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Abstract

Motivation: The interaction between proteins and nucleic acids plays a crucial role in gene regulation and cell func-
tion. Determining the binding preferences of nucleic acid-binding proteins (NBPs), namely RNA-binding proteins
(RBPs) and transcription factors (TFs), is the key to decipher the protein–nucleic acids interaction code. Today, avail-
able NBP binding data from in vivo or in vitro experiments are still limited, which leaves a large portion of NBPs
uncovered. Unfortunately, existing computational methods that model the NBP binding preferences are mostly pro-
tein specific: they need the experimental data for a specific protein in interest, and thus only focus on experimentally
characterized NBPs. The binding preferences of experimentally unexplored NBPs remain largely unknown.

Results: Here, we introduce ProbeRating, a nucleic acid recommender system that utilizes techniques from deep
learning and word embeddings of natural language processing. ProbeRating is developed to predict binding profiles
for unexplored or poorly studied NBPs by exploiting their homologs NBPs which currently have available binding
data. Requiring only sequence information as input, ProbeRating adapts FastText from Facebook AI Research to ex-
tract biological features. It then builds a neural network-based recommender system. We evaluate the performance
of ProbeRating on two different tasks: one for RBP and one for TF. As a result, ProbeRating outperforms previous
methods on both tasks. The results show that ProbeRating can be a useful tool to study the binding mechanism for
the many NBPs that lack direct experimental evidence.

and implementation

Availability and implementation: The source code is freely available at <https://github.com/syang11/ProbeRating>.

Contact: syang11@cs.ubc.ca or rng@cs.ubc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Knowledge about the binding profiles of nucleic acid-binding pro-
teins (NBPs) is a vital prerequisite to detecting potential NBP bind-
ing targets (i.e. RNAs and DNAs) in the cell, and understanding
gene regulation and evolution (Dong et al., 2018; Tak Leung et al.,
2019; Yang et al., 2011). Currently, the binding profiles are mainly
determined computationally (Lambert et al., 2018; Pan et al., 2019)
from high-throughput experimental data such as protein-binding
microarray (PBM) (Berger et al., 2006; Weirauch et al., 2014) or
chromatin immunoprecipitation (ChIP)-seq (Barski and Zhao, 2009;
Park, 2009) for transcription factors (TFs), and RNAcompete assay
(Ray et al., 2009, 2013) or crosslinking immunoprecipitation (CLIP)
(Konig et al., 2012; Wang et al., 2015) for RNA-binding proteins
(RBPs). Despite the continuous advances in these large-scale experi-
mental technologies, binding data generated from them still only
cover a limited portion of the known NBPs across different species

due to the high cost. This is especially the case for the RBPs, which
are less studied than the TFs. For example, the most extensive com-
pendium (Ray et al., 2013) for RBPs (207 unique proteins) by far
was generated by RNAcompete assays. The single largest RBP fam-
ily in the compendium, the RNA recognition motif (RRM) family,
has 171 entries. But, there are more than 5000 known and predicted
RRM RBPs according to the CISBP-RNA database (Ray et al.,
2013), mostly unexplored. Therefore, predicting the binding profiles
for unexplored NBPs by leveraging the limited experimental data is
needed. Especially, since most of the unexplored NBPs only have
their sequences information available, predicting the binding profiles
for NBPs directly from their sequences is critically desired.

There have been various researches seeking to determine an
NBP’s binding preference throughout the years. The models focusing
on sequence specificity have evolved from consensus motif or pos-
ition weight matrix (PWM) in the early days (Bailey et al., 2009;
Stormo, 2000), to classic machine learning models like SVM with k-
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mer features and so on (Ghandi et al., 2014; Orenstein et al., 2016;
Pelossof et al., 2015), to the latest deep neural network realm
(Alipanahi et al., 2015; Ghanbari and Ohler, 2019; Pan and Shen,
2018b; Zeng et al., 2016). Since RNA has secondary structures that
DNA does not have, many approaches dealing with RBP-RNA inter-
actions also incorporate RNA structure information to binding spe-
cificity (Gandhi et al., 2018; Hiller et al., 2006; Kazan et al., 2010).
Despite the numerous efforts that have been devoted in this field,
previous researches on binding preference modeling have several
limitations.

First and foremost, the majority of the works are protein specific,
i.e. they construct a binding preference model of a single protein,
without considering the relationship among different proteins. Since
the model is built on RNA or DNA targets of each protein independ-
ently, patterns learned from protein A typically cannot be efficiently
transferred to protein B. One key reason for the previous methods
being protein specific is that the available experimental data are
highly limited and imbalanced: very few NBPs compared to the
number of nucleic acids. For example, the RNAcompete assay typic-
ally contains >200 000 RNA probes; yet only a few hundred RBPs
have been gauged so far (Ray et al., 2013). Other experimental data
types are in similar situations. Therefore, for an experimentally un-
explored NBP, it is still difficult to know its binding preference at
this moment.

