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Background: Endoscopic ultrasound (EBUS) strain elastography can diagnose
intrathoracic benign and malignant lymph nodes (LNs) by reflecting the relative stiffness
of tissues. Due to strong subjectivity, it is difficult to give full play to the diagnostic efficiency
of strain elastography. This study aims to use machine learning to automatically select
high-quality and stable representative images from EBUS strain elastography videos.

Methods: LNs with qualified strain elastography videos from June 2019 to November
2019 were enrolled in the training and validation sets randomly at a quantity ratio of 3:1 to
train an automatic image selection model using machine learning algorithm. The strain
elastography videos in December 2019 were used as the test set, from which three
representative images were selected for each LN by the model. Meanwhile, three experts
and three trainees selected one representative image severally for each LN on the test set.
Qualitative grading score and four quantitative methods were used to evaluate images
above to assess the performance of the automatic image selection model.

Results: A total of 415 LNs were included in the training and validation sets and 91 LNs in
the test set. Result of the qualitative grading score showed that there was no statistical
difference between the three images selected by the machine learning model. Coefficient
of variation (CV) values of the four quantitative methods in the machine learning group
were all lower than the corresponding CV values in the expert and trainee groups, which
demonstrated great stability of the machine learning model. Diagnostic performance
analysis on the four quantitative methods showed that the diagnostic accuracies were
range from 70.33% to 73.63% in the trainee group, 78.02% to 83.52% in the machine
learning group, and 80.22% to 82.42% in the expert group. Moreover, there were no
statistical differences in corresponding mean values of the four quantitative methods
between the machine learning and expert groups (p >0.05).
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Conclusion: The automatic image selection model established in this study can help
select stable and high-quality representative images from EBUS strain elastography
videos, which has great potential in the diagnosis of intrathoracic LNs.
Keywords: endobronchial ultrasound, strain elastography, machine learning, lymph nodes, image selection
INTRODUCTION

The differential diagnosis of malignant and benign intrathoracic
lymph nodes (LNs) is an important medical problem related to
the diagnosis and prognosis of intrathoracic diseases. Compared
with surgical examination, needle techniques are recommended
as the first choice to obtain tissues (1, 2). Endobronchial
ultrasound guided transbronchial needle aspiration (EBUS-
TBNA) is an important minimally invasive tool to evaluate the
benign and malignant intrathoracic LNs.

Previous literature mentioned that ultrasonographic features
were suggested to be used for predicting benign and malignant
diagnosis of patients undergoing EBUS-TBNA (3). EBUS
imaging includes three modes of grayscale, blood flow Doppler
and strain elastography. Studies indicated that strain
elastography had the best diagnostic value among the three
modes (4, 5). Elastography has been widely used in breast
lesions, thyroid, pancreas, prostate, liver and endoscopic
ultrasound (6–11). Through exerting repeated and slight
pressure on the examined lesions, elastography can quantify
the elasticity of tissues by measuring the deformation and
present it in the form of various colors (12–14). The colors
from yellow/red, green to blue represent tissues from lower to
higher relative stiffness, respectively (13). Malignant infiltration
of tumor cells can alter cell morphology and overall histology of
tissues resulting in a stiffer property. Elastography can indirectly
predict malignant lesions by reflecting its relative stiffness (15).
EBUS strain elastography plays an important role in
differentiating intrathoracic benign and malignant LNs (16).
The bronchoscopist can select the target LN and possible
metastatic sites within the LN for biopsy according to strain
elastography during EBUS-TBNA (17, 18).

