issues. 
Given the rapid expansion in the number of industrial chemicals, 
international organisations and regulatory authorities involved in 
the regulation of chemical substances have expressed the need for 
effective screening tools to promptly and accurately identify chemi-
cal substances with potential adverse effects without conducting 
actual toxicological studies.

Quantitative structure–activity relationship (QSAR) is one prom-
ising area of computational toxicology that attempts to predict the 
potential adverse effects of a chemical based on its chemical struc-
ture. Predictions from QSAR can be useful for prioritising chemical 
substances for actual toxicological studies, thereby minimising the 
need for animal studies. In fact, various QSAR tools are currently 
used for screening lead compounds at the search stages of pharma-
ceutical development and for predicting the toxicity of industrial 
chemicals, agrochemicals, food additives and cosmetic materials. 
Much effort has been invested in the development of QSAR models 
for predicting Ames mutagenicity, among other toxicological end-
points, owing to the significant amount of the necessary Ames test 
data that have already been accumulated (1). The Ames test, devel-
oped by Bruce Ames is a short-term bacterial reverse mutation assay 
specifically designed to detect a wide range of chemical substances 
that can cause genetic damage leading to gene mutations (2). The 
Ames test is globally used as an initial screening method to deter-
mine the mutagenic potential of new chemicals and drugs. The test is 
also used for submission of data to regulatory agencies for registra-
tion or acceptance of many chemicals. QSAR models for predicting 
Ames mutagenicity are generally divided into two classes according 
to the mode of operation: rule-based (expert system) and statistical-
based (QSAR system). In rule-based systems, qualitative prediction 
is based on the presence of structural features (termed alerts) of the 
test chemicals. Early systems were based on the work of James and 
Elisabeth Miller (3) and the subsequent work of John Ashby and 

Raymond Tennant, who systemised the relationship between chemi-
cal structures and the observed toxic outcomes (4–6). Alternatively, 
statistical-based prediction is based on physicochemical properties 
expressed in terms of molecular descriptors or structural fragments 
that are known to correlate with biological activities (7–9). The 
quantitative relationship between biological activity and the molecu-
lar descriptors is calculated by a machine learning algorithm.

The International Conference on Harmonization (ICH) M7 
guideline for the assessment and control of mutagenic impurities 
in pharmaceuticals to limit potential carcinogenic risk was recently 
established (10). This guideline permits the use of QSAR tools for 
predicting Ames mutagenicity for the initial assessment of impuri-
ties in pharmaceuticals. This in silico approach is reasonable for this 
purpose because impurities in pharmaceuticals are usually present 
at very low levels and sometimes impossible to isolate and purify 
for actual toxicological study. The ICH-M7 is the first international 
guideline that addresses the use of QSAR models instead of actual 
toxicological study for human health assessment. Thus, QSAR is no 
longer merely a prediction or screening tool, but can be regarded as a 
mutagenicity test under ICH-M7. The guideline requires two QSAR 
prediction methodologies, one rule-based and one statistical-based, 
for acceptance. Negative prediction from both QSAR methodolo-
gies is sufficient to conclude that the impurity is not of mutagenic 
concern, while a positive prediction from either methodology can be 
regarded as a positive indication of mutagenic risk. Expert review 
is also recommended to support conclusions on the biological rel-
evance of any positive, negative, conflicting or inconclusive QSAR 
prediction. Thus, the full QSAR approach under ICH-M7 (using the 
two QSAR methodologies and the expert review) is designed to max-
imise the sensitivity for identifying mutagenic chemicals (11–14). 
However, accurate prediction by QSAR (i.e. the ability to distinguish 
mutagenic from non-mutagenic) is more important in practice.

Over the last two decades, many QSAR tools for predicting Ames 
mutagenicity have been developed. Some are commercially available, 
whereas others were developed as freeware by international organi-
sations or academia (1). All of these QSAR tools have been validated 
to define predictive power and establish fitness for use. Sensitivity 
(the ability to detect mutagens) and specificity (the ability to detect 
non-mutagens) are routinely evaluated as performance metrics. 
Other statistical measures include accuracy (proportion of cor-
rect predictions), negative predictivity (true Ames negatives among 
all negative predictions), positive predictivity (true Ames positives 
among all positive predictions), and chemical coverage. From a 
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regulatory perspective, QSAR tools that display a high sensitivity, 
high negative predictivity and wide coverage are the most desirable 
as they minimise false-negative outcomes and maximise chemical 
space in prediction.