In addition, most existing methods predict the NBP binding pref-
erence as a highly reduced summarization of the actual binding
data, like a consensus or PWM motif (Kazan et al., 2010; Stormo,
2000) conventionally, or a convolutional neural network filter
(Alipanahi et al., 2015; Pan and Shen, 2018b) recently. These so
called ‘binding specificity’ prediction approaches are very useful and
have been intensively studied. However, using these reduced sum-
marizations, one may not capture all the details of the binding data
so that if the binding preference of protein A is transferred to protein
B, information that is important to protein B but not A may be lost.

Lastly, a substantial body of research for nucleic acid–protein
interactions have been focusing on structural data like RNA–pro-
tein/DNA–protein complex structures from the Protein Data Bank
(PDB) (Berman, 2000); while some more recent studies focus on
CLIP or ChIP-seq data which are high-throughput in vivo data. The
former group includes a wide range of studies from identifying nu-
cleic acids-binding amino acid residues in protein sequences (Jung
et al., 2018; Peng and Kurgan, 2015; Walia et al., 2017; Yan et al.,
2016; Zhang et al., 2019) to predicting DNA/RNA–protein inter-
action pairs (Bellucci et al., 2011; Suresh et al., 2015; Yi et al.,
2018), and so on. These are related tasks to predicting an NBP’s
binding preference. However, for a protein in interest, structural
complexes in PDB often only cover limited individual interactions
between fragments of nucleic acids and fragments of that protein,
which are not diverse enough to determine the nucleic acids binding
preference of the protein. In contrast, ChIP-seq and CLIP experi-
ments generate high-throughput binding data, which contains a
much larger number of diverse nucleic acid targets for a given pro-
tein. Computational methods focusing on ChIP or CLIP data essen-
tially formulate nucleic acid–protein binding as a classification task
and determine a protein’s binding preference model through binary
labeled data (positive: bound, negative: unbound) (Li et al., 2017;
Maticzka et al., 2014; Pan and Shen, 2018b). However, a subtle
problem is that there are no defined unbound cases, i.e. the ChIP or
CLIP experiments only report positive nucleic acids that are puta-
tively bound by the given protein. Strategies like shuffling nucleoti-
des in the positive sequences and so on are often used as a rough
workaround to generate negative samples.

A few existing studies try to address the above limitations
(Pelossof et al., 2015; Ray et al., 2013; Yang et al., 2018). One study
(Ray et al., 2013) determines binding preference motifs as PWMs
from numerically labeled RNAcompete data, and it proposes to
infer the binding motif of an unexplored RBP to be the same as the
PWM of that RBP’s well-studied nearest neighbor. It uses binding
domain sequence similarity to define the nearest neighbor, and it
predicts PWMs for thousands of unexplored RBPs in the CISBP-
RNA database. Following this line, a later study (Yang et al., 2018)

utilizes the co-evolution assumption between RNA and protein, and
it combines K nearest neighbors’ PWMs to make the prediction. We
refer to it as Co-Evo method. It reports better performance than the
first study (Ray et al., 2013). Although the sequence similarity used
by both studies is a simple metric to compare two proteins, and the
PWMs are reduced summarizations of the real binding motifs, the
two studies do provide feasible solutions for the unexplored NBPs
problem. By far, to our knowledge, the best solution in terms of pre-
diction quality is supplied by AffinityRegression (Pelossof et al.,
2015). AffinityRegression utilizes a recommender system (Ricci
et al., 2011) formulation, where NBPs are like users, and RNAs or
DNAs are like products to be recommended. Given a family of TF
or RBP domains and their binding profile data (PBM or
RNAcompete assay), AffinityRegression learns protein family-level
binding patterns from amino acid and nucleotide k-mer features,
through bilinear regression and matrix factorization. For an unex-
plored NBP in the same family, AffinityRegression directly recom-
mends its full binding profile, i.e. predicted binding affinity values of
the NBP against each RNA or DNA probe in the assay, instead of a
reduced summarization of the binding profile. However, although
AffinityRegression has made significant progress, it assumes linear-
ity in its regression model, which is unlikely held in practice. Its use
of k-mer frequency features to represent the NBPs and nucleic acids
is also disputable since the context information around potential
binding sites would be lost and the feature dimension goes too
quickly as k grows. For example, 3-mer amino acid features would
be 8000 dimensions; while the number of proteins in the largest
PBM or RNAcompete dataset is less than 300.