With respect to qualitative analysis of strain elastography
image, the five-score grading method had specific classification
and when score 1–3 was defined as benign and score 4–5 as
malignant, the diagnostic accuracy in predicting malignant LNs
can reach 83.32% (4). Quantitative methods include stiff area
ratio (SAR), elasticity ratio of blue/green (B/G), mean hue value
and mean gray value can comprehensively evaluate the quality of
elastography images (4, 5, 18–23). Qualitative methods are more
convenient for clinical application, but strong subjectivity exists
inevitably. Therefore, doctors with various experience may have
different judgement on the same strain elastography video.
Although the quantitative method are relatively objective, the
images used for quantitative analysis are still selected
subjectively. Moreover, ultrasound imaging is the specialty of
ultrasound doctors, and endoscopists may not make full use of
strain elastography due to the limited experience.
2

In recent years, with the development of machine learning
algorithm, machine learning has shown an important role in the
field of medical imaging with favorable performance, such as
skin cancer, retinal fundus photographs, gastrointestinal
endoscopy, chest CT and other aspects (24–27). By extracting
multiple quantitative image features which may be difficult for
doctors to observe, machine learning can give a likelihood of
each case and classify images accurately. Research demonstrated
that machine learning combined with colorectal endoscopy for
colorectal lesions diagnosis was comparable to that of experts
(28). In the field of bronchoscopy, a computer-assisted diagnosis
(CAD) system has been used to classify normal mucosa, chronic
bronchitis and lung tumors under the white-light bronchoscopy,
which achieved a classification rate of 80% (29). In addition, a
machine learning texture model can get an accuracy of 86% in
classifying cancer subtypes using bronchoscopic findings (30).
However, there are few applications of machine learning on
EBUS strain elastography. Therefore, the purpose of this study
was to establish a machine learning model which can realize
automatic selection of representative images from strain
elastography videos.
MATERIALS AND METHODS

Patients and LNs
Patients who met the following criteria and underwent EBUS-
TBNA examination in Shanghai Chest Hospital from June to
December 2019 were enrolled in this study (1): At least one
enlarged intrathoracic LNs (short axis >1 cm) based on
computed tomography (CT), or at least one positive 18F-FDG
uptake detected (standardized uptake value >2.5) by positron
emission tomography (2); Pathological confirmation was
clinically required and EBUS-TBNA examination was feasible
(3); Patients who did not have contraindications to EBUS-TBNA
and signed informed consent. LNs with qualified strain
elastography videos were analyzed in the study. LNs in
December were used as the test set to assess the automatic
representative images selection model and the remained were
used as the training set and validation set. This study was
approved by the local Ethics Committee of Shanghai Chest
Hospital (No. KS1947) and registered at ClinicalTrials.gov
PRS (NCT04328792).

EBUS Strain Elastography Procedure
LNs were examined by the ultrasound bronchoscopy (BF-
UC260FW, Olympus, Tokyo, Japan) and EBUS strain
elastography videos were recorded by the ultrasound processor
May 2021 | Volume 11 | Article 673775
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(EU-ME2, Olympus, Tokyo, Japan). The operator detected the
location of the target LN and measured the EBUS size at
the maximal cross-section of grayscale mode. After observing
the grayscale and blood flow Doppler modes, the operator
switches to the strain elastography mode and elastography
imaging was formed through the patient’s respiration, cardiac
impulse and blood vessel pulse generally. In the case of
unsatisfactory imaging, the operator shall exert appropriate
pressure to the target LN by pressing the up-down angle lever of
bronchoscope at a frequency of three to five times per second to
obtain better imaging. The maximal cross-section of the LN was
recorded and two 20-second videos were saved (4). Subsequently,
EBUS-TBNA was performed to obtain the cytological specimens
for pathological examination. All operators retained strain
elastography videos and sampled LNs according to the above
standard steps. The final diagnosis of LNs was determined on
EBUS-TBNA, thoracoscopy, mediastinoscopy, transthoracic
thoracotomy or other pathological examinations, microbiological
examination or clinical follow-up for more than one year.