Several reports have evaluated the performance of commercial 
QSAR tools for the prediction of Ames mutagenicity (15–19). In 
general, these QSAR tools demonstrate high sensitivity when analys-
ing publicly available datasets. This is predicted because the QSAR 
models were initially built and trained using public data, so there is 
substantial overlap of chemical space between the training chemicals 
and the query chemicals. Therefore, validation of QSAR tool per-
formance using public datasets may be overly optimistic. To per-
form fair validation of these tools, a proprietary dataset that has 
not been used for building the QSAR model should be employed 
(external validation). Such evaluations would reflect true perform-
ance to predict the Ames mutagenicity of new chemical substances. 
Also, integrating the proprietary dataset as training data (after val-
idation) further expands the chemical space in prediction, leading 
to increased performance of QSAR tools. Thus, proprietary datasets 
are of value both to validate and improve QSAR predictions.

The Division of Genetics and Mutagenesis, National Institute 
of Health Sciences of Japan (DGM/NIHS) recently established 
a unique proprietary Ames database consisting of 12 140 new 
chemical substances. The Ames test reports were submitted to the 
Ministry of Health Labor and Welfare (MHLW) in accordance with 
the Industrial Safety and Health Act in Japan since 1979. These 
test reports were originally undisclosed but the outcomes (positive 
or negative) were made available to DGM/NIHS for validation, 
development and improvement of QSAR tools. The Ames/QSAR 
International Challenge Project was started in 2014 in collaboration 
with 12 QSAR vendors from the USA, UK, Italy, Spain, Bulgaria, 
Sweden and Japan (Table 1). Based on the hypothesis that expansion 
of training data enhances the predictive power of QSAR tools, a 
three-phase challenge was designed. This report details the outcomes 
for all stages of the Ames/QSAR International Challenge Project.

Materials and Methods

Proprietary dataset
The Ames dataset for this project was obtained from the list of 20 761 
chemical compounds subject to the Industrial Safety and Health Act 

(ANEI-HOU) of Japan. The Ames test by ANEI-HOU initiated in 
1979 (20). The purpose of the ANEI-HOU is to secure safety and 
health in the workplace. For chemical substances to be newly manu-
factured or imported in excess of 100 kg per year, ANEI-HOU stipu-
lates that producers conduct hazard investigations in advance and to 
notify the MHLW of the results. As part of the hazard investigation, 
the Ames test or its equivalent (e.g. rodent carcinogenicity testing) is 
required. The Chemical Hazards Control Division, Industrial Safety 
and Health Department, Labor Standards Bureau, MHLW of Japan 
is responsible for monitoring industries under the ANEI-HOU. They 
summarised the Ames test results of 20 761 chemical compounds 
that were subjected to ANEI-HOU from 1979 to 2014 and provided 
the list to DGM/NIHS for this project. The Ames tests were con-
ducted by chemical companies, pharmaceutical companies and con-
tract research organisations under GLP compliance according to the 
ANEI-HOU test guideline (20). The test guideline basically requires 
five Ames strains, ‘S. thyphimurium TA100, TA98, TA1535, TA1537 
and E. coli WP2 uvrA’, which is similar to the requirement of the 
OECD guideline TG471 (21). ANEI-HOU classifies the Ames test 
results into three classes:

 Class A:  Strongly positive. The chemical generally induces more 
than 1000 revertant colonies per mg of at least one 
Ames test strain in the presence or absence of rat S9.

 Class B:  Positive. The chemical induces at least a 2-fold increase in 
revertant colonies (but less than for Class A compounds) 
compared to the negative control in at least one Ames 
strain in the presence or absence of rat S9.

 Class C:  Negative, no revertants increased (<2-fold) (neither Class 
A nor B).

The study reports of the Ames tests were peer reviewed by the ANEI-
HOU committee comprising several Ames test experts from academia 
and National Institutes, and the results (A, B or C) were authorised. 
The list provided for this project included the chemical name and 
the Ames result (A, B or C). Other information concerning Ames 
tests such as bacterial strain, presence or absence of rat S9, solvent, 
cytotoxicity and dose−response were not provided. The results of the 
Ames tests for these chemical compounds subject to ANEI-HOU are 
confidential and cannot be disclosed except for those designated as 
Class A. Class A chemicals are disclosed according to the Guidelines 