To close the gaps, here, we present a new method called
ProbeRating to infer binding profiles for unexplored NBPs, using
only sequence information. ProbeRating extends AffinityRegression
by incorporating non-linearity to the model and improving features
with more sophisticated representation techniques. ProbeRating
does its job via a two-stage framework (Fig. 1). It first adapts the
word embedding method FastText (Bojanowski et al., 2017) to ex-
tract distributed representations from the NBP sequences and the
nucleic acid probes, respectively. It then takes the new representa-
tions as input features to train a supervised recommender system to
recommend probes to unexplored NBPs. We implement the func-
tionality of representation learning in a package called FastBioseq.
For the recommender, we develop a novel neural network-based ap-
proach to incorporate the non-linearity. We show that ProbeRating
significantly outperforms AffinityRegression for both RBP binding
prediction and TF binding prediction tasks. Same as
AffinityRegression, ProbeRating is also capable of recommending a
full binding profile directly for a test NBP, instead of a reduced
summarization.

2 Materials and methods

2.1 Input features
Instead of using k-mer features as AffinityRegression does, we adapt
the FastText (Bojanowski et al., 2017) method which is an extension
of the widely used Word2Vec (Mikolov et al., 2013) method in the
field of natural language processing, and we extract features from
protein and nucleic acid sequences. Word2Vec encodes words to nu-
merical vectors, through training on a corpus of text documents for
a classification task of predicting a center word based on its nearby
words. It assumes the meaning of a word is characterized by its con-
text, and it thus could capture semantics in the vectors. FastText
extends Word2Vec by decomposing each word into subword n-
grams and treats each n-gram (instead of each word) as a unit during
the learning of representations. By doing this, FastText can deal
with word that is not seen in the training corpus (out-of-vocabulary
word) or get better embedding vectors for rare words, which cannot
be done by Word2Vec. These properties make FastText very attract-
ive for biological sequence embedding since: (i) mutations occur
through the evolution, and (ii) the predefined biological ‘word’ (will
explain later) may not precisely match the actual binding sites.
Although the idea of using Word2Vec to encode proteins has been
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explored before and shown effective (Asgari and Mofrad, 2015; Pan
and Shen, 2018a), to our knowledge, we are the first one that uses
the more advanced FastText in binding preference prediction.

Here, we briefly introduce how our FastBioseq package utilizes
FastText to generate protein and nucleic acid feature vectors. The
details can be found in Supplementary Note. If we treat each k-mer
of amino acids or nucleotides as a word, then a protein or DNA/
RNA sequence can be decomposed as k sentences of non-
overlapping k-mers, as shown in Figure 1a (taking RBP sequence pi

and RNA sequence rj as an example). Different sentences corres-
pond to different reading frames on the sequence, denoted with dif-
ferent colors in Figure 1a. For each sentence, FastBioseq uses the
continuous bag-of-words (CBOW) algorithm (Bojanowski et al.,
2017) of FastText to train on every k-mer’s contextual information,
which is considered important for NBP binding sites recognition.
After training, FastBioseq can embed the k-mers onto a vector space
with user-defined dimensions. The resultant k-mer vectors are then
combined to construct the sentence vectors which in turn produce
the sequence vectors. In this way, FastBioseq solves both the high
dimensionality and loss of context problems that the conventional
k-mer frequency feature suffers from.

In natural language word embedding, a large corpus of
sentences is typically required to provide enough coverage of
different contexts for different words. This is also true for
biological sequence embedding. So, we compiled several large cor-
pora to train our FastBioseq embedding models, which will be
described in Section 2.3. Moreover, we also implemented a
Word2Vec version of sequence embedding as well as a Doc2Vec
(Le and Mikolov, 2014) version which is another popular extension
of Word2Vec to explicitly embed the entire document (i.e. entire

biological sequence) to a vector instead of combining word vectors.

These implementations can be easily used from our FastBioseq
package.

2.2 The recommender model
Once we get the protein and nucleic acid features extracted from
FastBioseq, we input them to our ProbeRating model, as Figure 1b

shown. To explain the ProbeRating model, here we take RBPs as an
example again. The model works the same for the TFs. Like several

previous studies (Corrado et al., 2016; Pelossof et al., 2015),
ProbeRating uses a recommender system setting to model the inter-
action of RBP features and RNA features. In this setting, given a list

of users with their ratings over a list of products, it is known as the
‘cold start’ problem when the recommender is used to predict a new

user’s ratings to the products. Here, we treat RBPs as users, RNA
probes as products and their binding intensity scores as ratings.