Development of Automatic Representative
Images Selection Model for Strain
Elastography Videos
The training set and validation set were randomly divided at a
quantity ratio of 3:1 to train the model with optimal hyper-
parameters. The same proportion of benign and malignant LNs
was maintained in the two datasets. We developed models with
various values of hyper-parameters on the training set and
assessed these models on the validation set to determine the
hyper-parameter according to the performance. Once the hyper-
parameter was determined, we used both the training set and
validation set to train the model for prediction and evaluation on
the test set. In this paper, the hyper-parameters included the
number of representation patterns and whether adopting the
update-and-predict strategy or not. The candidate numbers of
representation patterns included 32, 64, and 128. Blind to the
final diagnosis of LNs, two experts with experience of EBUS
images observation >500 LNs assessed the image quality of the
validation sets together as following: score 1 (scattered soft,
mixed green-yellow-red), score 2 (homogeneous soft,
Frontiers in Oncology | www.frontiersin.org 3
predominantly green), score 3 (intermediate, mixed blue-
green-yellow-red), score 4 (scattered hard, mixed blue-green),
score 5 (homogeneous hard, predominantly blue). Scores 1–3 are
classified as benign and 4–5 as malignant (4). Four quantitative
methods were also used to verify the diagnostic performance of
the validation sets. Assessments on the validation set showed that
we could yield the highest accuracy when adopting run-twice
strategy and using 64 representative patterns (Supplementary
Tables 1 and 2). When we trained the model with determined
hyper-parameters, we used it to make prediction on the test set.
Note that the test set is not used in the phase of training.

Figure 1 illustrated the process of representative strain
elastography images selection with the proposed machine learning
algorithm. Initially, the elastography video was converted into a
sequence of frames with quality evaluated. According to the
proportion of colored pixels and relative intensity of a frame
(Supplementary Material and Supplementary Figure 1), the
original frames were divided into qualified and unqualified, and
only qualified frames were kept for succeeding procedures.
Additionally, to avoid overwhelming qualified frames and reduce
complexity, the adjacent two frames of selected qualified frame were
dropped. Then, feature engineering was performed on the
remaining frames. We constructed the features of each frame
with the 512 bin color histogram to describe the color
distribution of elastography images (31). Further, the principal
component analysis (PCA) algorithm was applied to reduce the
feature dimension, and a 40-dimension feature space was obtained.
The number of dimensions depended on the training set, and 40-
dimension was capable to keep 99% component in this study.
Clustering plays an important role in video analysis (32–35).
Considering the selective principle of experts that the most
repeatable pattern across the video is selected as representative
frames, we employed the k-means clustering algorithm in this study.
In the phase of training, the k-means clustering was performed on
the training set to obtain representative patterns (cluster centers). In
the phase of prediction, the frame features from the test video were
allocated to patterns extracted from the training set. Given a test
video, the pattern owning most frames was regarded as the
representative pattern and three frames closest to the
representative pattern were selected as the representative images.
FIGURE 1 | The process of automatic selection of representative images. Frames were extracted from the video stream to construct a frame pool initially. Then,
inferior frames are dropped during the quality evaluation procedure, and the eligible frames are kept as candidates for representative images. Next, the PCA was
employed for dimension reduction. Ultimately, the clustering model select representative images from candidates. PCA, principal component analysis.
May 2021 | Volume 11 | Article 673775
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In real-world applications, however, it is hard to collect a
training set that has sufficient examples to cover all possible
situations and guarantee the generalization ability of the trained
model. Consequently, a limited training set usually leads to a
performance gap, when applied to the real data. To narrow this
gap, in the phase of prediction, we proposed an update-and-
predict strategy that ran the trained model twice on the test set.
The first run produced the initial predictions of test videos which
were used for updating the cluster centers in the model.
Subsequently, the updated model was used to obtain the final
predictions on the test set. Note that the K-means clustering is an
unsupervised learning algorithm that does not require manual
annotation or ground truth. Therefore, we leveraged K-means
clustering in this paper to update our model using only the
predictions of test videos rather than accessing their labels. The
label information was not leaked in the phase of prediction. As a
result, we can narrow the gap between the training set and test set
and do not cause the leakage of label (supervision) information
by using the update-and-predict strategy.