Table 1. Participants in Ames/QSAR International Challenge Project

QSAR vendor QSAR tool Methodology

1. Lhasa Limited (UK) a. Derek Nexus Rule
b. Sarah Nexus Statistical

2. MultiCASE Inc (USA) c. CASE Ultra statistical-based Statistical
d. CASE Ultra rule-based Rule

3. Leadscope Inc (USA) e. Leadscope statistical-based Statistical
f. Leadscope rule-based Rule

4. Istituto di Ricerche Farmacologiche Mario Negri IRCCS (Italy) g. CAESAR Statistical
h. SARPY Rule
i. KNN Statistical

5. LMC - Bourgas University (Bulgaria) j. TIMES_AMES Rule
6. Istituto Superiore di Sanita (Italy) k. Toxtree Rule
7. Prous Institute (Spain) l. Symmetry Statistical
8. Swedish Toxicology Science Research Center (Sweden) m. AZAMES Statistical
9. Fujitsu Kyushu Systems Limited (Japan) n. ADMEWORKS Statistical
10. IdeaConsult Ltd. (Bulgaria) o. AMBIT Statistical
11. Molecular Networks GmbH and Altamira LLC (USA) p. ChemTune•ToxGPS Statistical
12. Simulations Plus, Inc (USA) q. MUT_Risk Statistical
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for Preventing Health Impairment by Chemical Substances in the 
ANEI-HOU. Class A chemicals are published on the MHLW website 
http://anzeninfo.mhlw.go.jp/user/anzen/kag/ankgc03.htm.

Data curation
The DGM/NIHS carefully investigated the chemical compounds on 
the list and selected chemicals for which Ames test results could be 
appropriately incorporated into QSAR models. Mixtures, polymers, 
metals and condensates were excluded from this study. Counter-ions 
were removed after neutralisation, and acidic/basic groups were 
neutralised. Duplicate structures were also removed. Finally, 12 140 
chemical substances were included in the dataset for this project 
(Table 2). Each chemical is identified by serial ID, ANEI No., chemi-
cal name and simplified molecular-input line-entry system (SMILES), 
and the result of the Ames test is appended (Class A, B or C). Among 
12 140 chemicals, 7788 also have a CAS registry number (64%), 
which was added to the list. For at least 85% of the included chemi-
cals, there is no available Ames test result in either public domain 
databases or the databases of the QSAR vendors (Dr. R. Saiakhov, 
MultiCASE Inc., personal communication). Thus, these chemicals 
have not been included in training sets for pre-existing QSAR model 
development.

Project design
The Ames/QSAR International Challenge Project was first 
announced at the QSAR 2014 Conference, Milan, Italy, in June 
2014. Twelve QSAR vendors from seven countries responded to the 
announcement and participated in the project. Some QSAR vendors 
challenged multiple QSAR models differing by methodology or ver-
sion (Table 1). The challenge project was conducted in three phases 
from 2014 to 2017. The DGM/NIHS provided a list of about 4000 
chemicals in each phase without their Ames test results to the QSAR 
vendors. The QSAR vendors predicted the Ames mutagenicity using 
their QSAR tools and reported the results to the DGM/NIHS. The 
DGM/NIHS validated the performance of the QSAR tools (sensi-
tivity, specificity and other criteria) and disclosed the Ames results. 
Some QSAR tools were improved or adjusted by using the Ames 

results as training data before the next phase. Table 2 summarises 
the number of chemicals in each Ames mutagenicity class for each 
phase. A confidential agreement not to disclose the chemical names 
and Ames results except for Class A chemicals was obtained from all 
participating vendors before starting the project. The Class A chemi-
cals in this project are available at the AMES/QSAR website (http://
www.nihs.go.jp/dgm/amesqsar.html).

QSAR tools
In total, 12 QSAR vendors using 17 different tools participated in 
this project (Table 1). The detailed features of each QSAR tool are 
described in Supplement 1, available at Mutagenesis Online.

Analysis of QSAR tool performance
The Ames mutagenicity predictions of all QSAR tools were com-
pared to the actual Ames test results (Class A−C). Class A and B were 
combined for calculating all performance metrics except sensitivity 
(the ability to detect mutagens). For binary classifiers, performance 
metrics can be generated by drawing values from a 2 × 2 contingency 
table of true positives (TP), false positives (FP), false negatives (FN) 
and true negatives (TN) (Table 3). Sensitivity, specificity (ability to 
detect non-mutagens), positive and negative predictivity (correctly 
predicted mutagens and non-mutagens, respectively), accuracy, 
balanced accuracy and coverage were calculated for these tables. 
Sensitivity-A (ability to detect strong mutagens) was separately cal-
culated by excluding Class B predictions. Furthermore, Matthews 
correlation coefficient (MCC) was derived for each tool. The MCC 
measures the quality of binary classifications by accounting for true 
and false positives and negatives as well as the difference in the sizes 
of the positive and negative classes. A coefficient of 1 represents a 
perfect prediction, while −1 indicates total disagreement between 
the prediction and observation. An MCC of 0 indicates a prediction 
no better than random selection (22). The performance metrics and 
their calculation formulae are shown in Table 4. Additionally, the 
TP rate (sensitivity) against the FP rate (1-specificity) was plotted. 
The resulting receiver operating characteristic (ROC) graph allows a 
visual comparison of the performance of each QSAR tool.