2.2.1 The naı̈ve model

A natural approach to address the cold start problem is to incorpor-
ate content information from the interacting objects themselves (i.e.

content features of users-products, or RBPs–RNAs), based on ma-
trix trifactorization. Formally, let P 2 RM�S be the RBP feature ma-

trix containing M RBPs each has S features, D 2 RN�Q be the RNA
probe feature matrix containing N probes with Q features, and Y 2
RN�M be the binding intensity matrix corresponding to all the RBP–

RNA pairs. The trifactorization approximates Y by DWPT , where
W 2 RQ�S is the weight matrix that explains the interaction be-

tween the RBP features and the RNA features. In our naı̈ve model,

Fig. 1. Schematic diagram of our workflow. (a) Protein and RNA sequences are embedded as numerical feature vectors by FastBioseq. (b) The protein and RNA features are

fed into ProbeRating’s recommender system to infer binding intensity profiles for unexplored proteins. Performance is evaluated to compare with the nearest-neighbor methods

and AffinityRegression
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we mimic this approach but formulate a feedforward neural net-
work to add non-linearity. Namely,

Ŷ ¼ HDWHHT
P (1)

where HD and HP are outputs from two subneural networks, one
for RNA features and one for protein features. More details of this
naı̈ve model can be found in Supplementary Note.

However, for the binding profile prediction task, we are facing,
a practical issue for this naı̈ve model is that there are too few NBPs
in the dataset to be learned from. As mentioned in earlier sections,
the most extensive RBP compendium (Ray et al., 2013) available is
generated by RNAcompete assays. In the compendium, the number
of RBPs with binding profile data available is only <250 and is 103

times smaller than the number of RNAs probes in the RNAcompete
assay. TFs are in a similar situation. If we used conventional se-
quence features like k-mer frequencies, the model could easily over-
fit since the high dimensionality of the features. Even if we alleviated
overfitting with regularizations, or with low-dimensional features
extracted by FastBioseq, we could hardly learn a sophisticated para-
metric model given the small number of RBP instances. Our results
showed that this naı̈ve model did not perform well (Supplementary
Note).

2.2.2 The final model

To address the issue in the naı̈ve model, we adapt and extend a strat-
egy used by AffinityRegression to convert the ‘binding intensity pre-
diction’ problem to a ‘similarity prediction’ problem, solve it and
then convert back. AffinityRegression solves the ‘similarity predic-
tion’ problem with a regular bilinear regression model, and it does
the conversion through a series of linear transformation and matrix
factorization operations. We solve with the more expressive neural
network model and use a more straightforward conversion ap-
proach, which can be interpreted as a non-parametric tweak to our
naı̈ve model.

To convert the RBP ‘binding intensity prediction’ problem to an
RBP ‘similarity prediction’ problem, the original intensity matrix
Y 2 RN�M is transformed to YTY 2 RM�M, as shown in Figure 2.
Each column of Y is a vector of normalized binding intensity scores
of an RBP against all N RNA probes. So YTY becomes the cosine
similarity matrix for all pairs of RBPs. We now predict the similarity
value YT

:;iY:;j of RBPs pi and pj by Ŝi;j from our neural network
model:

Ŝi;j ¼ wT
MM hP; hEð Þ þ bM 2 R (2)

where wM 2 RKL and bM 2 R are parameters. M hP; hEð Þ is a func-
tion to merge hP and hE, and it corresponds to a merge layer with no
trainable parameters in the neural network. hP and hE are outputs
from two shallow subneural networks:

hP ¼ a WT
P Pj;: þ bP

� �
2 RL (3)

hE ¼ a WT
E Ei;: þ bE

� �
2 RK (4)

where a is a sigmoid function. Pj;: is a row vector in the RBP feature
matrix P. Ei;: is a row vector from the matrix E ¼ YTD 2 RM�Q. E
is used to match YTY, and can be considered as a compression of D.
WP 2 RS�L and bP 2 RL are parameters to project protein features
to a latent feature space with L dimensions. Similarly, WE 2 RQ�K

and bE 2 RK are parameters for RNA features. All the above param-
eters, denoted by H ¼ fwM;bM;WP; bP;WE;bEg, are solved by the
Adam optimizer to minimize the regularized sum of squared loss:

argminH

X
i

X
j
jjŜi;j � YT

:;iY:;jjj22 þ krðHÞ (5)

where r Hð Þ is a regularization function (we use L2 norm), with coef-
ficient k. After we solve this ‘similarity prediction’ problem, we need
to convert it back to the original problem. For a given testing RBP x,
we feed its FastBioseq feature vector px to the neural network and

output its predicted similarity values ŝx 2 RM against each training
RBPs. To reconstruct the binding intensity values ŷx from ŝx , we im-
plement two simple yet effective options:

ŷx ¼ Yŝx (6)

ŷx ¼ YTð Þ�1
ŝx (7)

The first reconstruction treats the similarity values in ŝx as
weights and does a weighted sum to obtain ŷx . The second recon-
struction multiplies a Moore–Penrose pseudoinverse of YT to ŝx . It
is inspired by AffinityRegression’s approach, and it comes directly
from the above fact that Ŝi;j � YT

:;iY:;j. We found the first option gen-
erally performed better in our preliminary experiments and used it
in this study. The reconstruction is non-parametric since the predic-
tion needs the entire binding intensity matrix of the training data,
i.e. Ytrain. Intuitively, these approaches work because we first solve a
much easier similarity prediction problem requiring much fewer
data from the RBP–RBP pairs, and then leverage the original train-
ing data to reconstruct the prediction for the harder RBP–RNA
binding intensity problem.