Evaluation of Representative Images
For the three images selected by the automatic image selection
model on the test set, the same two experts evaluated grading
score together. Expert group and trainee group (experience of
CP-EBUS image observation less than 30 LNs) were employed to
select representative images which were used for comparison
with that of machine learning. The three experts reviewed two
elastography videos of each LN and selected one representative
image for qualitative evaluation, respectively. Qualified images
shall cover the maximal cross-section of the target LN and have
good repeatability (4). Three trainees selected representative
Frontiers in Oncology | www.frontiersin.org 4
frames and evaluated qualitative score of corresponding
pictures in the same way. The quantitative measurement of the
three groups of images was operated by the elastography
quantitative system (Registration number: 2015SR191866)
developed by Matlab and the region of interest was outlined by
an expert (Figure 2). Results of four quantitative methods
including SAR, B/G, mean hue value and mean gray value
were output by the program. The first method SAR was the
ratio of blue pixels to pixels of the whole LN (5, 18–20). RGB is a
color space model which represents the red, green and blue
channel colors, and B/G was calculated in this study (21). Hue
histogram analysis was performed for selected images and the
third method mean hue value corresponds to the global elasticity
of the LN (22). The fourth method mean gray value has been
studied in the diagnosis of breast cancer and intrathoracic LNs
(4, 23). All above procedures carried by experts and trainees were
in the situation of blind to the clinical information and
pathological results of target LNs.

Statistical Analysis
For qualitative score, the Friedman test was used for the
differences among the three images selected by the automatic
image selection model and experts, and the Wilcoxon signed-
rank test was used for the pair comparison. For quantitative
variables, receiver operating characteristic (ROC) curve was used
to obtain the area under the curve (AUC) and the cut-off value
with the best diagnostic performance. The paired t-test was used
for quantitative mean values comparison between images of the
machine learning model and experts. The stability of the
quantitative results within the three groups was evaluated
using the coefficient of variation (CV), and the comparison of
FIGURE 2 | Delineation of ROI on strain elastography images and output of quantitative parameters. Representative images of the machine learning group, expert

group and trainee group were all input into a computer program developed by Matlab™. The schematic diagram showed an elastography image of a LN with
nonspecific lymphadenitis in 4R station, and ROI was outlined on the elastography image. Results of the four quantitative methods including SAR, RGB, mean hue
value and mean gray value were then output by the program. ROI, region of interest; LN, lymph node; SAR, stiff area ratio; B/G, elasticity ratio of blue/green; B/R,
elasticity ratio of blue/red; G/R, elasticity ratio of green/red.
May 2021 | Volume 11 | Article 673775
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the CV among the three groups was further analyzed by the
paired t-test. The p value <0.05 was considered statistically
significant for above statistical analyses. Sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV),
and accuracy for differentiating benign and malignant LNs were
calculated by the corresponding formulas. All statistical analyses
were performed by SPSS version 25.0 (IBM Corp., Armonk,
NY, USA).
RESULTS

Patients and LNs
A total of 415 LNs from 351 patients (247 men, 104 women; age:
60.45 ± 11.31 years) were analyzed in the training and validation
sets, and 91 LNs from 73 patients (52 men, 21 women;
age:58.82 ± 10.95 years) were used as the test set (Table 1).
311 LNs were included in the training set and 104 LNs in the
validation set. Malignant LNs accounted for 61.69% in the
training and validation sets and 58.24% in the test set.
Figure 3 displayed the representative images selected by
machine learning, expert and trainee groups.

Stability and Diagnostic Performance
Analysis by the Qualitative Grading Score
To evaluate the stability of machine learning selected images, we
analyzed the differences between the three pictures of machine
learning, expert and trainee groups, respectively. Results
demonstrated that there was a statistical difference in the
expert group, while the images of machine learning and trainee
groups were relatively stable (Table 2). Besides, diagnostic
performance in Table 3 showed that the diagnostic accuracies
of machine learning group were 82.42, 79.12 and 75.82%
respectively, slightly lower than experts (p = 0.121), but
significantly higher than trainee group (p <0.001).

Stability Analysis by Quantitative Methods
In order to assess machine learning selected images more
objectively, paired t-test was conducted on quantitative results
of machine learning and expert groups. No statistical difference
between the two groups was found which demonstrated that
images selected by machine learning can reach the expert level
(Table 4). In terms of the stability analysis of the images within
and between the three groups, Table 5 showed that CV values of
machine learning group were lower than expert and trainee
groups for each indicator, and among which the trainee group
had the highest CV values. Besides, for SAR and B/G, there were
statistical differences between machine learning and the other
two groups, indicating that machine learning selected images in
the test set were more stable than those selected by expert and
trainee groups (Table 5).