Table 2. Number of Chemicals in Ames/QSAR International Challenge Project

Class Phase I (2014–2015) Phase II (2015–2016) Phase III (2016–2017) Total (2014–2017)

Class A 183 (4.7%) 253 (6.6%) 236 (5.4%) 672 (5.5%)
Class B 383 (9.8%) 309 (8.1%) 393(8.9%) 1085 (8.9%)
Class C 3336 (85.5%) 3267 (85.3%) 3780 (85.7%) 10 383 (85.6%)
Total 3902 3829 4409 12 140

Only chemicals with >800 mw
Class A 3 (1.8) 1 (2.4) 2 (0.8) 6 (1.3)
Class B 16 (9.7) 1 (2.4) 9 (3.8) 26 (5.8)
Class C 146 (88.5) 39 (95.1) 229 (95.4) 414 (92.8)
Subtotal 165 41 240 446

Table 3. 2 × 2 (2 × 3) contingency matrix for Ames mutagenicity classification

Experimental Ames mutagenicity class

Class A (Strong positive) Class B (Positive) Class C (Negative)

QSAR Prediction Class
Positive True Positive (A) (TPA) True Positive (B) (TPB) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

True Positive (TP) = TPA + TPB
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Results and Discussion

The predictions of each QSAR tool are described and discussed in 
Supplement 2, available at Mutagenesis Online. Some participants 
have published their own papers related to the AMES/QSAR project 
in this special issue where they discuss individual QSAR tool perfor-
mance in detail. Here, we describe the general results and discuss the 
overall predictive performance of these QSAR tools.

The Ames test data
The 12 140 Ames test results in our dataset were selected from the 
ANEI-HOU database provided by MHLW for this challenge project. 
The database is confidential and not in the public domain except for 
Class A chemicals. Although all the Ames studies were peer reviewed 
by genotoxicity experts, we were not allowed to access the study 
reports. Rather, only the test result (Class A, B or C) was provided. 
Thus, information on experimental conditions (i.e. the Ames strain 
showing positive results, whether metabolic activation was required) 
was not available to the study participants.

The list of 12 140 chemical substances was made available in 
three phases from 2014 to 2017 (Table 2). Among 12 140 chemicals, 
all 7788 chemicals possessing a CAS registry number (64%) were 
evaluated by the QSAR models in Phase I  or II, while almost all 
chemicals in Phase III had no CAS registration. Interestingly, while 
we arbitrarily split the chemicals into phases without considering the 
proportions of Class A, B and C, the proportions were roughly con-
stant in each phase (approximately 5% Class A, 10% Class B and 
85% Class C). Matsushima et al. previously reported the proportion 
of Ames mutagens among 4000 new chemical substances subject to 
ANEI-HOU until 1990 in Japan (23) and observed proportions of 

3% Class A, 10% Class B and 87% Class C. At the DGM/NIHS, 
of the 305 commercial chemicals evaluated for Ames mutagenicity 
from 1978 to 1991, including food additives, industrial chemicals, 
experimental reagents, pharmaceuticals, environmental chemicals, 
dyes, flavourings and natural products, 13 (4.3%) were Class A, 
36 (11.8%) Class B and 256 (83.9%) Class C (24). Therefore, the 
proportions in the three Ames classes have been relatively constant 
over time, with 13−16% of new agents deemed strongly positive or 
positive, likely reflecting the proportion of mutagenic commercial 
chemicals used in Japan, although the ANEI-HOU data included 
highly reactive synthetic intermediates, which are not final commer-
cial products. However, in a survey of the US National Toxicology 
Program (NTP) database (25), the overall proportion of Ames muta-
gens was 35% (522/1497), while in the US EPA Gene-Tox database 
that summarised published Ames studies, 56% (603/1078) of the 
chemicals were positive (26). Many of the NTP chemicals were tested 
due to suspicion of carcinogenicity or mutagenicity or because they 
were structural analogues of known mutagens. The high proportion 
of Ames-positive chemicals in the EPA Gene-Tox database, which 
mainly consists of chemicals evaluated in published articles, presum-
ably reflects publication bias for mutagens over non-mutagens (i.e. 
positive results over negative results). Thus, the NTP database and 
the EPA Gene-Tox database may not reflect the actual proportion 
of commercial chemicals with mutagenic properties. Zeiger and 
Margolin investigated the proportion of Ames mutagens among 100 
randomly selected chemicals identified by the US National Academy 
of Science (1984) from a subset of all chemicals in commerce and 
determined that 22% were Ames mutagens (27). Overall, it appears 
that roughly 15−20% of chemicals in commerce are Ames mutagens. 
This statistical information is valuable for quality control of Ames 

Table 4. Performance metrics used to evaluate classifiers

Performance metric Calculation and description

A-Sensitivity (A-SENS) TPA/(TPA + FN)
Measures the ability of a QSAR tool to detect strong Ames positives compounds correctly.

Sensitivity (SENS) TP/(TP + FN)
Measures the ability of a QSAR tool to detect Ames positives compounds correctly.