Furthermore, we explore different structures for the neural net-
work. As shown in Figure 2, there could be deeper network architec-
tures in the two subnets and after merging them by stacking more
layers. Additionally, for the merge layer M hP; hEð Þ, we develop four
different types of merging (please refer to Supplementary Note for
details). For the results reported below, we use the shallow architec-
ture and the merge layer with the fewest parameters.

2.3 Datasets
The primary datasets of our study include an RNAcompete dataset
for the RBPs and a PBM dataset for the TFs. Both datasets are com-
monly used benchmark datasets from previous studies (Alipanahi
et al., 2015; Gandhi et al., 2018; Koo et al., 2018; Orenstein et al.,
2016; Yang et al., 2018), including AffinityRegression. The first
dataset, called RRM162 (as shown in Table 1), is derived from the
largest compendium of RBP binding assay (Ray et al., 2013) and the
AffinityRegression paper. It contains 162 binding domains from the
RNA Recognition Motif (RRM) family. We choose the RRM family
since it is the largest family in the compendium and is also one of the
most abundant RBP families in nature (Maris et al., 2005). Each
RRM domains in RRM162 are measured against 241 357 RNA
probes, which results in 162*241 357 binding intensity scores in
total. Similarly, the second dataset, called Homeo215 (as shown in
Table 1), is derived from the AffinityRegression paper, and it con-
tains 215 Homeodomain sequences and their binding intensity Z-
scores (Berger et al., 2008) against >30 000 DNA 8-mers. The rea-
son we use 8-mer Z-scores instead of probe intensities in Homeo215
is described in Supplementary Note and later in Section 3.

Fig. 2. The architecture of the neural network model. Note that, the left multiplica-

tion with YT on the input RNA feature matrix and the output binding intensity ma-

trix transforms the intensity prediction problem into a similarity prediction

problem. With the similarity output from the model, we convert it back to the final

intensity value by doing a non-parametric reconstruction
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In addition, to pretrain the FastBioseq protein embedding models
as mentioned in Section 2.1, we compile three large corpora of pro-
tein sequences. The first dataset is Uniprot400k (Table 1), which
contains >400 000 protein sequences from diverse families and spe-
cies, downloaded from the Uniprot database (https://www.uniprot.
org/). The second dataset, RRM3k (Table 1), contains >3000 RRM
domain sequences extracted from the CISBP-RNA database (http://
cisbp-rna.ccbr.utoronto.ca/). The third dataset, Homeo8k (Table 1),
contains >8000 Homeodomain sequences obtained from the CISBP
database (http://cisbp.ccbr.utoronto.ca/). Note that here, the protein
embedding models are pretrained on these three datasets and are
used later to extract protein features on a different dataset
(RRM162 or Homeo215). This simple pretraining procedure
involves the idea of transfer learning (Pan and Yang, 2010) that
knowledge from one task is transferred to another task that usually
has much fewer data.

The two primary datasets are used to train and test ProbeRating
and the other methods to be compared with. We perform a series of
preprocessing procedures to remove redundancy, normalize the in-
tensity scores, etc., for each of the datasets (details in Supplementary
Note). The three pretraining datasets are used to pretrain the
FastBioseq embedding model so that the model can be used to con-
vert protein sequences in the primary datasets to numerical vectors.
We also remove the redundant proteins in each of the pretraining
datasets, respectively, and we further remove the proteins overlap-
ping with those in the primary datasets so that the pretraining data-
sets have no intersections with the two primary datasets. During
evaluation, for each of ProbeRating and the other methods, we per-
form the training and testing as following: we first randomly divide
the proteins in the dataset of RRM162 or Homeo215 into 10 folds
and leave one fold out as an independent test set. For the remaining
ninefolds, we do cross validation to use 90% of them as the training
set to tune the model parameters and the rest 10% as the validation
set to tune the model hyperparameters. By doing this, the test sets
are completely independent from the training and validation pro-
cess. The same procedure is applied to test on all proteins. We repeat
the process 20 times with different random divisions of the dataset
and report the average test performance. Same as the
AffinitRegression paper, Spearman correlation coefficient (SCC) is
used to assess the regression performance since the binding intensity
scores are quantile normalized. The details of the redundancy re-
moval, the experimental setup, the implementation, the hardware
specification and the runtime summarization can be found in
Supplementary Note.