Diagnostic Performance Analysis by
Quantitative Methods
The ROC curves were performed on quantitative results of the
three groups and cut-off values with the best diagnostic
Frontiers in Oncology | www.frontiersin.org 5
performances were drawn (Figure 4). Table 6 reflected that
the accuracies of four quantitative methods including SAR, B/G,
mean hue value and mean gray value in the machine learning
group were 83.52%, 78.01%, 80.22% and 80.22% respectively.
Correspondingly the expert groups were 80.22%, 81.32%, 82.42%
and 82.42% respectively. By contrast, the best indicator in the
trainee group was B/G, with the highest accuracy of only 73.63%.
DISCUSSION

Lung cancer is the leading cause of cancer associated morbidity
and mortality around the world (36). Pulmonary diseases can be
TABLE 1 | Characteristic of LNs in the training, validation and test sets.

Characteristic of LNs Training and validation
sets No. (%)

Test set
No. (%)

EBUS size
Long axis, mean ± SD, mm 21.55 ± 6.71 22.48 ±

7.18
Short axis, mean ± SD, mm 17.90 ± 9.56 17.23 ±

6.45
CT size※

Long axis, mean ± SD, mm 25.50 ± 9.48 24.35 ±
8.49

Short axis, mean ± SD, mm 16.70 ± 6.73 16.45 ±
7.02

Station
2L 1 (0.24) 0 (0.00)
2R 8 (1.93) 1 (1.10)
3P 2 (0.48) 0 (0.00)
4L 19 (4.58) 7 (7.69)
4R 135 (32.53) 30 (32.97)
7 160 (38.55) 26 (28.57)
10L 2 (0.48) 1 (1.10)
10R 3 (0.72) 1 (1.10)
11L 32 (7.71) 10 (10.99)
11Rs 32 (7.71) 5 (5.49)
11Ri 19 (4.58) 10 (10.99)
12L 1 (0.24) 0 (0.00)
12R 1 (0.24) 0 (0.00)

Diagnosis
Malignant 256 (61.69) 53 (58.24)
Adenocarcinoma 110 (26.51) 25 (27.47)
Squamous carcinoma 39 (9.40) 5 (5.49)
NSCLC-NOS 13 (3.13) 4 (4.40)
Small cell lung cancer 60 (14.46) 15 (16.48)
Large cell neuroendocrine
carcinoma

1 (0.24) 0 (0.00)

NET-NOS 11 (2.65) 2 (2.20)
Unknown type of lung cancer 13 (3.13) 1 (1.10)
Carcinosarcoma 1 (0.24) 0 (0.00)
Lymphoma 3 (0.72) 0 (0.00)
Metastatic tumors (non-lung
primary malignancy)

5 (1.20) 1 (1.10)

Benign 159 (38.31) 38 (41.76)
Nonspecific lymphadenitis 97 (23.37) 16 (17.58)
Sarcoidosis 53 (12.77) 15 (16.48)
Tuberculosis 9 (2.17) 7 (7.69)
May 2021 | Volume 11 | A
※The size of LNs on CT images was measured on 393 LNs in the training and validation
sets and 88 LNs in the test set. A total of 25 LNs were missing on CT in both groups.
LNs, lymph nodes; NSCLC-NOS, non-small cell lung cancer not otherwise specified;
NET-NOS, neuroendocrine tumor not otherwise specified.
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diagnosed by draining LNs, therefore the diagnosis of
intrathoracic LNs is related to subsequent treatment strategies.
EBUS strain elastography imaging is a useful noninvasive tool in
Frontiers in Oncology | www.frontiersin.org 6
differentiating benign from malignant LNs. The machine
learning algorithm was used to automatically select
representative images from the EBUS strain elastography
videos in this study and the image quality was equivalent to
the expert level.