Specificity (SPEC) TN/(FP + FN)
Measures the ability for a QSAR tool to detect negatives compounds.

Accuracy (ACC) (TP + TN)/(TP + TN + FP + FN)
Assesses a QSAR tool’s overall performance by returning the fraction of compounds which were correctly predicted
.

Balanced Accuracy (BA) (SENS + SPEC)/2
Assesses the overall model performance, giving each class equal weight.

Positive Prediction Value (PPV) (TP)/(TP + FP)
Indicates how frequently positive predictions are correct.

Negative Prediction Value 
(NPV)

TN/(TN + FN)
Indicates how often negative predictions are correct.

Mathews Correlation 
Coefficient (MCC)

TP TN FP FN

TP FP TP FN TN FP TN FN

* *( ) - ( )( )
+( ) +( ) +( ) +( )

Assesses the overall performance of the model. Values can range from −1 to 1, which is in contrast to the other met-
rics in this table which range from 0 to 1.

Coverage (COV) (TP + TN + FP + FN)/Total
Evaluates the proportion of compounds for which the model can make a positive or negative prediction.
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mutagenesis datasets and for appropriate allocation of resources to 
assure the safety of commercial chemicals.

Strong mutagens
In this challenge, 672 strong Ames mutagens (Class A) were included 
(available at http://www.nihs.go.jp/dgm/amesqsar.html). These com-
pounds must be publicly disclosed in advance according to the 
ANEI-HOU to protect workers from exposure. Ames tests are gen-
erally used for screening carcinogens because there is a strong cor-
relation between Ames mutagens and rodent carcinogens. Indeed, 
approximately 87% of Ames mutagens are carcinogenic in rats or 
mice (28,29). However, the correlation between the quantitative 
results of the Ames test (number of revertants) and the strength of 
rodent carcinogenicity is generally poor (30). In other words, Class 
A chemical substances producing >1000 revertants /mg in the Ames 
test do not necessarily have strong carcinogenic activity. Mono-
functional alkyl halides, certain aromatic amines and aromatic nitro 
derivatives are representative strong mutagens in Ames tests and are 
known to show weak carcinogenicity in rodents (31,32). Therefore, 
it may be better to regard Class A compounds as certainly mutagenic 
but not necessarily as strongly carcinogenic. Class A  compounds 
can be thought of as having an alert structure strongly related to 
mutagenicity. Regulatory authorities have a vested interest in the 
ability of QSAR tools to identify strong mutagens. However, despite 
being Ames Class A, 8 compounds in Phase I, 4 in Phase II and 6 
in Phase III (Supplement 3, available at Mutagenesis Online) were 
not predicted as positive by all QSAR tools used in this study. In 
addition, 11 Class A compounds in Phase I, 5 in Phase II and 10 in 
Phase III (Supplement 4, available at Mutagenesis Online) were pre-
dicted as Ames-positive by only one QSAR tool. These compounds 
are thus regarded as false negative for all other QSAR tools. Such 
novel mutagens may possess new alerts related to Ames mutagenicity 
that have not been reported and are thus important training items 
for QSAR tools. Accumulating data on mutagenic substances with 
novel and unique structures not only expands the chemical space of 
mutagenic chemicals but may also facilitate further improvements to 
the predictive power of QSAR tools.

Predictive power of QSAR tools
There are many reports evaluating the predictive power of QSAR 
tools for Ames mutagenicity (15–19). Hansen et al. built a bench-
mark dataset consisting of 6512 chemicals with Ames mutagenicity 
information from published literature (54% positive) and evalu-
ated the performance of three commercial QSAR tools, including 
DEREK and MultiCASE, and four non-commercial machines lean-
ing QSAR models (16). DEREK and MultiCASE demonstrated 
good predictive power, with sensitivity values of 73 and 78%, 
respectively. Hillebrecht and his colleagues at F.  Hoffmann-La 
Roche evaluated the predictive power of 4 QSAR tools (DEREK, 
Toxtree, MultiCASE and Leadscope) using a large high-quality data-
set comprised of both published results and Roche’s proprietary 
data (17). Satisfactory performance metrics were demonstrated for 
the public data (Accuracy: 66.4−75.4%, Sensitivity: 65.2−85.2%, 
Specificity: 53.1−82.9%), whereas a marked decrease in sensitivity 
was found for predictions using Roche’s proprietary data (Accuracy: 
73.1−85.5%, Sensitivity: 17.4−43.4%, Specificity: 77.5−93.9%). 
Similarly, Cariello at GlaxoSmithKline used DEREK and TOPKAT 
to predict company proprietary data, and found sensitivity values 
of only 46.3 and 25.6%, respectively (33). One factor contribut-
ing to the poor sensitivity of QSAR tools for predicting proprietary 

pharmaceutical compounds is the low proportion of positives (12.9 
and 20% positive in Roche and GlaxoSmithKline proprietary data-
sets, respectively) compared to public databases (e.g. 54% positive 
in the Hansen dataset), as this decreases the probability of correctly 
predicting Ames positives by chance. Another possible contributing 
factor is the unique molecular structure of many new pharmaceuti-
cal compounds compared to compounds in public domain datasets.