3 Results

In this section, the capability of ProbeRating will be demonstrated
by first showing that it is better than three baseline methods, and
then showing it also outperforms the more sophisticated
AffinityRegression.

3.1 ProbeRating outperformed nearest-neighbor

baselines
Since we use a non-parametric reconstruction approach to leverage
the training data to predict for unexplored NBPs, a natural sanity
check is to compare ProbeRating with the simple but often effective
nearest-neighbor approach. Given a testing NBP, if we find its

nearest-neighbor by some similarity/distance metric, then the neigh-
bor’s binding profile will be the prediction for this NBPs.

The most common similarity metric is the sequence similarity
percent identity (PID), which can be obtained from the BLOSUM
amino acid similarity matrix using sequence alignment algorithms.
The BLOSUM nearest-neighbor approach has been used by previous
studies (Ray et al., 2013; Yang et al., 2018) to infer the PWM bind-
ing motifs for unexplored NBPs and has also been compared with
AffinityRegression. We evaluated the performance of ProbeRating
against the BLOSUM nearest-neighbor baseline on both the
RRM162 and the Homeo215 datasets. As shown in Table 2,
ProbeRating achieved an average SCC of 0.864 across all RBPs on
the RRM162 dataset and an average SCC 0.772 on the Homeo215
dataset. The SCCs were significantly better than BLOSUM base-
line’s 0.771 and 0.676 with both P-values<10�10 based on the two-
tailed Wilcoxon signed-rank test. Moreover, as we could see from
Figure 3A and B, the blue dots are mostly above the x¼ y line in
both plots, which indicates ProbeRating almost always outper-
formed BLOSUM baseline on the two datasets.

In addition to the BLOSUM nearest neighbor, we further
explored the idea of the nearest neighbor by incorporating two other
similarity metrics: the Euclidean similarity of the k-mer frequency
features used by AffinityRegression and the cosine similarity of the
FastBioseq generated embedding features. These two metrics, to-
gether with BLOSUM PID, captured related but different aspects of
protein sequence information, and thus gave related but different
nearest neighbors. We compared ProbeRating with the resultant k-
mer nearest-neighbor baseline (Fig. 3C, D) and the FastBioseq
nearest-neighbor baseline (Fig. 3E, F), as also shown in Table 2.
Again, ProbeRating outperformed the two baselines with P-val-
ues<10�10 on both RRMs (average SCCs for k-mer and FastBioseq
feature baselines were 0.795 and 0.804) and Homeos (average SCCs
for k-mer and FastBioseq feature baselines were 0.671 and 0.647)

Table 1. Summary of datasets in this study

Datasets # proteins # nucleic acids Type

RRM162 162 241 357 RNAcompete binding data

Homeo215 215 32 896 PBM binding data

Uniprot400k 428 109 – Diverse protein sequences

RRM3k 3213 – RRM sequences

Homeo8k 8302 – Homeo sequences

Fig. 3. Performance of ProbeRating compared to three nearest-neighbor baselines.

(A, B) ProbeRating against the BLOSUM nearest-neighbor baseline. The results for

RRM162 are shown on the left in (A) and Homeo215 on the right in (B). The x-axis

indicates the SCC between the BLOSUM baseline predicted intensity and the true in-

tensity values for each protein. The y-axis indicates the SCC between the

ProbeRating predicted intensity and the true intensity values. Each blue dot in the

scatter plot represents the performance of a protein. The straight black line repre-

sents x¼ y. P-values are computed based on a two-tailed Wilcoxon signed-rank test.

(C, D) ProbeRating against the k-mer feature nearest-neighbor baseline. (E, F)

ProbeRating against the FastBioseq feature nearest-neighbor baseline
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tasks. And ProbeRating was better than the two baselines on major-
ity of the proteins.

Therefore, in general, we observed a clear advantage of
ProbeRating over the three different nearest-neighbor baselines. It
showed that the neural network and reconstruction approaches used
inside ProbeRating were non-trivial, and that they were better than
simply taking the nearest neighbor by a large margin.

3.2 ProbeRating outperformed AffinityRegression on

RBP binding preference prediction task
After testing the performance over the baselines, we then sought to
compare ProbeRating with the AffinityRegression method. First, we
considered the RBP case. As shown in Figure 4A where proteins in
the x-axis are sorted in ascending order based on
AffinityRegression’s performance, ProbeRating outperformed
AffinityRegression for most of the 162 RRM proteins. When focus-
ing on the first 15 proteins (Fig. 4B), i.e. the proteins that
AffinityRegression performed the poorest (lowest SCCs), we
observed that ProbeRating generally agreed with AffinityRegression
on the set of the hardest proteins but performed slightly better. In
both plots, the blue line is almost always above the red line. If we
look at Table 2 and Figure 4C, the overall average SCC of the 162
RRM proteins for AffinityRegression was 0.823, which was much
lower than ProbeRating’s 0.864 (P<0.001). Besides,
AffinityRegression did have a higher mean value than the three
nearest-neighbor baselines in this case (Table 2), and it was signifi-
cantly better than them based on the Wilcoxon test.