Traditional qualitative methods are convenient for clinical
application, but subjectivity and the difference in experience
between different doctors can affect the accurate diagnosis.
Images used for quantitative analysis are still manually selected
which cannot avoid subjectivity. The CV values in Table 5 reflect
the instability of manual selection, and the images selected by
doctors with different experience had various quality. For
qualitative results, there was a statistical difference between the
images selected by experts (p = 0.036) but not by trainees (p =
FIGURE 3 | Representative images selected by machine learning, expert and trainee groups. (A) 1–3 are representative images selected by the machine learning
model; (B) 1–3 are representative images selected by the three experts; (C) 1–3 are representative images selected by the three trainees.
TABLE 2 | Differences between images within each group by qualitative
grading score.

p value

Machine learning group Expert group Trainee group

Image 123 0.210 0.036 0.205
Image 12 0.134 0.058 0.862
Image 13 0.088 0.029 0.105
Image 23 0.637 0.366 0.059
May 2021 | Volume 11 | Article 673775
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0.205) (Table 2). However, a bigger difference presented in
diagnostic accuracies among trainees than experts. This was
because the diagnosis performance was calculated based on the
dichotomy, that is, 1–3 were classified as benign and 4–5 as
malignant, yet the differences of qualitative score were counted
according to the five categories. Besides, regarding the diagnostic
performance among the three groups, the qualitative diagnostic
performance of expert group was the highest in the whole study.
However, the quantitative results were similar to that of machine
learning group, possibly due to the subjectivity of qualitative
assessment among different experts. Compared with the
qualitative results, the quantitative methods can evaluate the
image quality selected by machine learning more objectively.
Elastography can only reflect the relative hardness of target
lesion, and fibrosis within sarcoidosis may result in stiffer
tissue and necrosis within malignant LNs may lead to softer
lesions (37, 38). Thus, the highest diagnostic accuracy
of automatic image selection model by qualitative and
quantitative methods can only reach 83.52%, which was not
only due to inaccurate image selection but also the property of
the lesion itself. In addition to the four quantitative methods used
Frontiers in Oncology | www.frontiersin.org 7
in this study, strain ratio and strain histogram are also
quantitative methods and study found that strain histogram
showed better predictive value than strain ratio with a
diagnostic rate of 82% in malignant LNs prediction (39). It can
be seen that different quantitative methods can lead to various
diagnostic results, and there is no unified quantitative method at
present. In this study, different results were produced by the
four methods in the three groups, but the quality of the images
had more effect than the quantitative method on the final
results. Notably, the machine learning algorithm in this
study was valid for representative images selection of EBUS
strain elastography videos, but the implementation of this
algorithm needed integration by the manufacturer to become
clinically applicable.

This study still had some limitations. Since there was no
restriction on the type of disease included, the machine learning
model was only suitable for the diagnosis of intrathoracic LNs
enlargement, and further studies were need to determine
whether or not this technique is valid to the stage of lung
cancer. Besides, although high-quality images were selected
from elastography videos, no diagnosis was made by the model
for these images, and EBUS modes of grayscale and blood flow
Doppler were not applied. The automatic EBUS multimodal
image selection and diagnosis may be more convenient for
clinical application. Moreover, this was a single-center
retrospective study with limited number of LNs and some
diseases accounted for limited proportions. Prospective studies
and more LNs to train, validate and test the model may acquire
more stable models and more convincing results. Thus, it was
worthwhile to carry out multi-center studies to improve the
outcome of the model (40).
TABLE 3 | Diagnostic efficiency of the three groups by qualitative grading score.