The Ames test data used in the AMES/QSAR challenge project 
were also from a proprietary dataset (ANEI-HOU) and the propor-
tion of positives was similarly low (14.5%; Table 2). However, most 
of the QSAR tools exhibited relatively high sensitivity in Phase I, 
in which a substantial proportion of compounds had CAS registry 
numbers (Table 5). The average A-Class sensitivity and overall sen-
sitivity in Phase I were 68.7 and 56.7%, respectively (Table 8). This 
relatively high sensitivity may be due to the types of Ames-positive 
chemicals included in the ANEI-HOU database, most of which are 
industrial chemicals produced or used by many companies. Most 
of these Ames-positive chemicals are also of low molecular weight 
(Table 2) (15) and probably have few well-described reactive groups, 
such as alkylating agents, aromatic nitro group compounds and 
epoxides. Another possible reason for this high sensitivity in Phase 
I  is the quality of data. Ames tests submitted to ANEI-HOU are 
conducted strictly under GLP, and the results are peer reviewed by 
an ANEI-HOU committee. Further, positive results are reviewed by 
genotoxicity experts. Therefore, test results could be easily predicted 
for the ANEI-HOU compounds. Although some QSAR tools sac-
rificed sensitivity to increase specificity (Figure 1), most showed a 
good balance between sensitivity and specificity, resulting in high 
accuracy. The average sensitivity and accuracy for all QSARS tools 
in Phase I were 77.7% and 74.7%, respectively, values comparable 
to previous QSAR performance results using a public dataset (17).

In the Phase II challenge, the predictive power of almost all 
QSAR tools was much improved (Table 6, Figure 1) and the averages 
of all performance metrics were higher than in Phase I  (Table  8). 
Theoretically, this is expected due to the additional training data 
supplied during Phase I. However, not all QSAR tools were updated 
by incorporating Phase I data as a training dataset (Table 6). Rather, 
some vendors improved their QSAR tools by other means and 
used these updated versions in subsequent phases. The details on 
the updated information used by some QSAR tool vendors are pre-
sented in Supplement 2, available at Mutagenesis Online. On the 
other hand, no significant improvements in overall performance met-
rics were observed from Phase II to Phase III (Tables 7 and 8). This 
may be due to the unique molecular structures of Phase III chemi-
cals. Phase III chemicals consisted mainly of non-CAS# compounds 
and the proportion of high molecular weight chemicals (800 mw or 
more) was greater than in Phase II. The greater proportion of larger 
more complex chemicals may explain the lower than expected pre-
dictive power. Nonetheless, almost all QSAR tools were considerably 
improved over the course of this challenge project, demonstrating 
higher predictive power than before Phase I (Figure 1). In fact, some 
QSAR tools exhibited 85% accuracy or higher for the predicted 
compounds.

Further improvement of prediction power
According to the survey of Ames test data from NTP, estimated inter-
laboratory reproducibility of Ames tests is around 85% (34,35), 
equivalent to the predictive power of the better QSAR tools in this 
project. Further improvement in the predictive power of QSAR tools 
requires not only accumulation of additional Ames test data, but 
also enhanced quality, including re-evaluation of older Ames test 

8 M. Honma ., 2019, Vol. 34, No. 1
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results. As with other in vitro toxicological studies, the Ames test 
results are influenced by the methodologies employed and materi-
als used (2). Such information is important for interpreting Ames 
test results in different laboratories and for building QSAR models. 
Another important factor is inconsistency in classification criteria, 
which leads to discrepancies among laboratories and to false-posi-
tives or false-negatives by QSAR prediction. According to the 1983 
OECDTG471 guidelines (revised in 1997) (21) ‘There are several cri-
teria for determining a positive result, such as a concentration-related 
increase over the range tested and/or a reproducible increase at one 
or more concentrations in the number of revertant colonies per plate 
in at least one strain with or without metabolic activation. Biological 
relevance of the results should be considered first. Statistical methods 
may be used as an aid in evaluating the test results. However, statisti-
cal significance should not be the only determining factor for a posi-
tive response.’ However, the 2-fold rule for determining a positive 
result in the Ames test has been generally applied to the ANEI-HOU 
and other test guidelines (36–38). A  chemical can be classified as 
mutagenic if it induces a 2-fold or greater increase in revertant colo-
nies compared to the negative control for at least one Ames strain 
in the presence or absence of rodent S9. The use of the 2-fold rule 
in Ames tests is widely accepted by regulatory agencies for regis-
tration or acceptance of chemicals despite criticism (39). In apply-
ing the 2-fold rule, biological relevance, statistical significance and 

reproducibility are sometimes ignored. In some cases, QSAR tools 
can accurately predict Ames mutagenicity based on the molecular 
mechanism, but the experimentally observed mutagenic response 
may be weak.