Moreover, we were wondering whether using FastBioseq features
alone would lead to better performance. Since our FastBioseq was
trained based on the context information of each k-mer, it may impli-
citly embed some sequence conservation and local structural informa-
tion into the final feature vectors. To separate the effect of the
features from that of the models, we fed the FastBioseq features to the
AffinityRegression model replacing its original k-mer frequency fea-
tures. As denoted by AR-FastBioseq in Figure 4, we compared this ap-
proach with the original AffinityRegression and our ProbeRating. As
a result, AR-FastBioseq did show slightly better mean (0.827 versus
0.823 in Table 2) than AffinityRegression. But no statistical signifi-
cance was detected, due to a larger variance of AR-FastBioseq than
AffinityRegression (Fig. 4C). Also, AR-FastBioseq’s result was signifi-
cantly worse than the ProbeRating’s result (P<0.001).

In summary, similar to the baselines case in the last section,
ProbeRating significantly outperformed the more sophisticated
method AffinityRegression. A consistent advantage of ProbeRating
was shown.

3.3 ProbeRating outperformed AffinityRegression on TF

binding preference prediction task
Next, we asked whether the good performance of ProbeRating
could generalize to TFs by considering the Homeo binding prefer-
ence prediction task. This task was different from the above RRM
binding preference prediction task not only because one was RBP–
RNA interaction and the other was TF–DNA interaction, but also
because the Homeo task worked on 8-mer DNA segments and Z-
scores instead of ordinary probes and intensity scores. As mentioned
earlier in Section 2.3 and in Supplementary Note, this setting has
practical usage: unlike in the RRM162 case where there is only one
large-scale RNAcompete assay available right now, there exist sev-
eral large-scale PBM experiments with very different probe designs.
8-mer Z-score is a way to integrate the data from different sources.
Thus, if our ProbeRating method could also succeed in this case, the
strength of the method would be more convincing.

As a result, ProbeRating outperformed AffinityRegression on the
Homeo215 dataset (in Fig. 5), just like on the previous RRM162
dataset. As shown in Figure 5A, ProbeRating was better than
AffinityRegression for the majority of the Homeo domains. The
mean SCC across all 215 Homeo proteins for ProbeRating was
0.772. It was again significantly better than AffinityRegression’s
0.739 with P<0.001 (Fig. 5C and Table 2), even though
AffinityRegression was significantly better than all the three base-
lines. When zooming in on the first 15 proteins, as shown in

Table 2. Summary of the performance of different methods

Method Performancea

RRM162 Homeo215

BLOSUM nearest-neighbor baseline 0.771 0.676

k-mer nearest-neighbor baseline 0.795 0.671

FastBioseq nearest-neighbor baseline 0.804 0.647

AffinityRegression 0.823 0.739

AffinityRegression with FastBioseq feature 0.827 0.747

Co-Evo 0.211 0.410

ProbeRating 0.864 0.772

aSpearman correlation averaged over all tested proteins.

Fig. 4. Performance of ProbeRating compared to AffinityRegression on the RRM162 dataset. (A) Each dot represents the SCC between the predicted and true RNAcompete

probe intensities for a protein. The solid blue line indicates the performance of ProbeRating with the FastBioseq embedded features (PR), the dashed red line indicates the ori-

ginal AffinityRegression with its k-mer frequency features (AR) and the dotted yellow line indicates feeding AffinityRegression with the FastBioseq embedded features (AR-F).

Proteins in the x-axis are sorted in ascending order based on their original AffinityRegression’s SCCs. (B) Similar plot to (A), zoom in on the first 15 proteins. (C) Boxplot for

the performance of the three methods for all 162 RRM proteins. In each box, the dashed white line denotes the mean, and the solid green line denotes the median. The signifi-

cance bar represents the P-value from a two-tailed Wilcoxon signed-rank test, with *** P< 0.001
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Figure 5B, although these proteins were also hard for ProbeRating
(among the lowest SCCs across all proteins), ProbeRating generally
performed better than AffinityRegression except for a few cases.

Moreover, we also tested the AR-FastBioseq approach on the
Homeo215 dataset. Interestingly, its mean SCC (0.747 as in
Table 2) was again in the middle of ProbeRating’s and the original
AffinityRegression’s mean SCCs, similar to the RRM162 case in the
last section. AR-FastBioseq significantly outperformed the original
AffinityRegression with P<0.001 this time, and it was also signifi-
cantly worse than ProbeRating with P<0.001. This result showed
that the FastBioseq features alone improved the performance in the
AffintyRegression model, and the neural network approach building
on top of that further elevated the performance in ProbeRating.