Group Sen Spe PPV NPV Acc FPR FNR

Machine learning 1 84.91% 78.95% 84.91% 78.95% 82.42% 21.05% 15.09%
Machine learning 2 83.02% 73.68% 81.48% 75.68% 79.12% 26.32% 16.98%
Machine learning 3 79.25% 71.05% 79.25% 71.05% 75.82% 28.95% 20.75%
Expert 1 92.45% 73.68% 83.05% 87.50% 84.62% 26.32% 7.55%
Expert 2 90.57% 73.68% 82.76% 84.85% 83.52% 26.32% 9.43%
Expert 3 88.68% 78.95% 85.45% 83.33% 84.62% 21.05% 11.32%
Trainee 1 62.26% 60.53% 68.75% 53.49% 61.54% 39.47% 37.74%
Trainee 2 64.15% 71.05% 75.56% 58.70% 67.03% 28.95% 35.85%
Trainee 3 69.81% 60.53% 71.15% 58.97% 65.93% 39.47% 30.19%
May 2021
 | Volume 11 | Article
Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value; Acc, accuracy; FPR, false positive rate; FNR, false negative rate.
TABLE 4 | Comparison of quantitative mean values between machine learning
and expert groups.

Variable p value

SAR 0.801
B/G 0.693
Mean hue value 0.862
Mean gray value 0.514
SAR, stiff area ratio; B/G, elasticity ratio of blue/green.
TABLE 5 | Differences in CV values of quantitative methods among the three groups.

Indicator Machine learning
(mean ± SD)

Experts
(mean ± SD)

Trainees
(mean ± SD)

Machine learning
vs. Experts
(p value)

Machine learning
vs. Trainees
(p value)

Experts vs. Trainees
(p value)

SAR 0.127 ± 0.109 0.167 ± 0.124 0.200 ± 0.156 2.18E−03 3.22E−06 5.68E−02
B/G 0.079 ± 0.061 0.105 ± 0.067 0.127 ± 0.070 6.69E−03 2.72E−06 2.86E−02
Mean hue value 0.036 ± 0.029 0.042 ± 0.024 0.053 ± 0.036 1.44E−01 7.57E−05 9.50E−03
Mean gray value 0.013 ± 0.044 0.020 ± 0.062 0.022 ± 0.062 3.96E−01 2.56E−01 8.07E−01
CV, coefficient of variation; SD, standard deviation; SAR, stiff area ratio; B/G, elasticity ratio of blue/green.
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In conclusion, through the application of machine learning
algorithm to EBUS strain elastography, we realized the automatic
selection of high-quality and stable images from strain
Frontiers in Oncology | www.frontiersin.org 8
elastography videos. The automatic image selection model
needs further prospective clinical validation and has potential
value in guiding the diagnosis of intrathoracic LNs.
A B

DC

FIGURE 4 | ROC curves of four quantitative methods for machine learning, expert and trainee groups. (A–D) illustrate four quantitative indicators including SAR, B/
G, mean hue value and mean gray value, respectively. ROC, receiver operating characteristic; SAR, stiff area ratio; B/G, elasticity ratio of blue/green.
TABLE 6 | Diagnostic efficiency of the three groups by quantitative methods.

Group AUC Cut-off Sen Spe PPV NPV Acc

Machine learning
SAR 0.819 0.402 84.91% 81.58% 86.54% 79.49% 83.52%
B/G 0.798 1.176 75.47% 81.58% 85.11% 70.45% 78.02%
Mean hue value 0.801 133.762 84.91% 73.68% 81.82% 77.78% 80.22%
Mean gray value 0.805 194.632 81.13% 78.95% 84.31% 75.00% 80.22%
Expert
SAR 0.822 0.403 84.91% 73.68% 81.82% 77.78% 80.22%
B/G 0.812 1.116 86.79% 73.68% 82.14% 80.00% 81.32%
Mean hue value 0.808 134.870 84.91% 78.95% 84.91% 78.95% 82.42%
Mean gray value 0.809 194.329 84.91% 78.95% 84.91% 78.95% 82.42%
Trainee
SAR 0.746 0.452 71.70% 71.05% 77.55% 64.29% 71.43%
B/G 0.750 1.043 81.13% 63.16% 75.44% 70.59% 73.63%
Mean hue value 0.758 139.811 64.15% 84.21% 85.00% 62.75% 72.53%
Mean gray value 0.744 195.976 64.15% 78.95% 80.95% 61.22% 70.33%
May 2021
 | Volume 11 | Article
SAR, stiff area ratio; B/G, elasticity ratio of blue/green; AUC, area under curve; Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value;
Acc, accuracy.
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