Figure 2a and b shows two aromatic amines predicted to be posi-
tive by most QSAR tools in this study but that are actually nega-
tive (Class C) in the Ames test. While listed as negative, chemical (i) 
weakly induced TA100 colonies and chemical (ii) weakly induced 
TA98 colonies, both in the presence of S9. Despite weak responses, 
the results were reproducible across two or three experiments, so the 
response could be biologically meaningful. Many QSAR tools have 
incorporated a structural alert for aromatic amines. The methoxy 
group at the ortho position and the amino group at the meta position 
are known to enhance the mutagenicity of aromatic amines (40). 
Therefore, QSAR results can support Ames mutagenicity. According 
to the reproducible positive response on the Ames test and the struc-
tural alerts suggested by QSAR, the two chemicals could be judged 
as positive. The inclusion of QSAR prediction can both support the 
Ames test results and provide impetus for re-evaluation. In turn, 
integrating more detailed Ames results will increase the predictive 
power of QSAR tools, leading to more accurate evaluation based on 
biological relevance and molecular mechanisms.

Poor quality Ames test data significantly decreases the predic-
tive power of QSAR tools. Many Ames tests available in the public 

Figure 1. Receiver operating characteristic (ROC) graph of Ames mutagenicity prediction for the QSAR tools evaluated in this study. Sensitivity to Class A or 
Class A + B chemical and specificity to class C chemicals are presented. Each dot represents a QSAR tool used.

10 M. Honma ., 2019, Vol. 34, No. 1
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domain were conducted more than 30 years ago, and most QSAR 
vendors have used these datasets to develop their QSAR models. The 
Ames tests conducted in the 1980s were frequently not in compli-
ance with the current OECD guidelines under GLP. For instance, 
Ames tests performed with excess cytotoxicity, high concentration 
(>5 mg/plate) and (or) non-standard Ames strains are more likely to 

be positive. These positive results should not be accepted by regu-
latory agencies because of doubtful biological relevance and data 
reliability.

Some chemicals in the NTP list have been examined by several lab-
oratories for Ames mutagenicity to evaluate inter-laboratory repro-
ducibility and to provide confirmation of test results. For instance, 

Table 8. Averages and ranges of the performance metrics of QSAR tools in the Ames/QSAR challenge project

Phase I Phase II Phase III

A-Sensitivity (%) 68.7 (51.4–82.8) 73.2 (55.3–89.5) 70.2 (42.7–78.6)
Sensitivity (%) 56.7 (38.6–70.0) 58.0 (41.6–72.1) 57.1 (31.7–67.6)
Specificity (%) 77.7 (62.5–91.5) 84.2 (64.9–92.8) 79.9 (60.7–93.0)
Accuracy (%) 74.7 (63.6–83.9) 80.3 (65.8–87.7) 76.7 (61.1–87.3)
Balanced accuracy (%) 67.2 (62.1–72.5) 71.1 (64.0–78.9) 68.5 (62.0–74.4)
MCC 0.28 (0.20–0.39) 0.37 (0.24–0.50) 0.31 (0.17–0.44)
Coverage (%) 91.4 (57.7–100) 89.1 (22.7–100) 92.3 (74.5–100)

Figure 2. Two aromatic amines predicted as Ames-positive by almost all QSAR tools, but negative in the actual Ames test (class C). Two Ames test results for 
chemical (a) using strain TA100 in the presence of S9, and three Ames test results for chemical (b) using strain TA98 in the presence of S9 are shown.
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4′-(chloroacetyl) acetanilide was examined for Ames mutagenicity 
by four laboratories in an NTP validation program (Figure 3) (41). 
Inconsistent positive responses were observed using strain TA1537 

both in the absence and presence of rat S9, no laboratory reported 
mutagenic responses using TA100, TA1535 or E. coli in either the 
absence or presence of rat S9. In spite of these equivocal results, the 

Figure 3. Ames test results for 4′-(chloroacetyl) acetanilide, which was examined by four laboratories as part of an NTP validation program using the TA1537 
strain with or without rat S9.
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chemical was labelled as a mutagen in the NTP dataset, reflecting the 
generally conservative bias of regulatory authorities. Derek Nexus 
and CASE Ultra (statistical-based) predicted 4′-(chloroacetyl) acet-
anilide to be inactive and negative, respectively, due to the absence of 
a structural alert for Ames mutagenicity. Alternatively, CASE Ultra 
(rule-based) judged it as known-positive as NTP data was used as 
part of the training dataset. There is no other Ames test result for 
this chemical, so we cannot judge it conclusively as a non-Ames 
mutagen based solely on QSAR prediction. However, the positive 
judgement in the NTP database is doubtful, and thus causes a false 
negative prediction by the QSAR tools. Incorrect experimental data 
is not only useless for QSAR prediction, but adds noise and hinders 
development and improvement of QSAR models. Doubtful Ames 
test results should be deleted from the databases used for building 
QSAR models and reconsidered or re-examined for improved safety 
and management practices by regulatory authorities.