3.4 ProbeRating was compared with the binding

specificity prediction method
Finally, as mentioned in Section 1, most existing methods focus on
determining the NBP binding preference as a simplified summariza-
tion, like PWM or CNN filter, instead of predicting the full binding
profile as AffinityRegression and ProbeRating do. Although the
focuses and goals are different, the binding-specificity method Co-
Evo (Yang et al., 2018) that was mentioned in Section 1 is also cap-
able of inferring the nucleic acids preferences of an unexplored pro-
tein, and it is relatively more recent than the other methods. So, we
evaluated Co-Evo on the same datasets to compare it with
ProbeRating, to get a sense of where ProbeRating stands when com-
pared with binding specificity prediction methods. As a result, we
observed the SCCs of Co-Evo were much worse than ProbeRating
and AffinityRegression (Table 2), which was not surprising since Co-
Evo was designed to predict a PWM motif to summarize the binding
preference instead of to predict the binding profile directly. The
details of the Co-Evo results can be found in Supplementary Note.

4 Discussion

In this study, we introduced a new method ProbeRating to predict the
binding profiles for NBPs that are experimentally unexplored. We
showed that predicting the binding profile for unexplored NBPs is a
critical but challenging task given is the limited data available. Thus,
the task is less studied compared to the other task of directly deter-
mining the binding preference for an NBP from its experimental data.
Extending the previous work of AffinityRegression, we developed a
two-stage framework to tackle the task utilizing modern techniques
from deep learning and word embedding. The first stage involved
encoding the protein and nucleic acid sequences into distributed

feature vectors. We contributed a tool FastBioseq, which essentially
wrapped the famous FastText method from natural language process-
ing to extract high-level features from biological sequences. The se-
cond stage involved recommending binding preferences for new
proteins. We contributed a feedforward neural network with a non-
parametric reconstruction step to leverage the training data. Our
method was evaluated on the benchmark RBP and TF binding data-
sets. It performed well on both datasets and showed significant
improvements over AffinityRegression and three baselines.

While the significant performance advancement of our method
shows the advantage of using more expressive neural network mod-
els and word embedding features to study NBP–nucleic acid interac-
tions, we see several potential improvements to this study. Here,
ProbeRating propagates binding information from experimentally
characterized NBPs to those unexplored ones within the same pro-
tein family. It would be interesting to investigate whether predicting
for proteins from another family also works, or how similar the un-
explored protein is to those already explored ones to get
ProbeRating to work. As we mentioned earlier in the nearest-
neighbor baselines section, the metrics to define ‘similar’ can be dif-
ferent, depending on what features we are using. Additionally, when
investigating RBP–RNA interactions, although RNAs are known to
fold themselves into secondary and tertiary structures, we do not
consider this information. It is because the probes in our
RNAcompete dataset were intentionally designed to be unstructured
or weak structured (Ray et al., 2013). However, our two-stage
framework could easily incorporate RNA structure as well as pro-
tein structure as input features when appropriate data become avail-
able in further researches. Moreover, the highly modular
subnetwork structures in ProbeRating provide a lot of flexibility to
be extended by other neural network models, too.

Overall, the strength of ProbeRating suggests promising capacity
to the field. It is especially desired by RBPs that do not have much
experimental evidence available at this moment. ProbeRating could
be applied to learn binding patterns in those crucial RBP-related
problems, like lncRNA regulation (Quinn and Chang, 2016; Zhao
et al., 2016) or CRISPR/CAS systems (Liu et al., 2016; Wang et al.,
2016). Also, similar to AffinityRegression, the prediction output
from ProbeRating is the entire binding intensity profile instead of a
simplified representation. So, when dealing with an unexplored
NBP, the output binding profile from ProbeRating could be further
fed as input to those intensively studied protein-specific methods for
downstream analysis. Furthermore, besides of NBP–nucleic acid
paired prediction, ProbeRating could be applied to other scenarios.
For example, AffinityRegression has been used for protein–protein
interaction in a tumor-related signaling pathway study

Fig. 5. Performance of ProbeRating compared to AffinityRegression on the Homeo215 dataset. The plots here are represented in the same way as in Figure 4. In (A) and (B),

proteins in the x-axis are again sorted in ascending order based on their original AffinityRegression’s SCCs. In (C), the significance bars indicate the P-values from a two-tailed

Wilcoxon signed-rank test, with *** P<0.001
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(Osmanbeyoglu et al., 2017). ProbeRating could also be used in
such a case to see if better performance is achieved. ProbeRating’s
component FastBioseq can be used as a standalone package in other
scenarios, too. It provides a general and flexible tool of biological se-
quence embedding for DNA, RNA and proteins.
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