It is also known that some chemicals used in the Ames tests (e.g. 
vehicles for test compounds) can cause artificially positive results by 
generating by-products through interaction with the test compound. 
For instance, acyl halides are structural alerts for Ames mutagenic-
ity (42,43) as the carbonyl group bound to the halogen atom could 
potentially attack DNA directly. However, Amberg et  al. demon-
strated that 15 of 18 chemicals with acyl/sulfonyl halides yielding 
positive results in the Ames test using DMSO as a vehicle were nega-
tive using another vehicle (44). The Ames-positive results were likely 
due to generation of halomethyl sulfide, which presumably arises 
from the acylation of DMSO by acyl or sulfonyl halides (via the 
Pummerer rearrangement). Alternatively, acyl/sulfonyl halides are 
generally hydrolysed in water to non-mutagenic carbonic acid and 
hydrogen halides or sulfonic acid and hydrogen halides, respectively. 
Thus, positive Ames mutagenicity of some acyl/sulfonyl halides may 
be an artefact of the test system. More than 300 chemicals with 
acyl/sulfonyl halides were included in the challenge project, 40% of 
which were listed as Ames-positive (Class A or B). However, we can-
not speculate on whether this positive status is true or artifactual 
because there was no information available on the vehicle used. The 
results of QSAR prediction varied among models, possible because 
only some QSAR vendors had incorporated the results of Amberg 
et al. (44).

Impurities are also potential sources of false-positive responses in 
any toxicological test. Supplements 3 and 4, available at Mutagenesis 
Online, present the list of Class A chemicals that were not accurately 
predicted by all or almost all QSAR tools in the study. Many Class B 
chemicals were also predicted incorrectly by almost all QSAR tools 
(although specific compounds cannot be revealed). QSAR vendors, 
chemists and genotoxicity experts have expressed skepticism about 
the Ames-positivity of some Class A and B chemicals, and we sug-
gest that these false results are due, at least in some instances, to the 
presence of impurities. This may be especially the case for chemicals 
subject to ANEI-HOU regulations as the Ames tests are mainly con-
ducted for new agents used in manufacturing with a high probabil-
ity of worker exposure. These chemicals are tested before marketing 
and may contain high levels of impurities. QSAR may help to iden-
tify such compounds, thereby improving the models and reducing 
the number of false alarms. It could also help manufacturers by high-
lighting cases wherein they could improve safety by modifying their 
manufacturing process to reduce the levels of mutagenic impurities. 
Therefore, data on the purity of test chemicals and vehicles used in 
Ames tests are critical for proper interpretation of positive results 
and reduction of false negative by QSAR prediction. The DGM/

NIHS will disclose this information to QSAR vendors in the near 
future to facilitate further improvement of QSAR tools.

Conclusion

A three-phase AMES/QSAR International Challenge Project was 
conducted from 2014 to 2017. Seventeen QSAR tools from 12 
QSAR vendors were challenged to predict the Ames mutagenicity 
of 12 140 new chemicals in a proprietary Ames dataset that has 
never been used for developing QSAR tools. All QSAR tools demon-
strated improved predictive power after the study compared to the 
original versions, indicating that this project successfully fulfilled 
the principal aim of enhancing QSAR performance. Some QSAR 
tools demonstrated greater than 80% accuracy for predicting Ames 
mutagenicity, which is almost equivalent to inter-laboratory repro-
ducibility of Ames test results. To further improve the predictive 
power of QSAR tools, both new Ames test data and re-evaluation 
of previous test data are required as some chemicals may be incor-
rectly classified due to non-standard laboratory practices, reactions 
between the test compound and vehicle, and impurities in the test 
sample among other factors. These equivocal data hamper predict-
ive power, add noise and hinder development of more accurate 
QSAR models. Therefore, it is necessary to develop a benchmark 
dataset consisting only of reliable Ames test results with sufficient 
information to build accurate QSAR models. QSARs built on such 
a dataset may ultimately be good enough to make it possible to 
resolve ambiguities in the borderline assay data, thereby reducing 
the number of false alarms.

Supplementary data

Supplement 1–4 are available at Mutagenesis Online.
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